
AN0009: Getting Started with EFM32,
EFR32, and EZR32

This application note introduces the software examples, libraries,
documentation, and software tools available for EFM32, EFR32,
and EZR32 devices.
In addition to providing a basic introduction to the tools available for these devices, this
document includes several basic firmware exercises to familiarize the reader with the
Starter Kit hardware, the emlib firmware library, and the Simplicity Studio software
tools.

Note that this document focuses on the MCU portion of the devices. For wireless prod-
ucts (EFR32 and EZR32), see the additional wireless getting started information availa-
ble in the user guide specifically for the product. More information on the hardware for
any product can be found in the kit user guide. More information about Simplicity Stu-
dio in general can be found in AN0822: Simplicity Studio™ User Guide. Application
notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or in
Simplicity Studio.

KEY POINTS

• Simplicity Studio contains everything
needed to develop with EFM32, EFR32,
and EZR32.

• Things you will learn:
• Basic register operation
• Using emlib functions
• Blinking LEDs and reading buttons
• LCD controller
• Energy Modes
• Real-Time Counter operation

silabs.com | Building a more connected world. Rev. 1.20

http://www.silabs.com/32bit-appnotes

1. Introduction

EFM32 Series 0 consists of:
• EFM32 Gecko (EFM32G)
• EFM32 Giant Gecko (EFM32GG)
• EFM32 Wonder Gecko (EFM32WG)
• EFM32 Leopard Gecko (EFM32LG)
• EFM32 Tiny Gecko (EFM32TG)
• EFM32 Zero Gecko (EFM32ZG)
• EFM32 Happy Gecko (EFM32HG)

EZR32 Wireless MCU Series 0 consists of:
• EZR32 Wonder Gecko (EZR32WG)
• EZR32 Leopard Gecko (EZR32LG)
• EZR32 Happy Gecko (EZR32HG)

EFM32 Series 1 (EFM32xG1/EFM32xG12/EFM32xG13) consists of:
• EFM32 Pearl Gecko (EFM32PG)
• EFM32 Jade Gecko (EFM32JG)

EFR32 Wireless MCU Series 1 (EFR32xG1/EFR32xG12/EFR32xG13) consists of:
• EFR32 Blue Gecko (EFM32BG)
• EFR32 Flex Gecko (EFM32FG)
• EFR32 Mighty Gecko (EFM32MG)

1.1 Prerequisites

The examples in this application note require access to a supported Silicon Labs device. Supported devices include the EFM32 Series
0, and EFM32 Series 1 Starter Kit. Before working on this tutorial, ensure a compatible IDE is available by either:

• Installing Simplicity Studio from Silabs.com (http://www.silabs.com/simplicity), or
• If IAR is preferred, install the latest Segger J-Link drivers to support the kit (https://www.segger.com/jlink-software.html)

In Simplicity Studio, ensure that all the available packages are installed and up to date by clicking on the [Update Software] button at
the top-left of the main window:

Note: While Simplicity Studio includes a fully-functional integrated IDE, it also supports some third party IDEs, including IAR. For this
reason, it is recommended to install Simplicity Studio regardless of the preferred IDE for easy access to these examples as well as the
full suite of features provided to facilitate development of EFM32, EFR32, and EZR32 solutions.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Introduction

silabs.com | Building a more connected world. Rev. 1.20 | 1

http://www.silabs.com/simplicity
https://www.segger.com/jlink-software.html

1.2 How to Use this Application Note

The source code for this application note is placed in the root folder an0009_efm32_getting_started.

The easiest way to access the example source code and projects is through the [Application Notes] dialogue box under [Getting Star-
ted] tab in Simplicity Studio. Simply click one of the application notes to open the [Application Notes] dialog.

Click any
Application Note

to open dialog

Figure 1.1. Application Notes in Simplicity Studio

Within the [Application Notes] dialog, navigate to and select the [AN0009 Getting Started with EFM32] entry, then click the [Import
Project...] button to view the list of available example projects. Use the project names to identify examples compatible with the kit and
select one to import that project into the IDE (by default, this is the Simplicity IDE, but this configuration can be changed to an alterna-
tive IDE, if desired).

Alternatively, projects for multiple IDEs are stored in separate folders (iar, arm, etc.) in the filesystem that hosts these examples, ac-
cessible with the [Open Folder] button in the Simplicity Studio [Applications Notes] dialog. These projects can be manually loaded in
the appropriate IDE. All of the IAR projects are also collected in one common workspace called efm32.eww. Since the projects are
slightly different for the various kits, make sure to open the project that is prefixed with the name of the kit in use.

Note: The code examples in this application note are not complete, and the reader is required to fill in small pieces of code throughout
the exercises. A completed code file (postfixed with *_solution.c) also exists for each example.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Introduction

silabs.com | Building a more connected world. Rev. 1.20 | 2

2. Register Operation

This chapter explains the basics of how to write C-code for the EFM32 devices using the defines and library functions supplied in the
[CMSIS] and [emlib] software libraries.

2.1 Address

The EFM32, EFR32, and EZR32 devices consist of several different types of peripherals (CMU, RTC, ADC...). Some peripherals in the
device exist only as one instance, like the Clock Management Unit (CMU). Other peripherals like Timers (TIMERn) exist as several
instances and the name is postfixed by a number (n) denoting the instance number. Usually, two instances of a peripheral are identical,
but are placed in different regions of the memory map. However, some peripherals have a different feature set for each of the instan-
ces. For example, USART0 can have an IrDA interface, while USART1 cannot. Such differences will be explained in the device data
sheet and the reference manual.

Each peripheral instance has a dedicated address region which contains registers that can be accessed by read/write operations. The
peripheral instances and memory regions are found in the device data sheet. The starting address of a peripheral instance is called the
base address. The reference manual for the device series contains a complete description of the registers within each peripheral. The
address for each register is given as an offset from the base address for the peripheral instance.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Register Operation

silabs.com | Building a more connected world. Rev. 1.20 | 3

2.2 Register Description

The EFM32, EFR32, and EZR32 devices use a 32-bit bus for write/read access to the peripherals, and each register in a peripheral
contains 32 bits, numbered 0-31. Unused bits are marked as reserved and should not be modified. The bits used by the peripheral can
either be single bits (e.g. OUTEN bit in the figure below) or grouped together in bitfields (e.g. PRSSEL bitfield in the figure below). Each
bitfield is described with the following attributes:
• Bit position
• Name
• Reset value
• Access type
• Description

Figure 2.1. Example Register Description

AN0009: Getting Started with EFM32, EFR32, and EZR32
Register Operation

silabs.com | Building a more connected world. Rev. 1.20 | 4

2.3 Access Types

Each register has a set access type for all of the bit fields within that register. The access type describes the reaction to read or write
operations to the bit field. The different access types found for the registers in the devices are described in the table below.

Table 2.1. Register Access Types

Access Type Description

R Read only. Writes are ignored

RW Readable and writable

RW1 Readable and writable. Only writes to 1 have effect

(R)W1 Sometimes readable. Only writes to 1 have effect. Currently only used for IFC registers

W1 Read value undefined. Only writes to 1 have effect

W Write only. Read value undefined.

RWH Readable, writable, and updated by hardware

RW(nB), RWH(nB), etc. "(nB)" suffix indicates that register explicitly does not support peripheral bit set or clear

RW(a), R(a), etc. "(a)" suffix indicates that register has actionable reads

2.4 CMSIS and emlib

The Cortex Microcontroller Software Interface Standard (CMSIS) is a common coding standard for all ARM Cortex devices. The CMSIS
library provided by Silicon Labs contains header files, defines (for peripherals, registers and bitfields), and startup files for all devices. In
addition, CMSIS also includes functions that are common to all Cortex devices, like interrupt handling, intrinsic functions, etc. Although
it is possible to write to registers using hard coded address and data values, it is recommended to use the defines to ensure portability
and readability of the code.

In order to use these defines, projects must include em_device.h in the c-file. This is a common header file for all EFM32, EFR32, and
EZR32 devices. Within this file, the header file content for the appropriate device is included in the project builds according to the pre-
processor symbols defined for the project.

To simplify the programming of EFM32, EFR32, and EZR32 devices, Silicon Labs developed and maintains a complete C-function li-
brary called [emlib] that provides efficient, clear, and robust access to and control of all peripherals and core functions in the device.
This library resides within the em_xxx.c (e.g. em_dac.c) and em_xxx.h (e.g. em_dac.h) files in the emlib folder under path below
(where v5.0.0.0 is the Gecko SDK version number).

C:\SiliconLabs\SimplicityStudio\v4\developer\sdks\exx32\v5.0.0.0\platform\emlib

In the source files included with this application note, the em_chip.h is included in each and a call to CHIP_Init() exists near the
beginning of every main() function. Like the content of em_device.h, the actions taken within the CHIP_Init() function depends on
the specific part in use, but will include correcting for known errata and otherwise ensuring consistent behavior across devices. For this
reason, do not run any code in the main function prior to running the CHIP_Init() function.

2.4.1 CMSIS Documentation

Complete Doxygen documentation for the EFM32, EFR32, and EZR32 [CMSIS] library and [emlib] is available via the [Gecko SDK
Documentation] box under [Documentation] in the Simplicity Studio main window when the corresponding device or kit is selected.
This documentation is also available on the Silicon Labs website at http://devtools.silabs.com/dl/documentation/doxygen/ or on GitHub
at https://siliconlabs.github.io/Gecko_SDK_Doc/.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Register Operation

silabs.com | Building a more connected world. Rev. 1.20 | 5

http://devtools.silabs.com/dl/documentation/doxygen/
https://siliconlabs.github.io/Gecko_SDK_Doc/

2.4.2 Peripheral Structs

In the emlib header files, the register defines for each peripheral type are grouped in structs as defined in the example below:

typedef struct
{
__IO uint32_t CTRL;
__I uint32_t STATUS;
__IO uint32_t CH0CTRL;
__IO uint32_t CH1CTRL;
__IO uint32_t IEN;
__I uint32_t IF;
__O uint32_t IFS;
__O uint32_t IFC;
__IO uint32_t CH0DATA;
__IO uint32_t CH1DATA;
__O uint32_t COMBDATA;
__IO uint32_t CAL;
__IO uint32_t BIASPROG;
} DAC_TypeDef;

Recall that a register address consists of a base address for the peripheral instance plus an additional offset. The peripheral structs in
[emlib] simplify writing to a register and abstract away these underlying addresses and offsets. Hence, writing to CH0DATA in the
DAC0 peripheral instance can then be done like this:

DAC0->CH0DATA = 100;

Similarly, reading a register can be done like this:

myVariable = DAC0->STATUS;

2.4.3 Bit Field Defines

Every device has relevant bit fields defined for each peripheral. These definitions are found within the efm32xx_xxx.h (e.g. efm32tg_da
c.h) files and are automatically included with the appropriate [emlib] peripheral header file.

#define _DAC_CTRL_REFRSEL_SHIFT 20
#define _DAC_CTRL_REFRSEL_MASK 0x300000UL
#define _DAC_CTRL_REFRSEL_DEFAULT 0x00000000UL
#define _DAC_CTRL_REFRSEL_8CYCLES 0x00000000UL
#define _DAC_CTRL_REFRSEL_16CYCLES 0x00000001UL
#define _DAC_CTRL_REFRSEL_32CYCLES 0x00000002UL
#define _DAC_CTRL_REFRSEL_64CYCLES 0x00000003UL
#define DAC_CTRL_REFRSEL_DEFAULT (_DAC_CTRL_REFRSEL_DEFAULT << 20)
#define DAC_CTRL_REFRSEL_8CYCLES (_DAC_CTRL_REFRSEL_8CYCLES << 20)
#define DAC_CTRL_REFRSEL_16CYCLES (_DAC_CTRL_REFRSEL_16CYCLES << 20)
#define DAC_CTRL_REFRSEL_32CYCLES (_DAC_CTRL_REFRSEL_32CYCLES << 20)
#define DAC_CTRL_REFRSEL_64CYCLES (_DAC_CTRL_REFRSEL_64CYCLES << 20)

For every register bitfield, associated shift, mask and default value bit fields are also defined.

#define DAC_CTRL_DIFF (0x1UL << 0)
#define _DAC_CTRL_DIFF_SHIFT 0
#define _DAC_CTRL_DIFF_MASK 0x1UL
#define _DAC_CTRL_DIFF_DEFAULT 0x00000000UL
#define DAC_CTRL_DIFF_DEFAULT (_DAC_CTRL_DIFF_DEFAULT << 0)

AN0009: Getting Started with EFM32, EFR32, and EZR32
Register Operation

silabs.com | Building a more connected world. Rev. 1.20 | 6

2.4.4 Register Access Examples

When setting a bit in a control register, it is important to make sure firmware does not unintentionally clear other bits in the register. To
ensure this, the mask with the bit firmware needs to set can be OR'ed with the original contents, as shown in the example below:

DAC0->CTRL = DAC0->CTRL | DAC_CTRL_LPFEN;

A more compact version is:

DAC0->CTRL |= DAC_CTRL_LPFEN;

Clearing a bit is done by ANDing the register with a value with all bits set except for the bit to be cleared:

DAC0->CTRL = DAC0->CTRL & ~DAC_CTRL_LPFEN; // or
DAC0->CTRL &= ~DAC_CTRL_LPFEN;

When setting a new value to a bit field containing multiple bits, a simple OR function will not do, since this will risk that the original bit
field contents OR'ed with the mask will give a wrong result. Instead, make sure to clear the entire bit field (and only the bit field) before
ORing in the new value:

DAC0->CTRL = (DAC0->CTRL & ~_DAC_CTRL_REFRSEL_MASK) | DAC_CTRL_REFRSEL_16CYCLES;

2.4.5 Grouped Registers

Some registers are grouped together within each peripheral. An example of such a group is the registers associated with each GPIO
port, like the Data Out Register (DOUT) in the figure below. Each GPIO port (A, B, C, ...) contains a DOUT register and the description
below is common for all of these. The x in GPIO_Px_DOUT indicates the port wild card.

Figure 2.2. Grouped Registers in GPIO

In the CMSIS defines the port registers are grouped in an array P[x]. When using this array, we must index it using numbers instead of
the port letters (A=0, B=1, C=2, ...). Accessing the DOUT register for port C can be done like this:

GPIO->P[2].DOUT = 0x000F;

AN0009: Getting Started with EFM32, EFR32, and EZR32
Register Operation

silabs.com | Building a more connected world. Rev. 1.20 | 7

3. Example 1 — Register Operation

This example will show how to write and read registers using the CMSIS defines. This tutorial also shows how to observe and manipu-
late register contents through the debugger in Simplicity Studio or IAR Embedded Workbench. While the examples are shown only for
Simplicity Studio and IAR, the tasks can also be completed in other supported IDEs.

For Simplicity Studio:

1. Connect the kit to the PC and open Simplicity Studio.
2. Once the kit appears, click on the kit (e.g. EFM32 Giant Gecko Starter Kit (EFM32GG-STK3700)) in [Device] window.
3. Click one of the application notes under [Getting Started] tab to open [Application Notes] dialog.
4. Search for [AN0009 Getting Started with EFM32] and click the document in the list, then click the [Import Project...] button.
5. Select the [<kit_name>_1_registers.slsproj] option in the dialog and click [OK].
6. Double-click on the 1_registers.c file to open it in the editor view. There's a marker where custom code should be added.

For IAR:

1. Open up the efm32 workspace (an\an0009_efm32_getting_started\iar\efm32.eww).
2. Select the [<kit_name>_1_registers] project in IAR Embedded Workbench.
3. In the main function in the 1_registers.c (inside Source Files), there's a marker where custom code should be added.

3.1 Step 1 — Enable Timer Clock

In this example, we are going to use TIMER0. The high frequency RC oscillator (HFRCO) is running at default frequency band, but all
peripheral clocks are disabled, so we must turn on the clock for TIMER0 before we use it. If we look in the CMU chapter of the refer-
ence manual, we see that the clock to TIMER0 can be switched on by setting the TIMER0 bit in the HFPERCLKEN0 register in the
CMU peripheral.

3.2 Step 2 — Start Timer

Starting the Timer is done by writing a 1 to the START bit in the CMD register in TIMER0.

3.3 Step 3 — Wait for Threshold

Create a while-loop that waits until the counter is 1000 before proceeding.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 1 — Register Operation

silabs.com | Building a more connected world. Rev. 1.20 | 8

3.4 Observation

For Simplicity IDE, make sure the [<kit_name>_1_registers] project is active by clicking the project in the left-hand [Project] view.
Then, press the [Debug] button to automatically build and download the code to the device. Click the [Registers] view and find the
STATUS register in TIMER0. After expanding the register, notice that the RUNNING bit set to 0.

In the code view, double-click the left pane to place a breakpoint before firmware starts the timer and click the [Resume] button. Then,
watch the RUNNING bit get set to 1 in the [Registers] view when single stepping over the expression using the [Step Over] button.
Continue to single step and note that the content of the CNT registers is increasing. Try writing a different value to the CNT register by
entering it directly in the [Registers] view.

Build and Debug Registers ViewResume Step Over

Disconnect Reset

Expressions View

Double-click to
add a breakpoint

Figure 3.1. Debug View in Simplicity IDE

For IAR, make sure the [<kit_name>_1_registers] project is active by pressing the corresponding tab at the bottom of the Workspace
window. Then, press the [Download & Debug] button and go to [View]->[Register] and find the STATUS register in TIMER0. After
expanding the register, notice that the RUNNING bit is set to 0.

Place the cursor in front of the line where firmware starts the timer and press [Run to Cursor]. Then, watch the RUNNING bit get set to
1 in the [Register] view when clicking the [Step Into] button to move over the expression. Continue to click the [Step Into] button to
see the content of the CNT registers increasing. Try writing a different value to the CNT register by entering it directly in the [Register]
view.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 1 — Register Operation

silabs.com | Building a more connected world. Rev. 1.20 | 9

Reset Download and DebugExit debugStep Into

Run to cursor Run

Figure 3.2. Debug View in IAR

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 1 — Register Operation

silabs.com | Building a more connected world. Rev. 1.20 | 10

4. Example 2 — Blinking LEDs with an STK

In this example, the aim is to use the GPIO pins to light up the LEDs on the STK and change the LED configuration every time a button
is pressed. Instead of accessing the registers directly, use the emlib functions to configure the peripherals.

The AN0009 application note includes a [<kit_name>_2_leds] project in Simplicity Studio and the IAR efm32 workspace, which will be
used in this example. The emlib C-files are included in the project. The corresponding header files are included at the beginning of the
C-files.

For details on which emlib functions exist and how to use them, open the API documentation through Simplicity Studio using the
[Gecko SDK Documentation] under [Documentation] (or by going to http://devtools.silabs.com/dl/documentation/doxygen/). After
clicking on the software documentation link for the correct device (e.g. Giant Gecko), open up [Modules->EMLIB] and select the [CMU]
peripheral. Find a list of functions for this peripheral by clicking on the [Functions] link at the top-right of the window. These functions
can be used to to easily operate the Clock Management Unit.

Figure 4.1. Documentation for the CMU-specific emlib Functions

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 2 — Blinking LEDs with an STK

silabs.com | Building a more connected world. Rev. 1.20 | 11

http://devtools.silabs.com/dl/documentation/doxygen/

4.1 Step 1 — Turn on GPIO clock

In the list of CMU functions we find the following function to turn on the clock to the GPIO:

void CMU_ClockEnable(CMU_Clock_TypeDef clock, bool enable)

If we click on the function, we are shown a description of how to use the function. Clicking on the [CMU_Clock_TypeDef] link goes to a
list of the allowed enumerators for the clock argument. To turn on the GPIO, add the following:

CMU_ClockEnable(cmuClock_GPIO, true);

Figure 4.2. CMU_ClockEnable Function Description

4.2 Step 2 — Configure GPIO Pins for LEDs

The User Manual for a kit is available in Simplicity Studio under the [Documentation] when the corresponing kit is selected in the De-
vice or Solutions window. This document describes the usage of all the pins, including the user LED(s). These LED(s) are connected as
follows on several example kits:

• EFM32-Gxxx-STK: 4 LEDs on port C, pins 0-3
• EFM32TG-STK3300: 1 LED on port D, pin 7
• EFM32GG-STK3700: 2 LEDs on port E, pins 2-3
• EFM32ZG-STK3200: 2 LEDs on port C, pins 10-11
• SLSTK3401A_EFM32PG: 2 LEDs on port F, pins 4-5

Consult the user manual for information specific to the kit in use.

Looking into the available functions for the GPIO, the following function can be used to configure the mode of the GPIO pins:

void GPIO_PinModeSet(GPIO_Port_TypeDef port, unsigned int pin,
 GPIO_Mode_TypeDef mode, unsigned int out)

Use this function to configure the LED pin(s) as Push-Pull outputs with the initial DOUT value set to 0.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 2 — Blinking LEDs with an STK

silabs.com | Building a more connected world. Rev. 1.20 | 12

4.3 Step 3 — Configure a GPIO Pin for a Button

Look at the User Manual for the STK to find where Push Button 0 (PB0) is connected on the kit in use. This button is connected on
several example kits as follows:

• EFM32-Gxxx-STK: Port B, pin 9
• EFM32TG-STK3300: Port D, pin 8
• EFM32GG-STK3700: Port B, pin 9
• EFM32ZG-STK3200: Port C, pin 8
• SLSTK3401A_EFM32PG: Port F, pin 6

Configure this pin as an input to be able to detect the button state.

4.4 Step 4 — Change LED Status when a Button is Pressed

Write a loop that toggles the LED(s) every time PB0 is pressed. Make sure to not only check that the button is pressed, but also that it
is released, so that the LED(s) only toggle once for each button press. PB0 is pulled high by an external resistor.

4.5 Extra Task — LED Animation

Experiment with creating different blinking patterns on the LED(s), like fading and running LEDs (if there are multiple LEDs). Because
the device typically runs in the HFRCO frequency band by default, add a delay function to be able to see the LEDs changing in real-
time. Using the code for TIMER0 in Example 1, create the following function:

void Delay(uint16_t milliseconds)

Use the PRESC bitfield in TIMER0_CTRL to reduce the clock frequency to a desired value.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 2 — Blinking LEDs with an STK

silabs.com | Building a more connected world. Rev. 1.20 | 13

5. Example 3a — Segment LCD Controller

This example requires an STK with a Segment LCD. This example will demonstrate how to use the Segment LCD controller and display
information on the LCD display. The LCD controller includes an autonomous animation feature which will also be demonstrated. The
AN0009 application note includes a [<kit_name>_3_lcd] project in Simplicity Studio and the IAR efm32 workspace, which will be used
in this example.

5.1 Step 1 — Initialize the LCD controller

The LCD controller driver is located in the starter kit library. First, run the initialize function SegmentLCD_Init()found in segmentlcd.h
to set up the LCD controller.

5.2 Step 2 — Write to the LCD display

By default, all LCD segments are switched off after initialization. The LCD controller driver includes several functions to control the dif-
ferent segment groups on the display. A few examples are:

void SegmentLCD_Number(int value)
void SegmentLCD_Write(char *string)
void SegmentLCD_Symbol(lcdSymbol s, int on);

Experiment with putting custom text, numbers, or symbols on the display and try to make things move about a bit. Use the Delay func-
tion from Example 2. A Delay function can also be found in the solution file.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 3a — Segment LCD Controller

silabs.com | Building a more connected world. Rev. 1.20 | 14

5.3 Step 3 — Animate Segments

Seg7

AREGB7

AREGA7

ALOGSEL

Seg6

AREGB6

AREGA6

Seg0

AREGB0

AREGA0

Barrel shift right/left

Barrel shift right/left

Figure 5.1. Animation Function

The LCD controller contains an animation feature which can animate up to 8 segments (8-segment ring on the LCD display) autono-
mously. The data displayed in the animated segments is a logic function (AND or OR) of two register bits for each segment. The two
register arrays (LCD_AREGA, LCD_AREGB) can then be set up to be barrel shifted either left or right every time the Frame Counter
overflows. The Frame Counter can be set up to overflow after a configurable number of frames. The firmware manipulates the LCD
registers by doing direct register writes. The following registers must be set up:

LCD_BACTRL:

• Set Frame Counter Enable bit
• Configure Frame Counter period by setting the FCTOP field
• Set Animation Enable bit
• Select either AND or OR as logic function
• Configure AREGA and AREGB shift direction
• For the Giant Gecko STK (STK3700), also set the ALOC bit to SEG8TO15

LCD_AREGA/LCD_AREGB:

• Write data used for animation to these registers.

Play around a bit with the configuration of the animated segments and watch the results on the LCD display.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 3a — Segment LCD Controller

silabs.com | Building a more connected world. Rev. 1.20 | 15

6. Example 3b — Memory LCD

This example requires a STK equipped with a Memory LCD (e.g. Happy Gecko, Zero Gecko, or Pearl Gecko). This example shows
how to configure the Memory LCD driver and write text on the Memory LCD. The software project called [<kit_name>_3_lcd_mem] will
be used in this example.

The Gecko SDK includes a driver for the memory LCD. Documentation for this display driver is found in the [Display] under the [Kit
Drivers] section in corresponding kit [Software Documentation].

Figure 6.1. Documentation for the Display Driver

6.1 Step 1 — Configure the Display Driver

First, initialize the DISPLAY driver with DISPLAY_Init().

The display driver includes TEXTDISPLAY, which is an interface for printing text to a dispaly device. Use TEXTDISPLAY_New() to create
a new TEXTDISPLAY interface.

6.2 Step 2 — Write Text to the Memory LCD

TEXTDISPLAY implements basic functions for writing text to the Memory LCD. Try TEXTDISPLAY_WriteString() and TEXTDISPLAY_W
riteChar().

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 3b — Memory LCD

silabs.com | Building a more connected world. Rev. 1.20 | 16

7. Example 4 — Energy Modes

This example shows how to enter different Energy Modes (EMx) and wake up using an RTC or RTCC interrupt. The project called
[<kit_name>_4_energymodes] is used in this example.

7.1 Advanced Energy Monitor with STK

The Starter Kits include current measurement of the VMCU power domain, which is used to power the device and the LCD display in
addition to other components in the application part of the starter kit. The real-time current measurement can be monitored on a PC
using the Energy Profiler available in Simplicity Studio.

7.2 Step 1 — Enter EM1

To enter EM1, execute a Wait-For-Interrupt instruction with the SLEEPDEEP bit in the SCB_SCR register clear. An intrinsic function for
this instruction (part of CMSIS) is shown below:

SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk;
__WFI();

After executing this instruction, observe that the current consumption drops.

In addition, the EMU emlib functions include functions for entering Energy Modes, which firmware can use instead of clearing the
SLEEPDEEP bit and executing the WFI-instruction manually:

void EMU_EnterEM1()

7.3 Step 2 — Enter EM2

Entering EM2 is also done by executing the WFI-instruction, except with the SLEEPDEEP bit in the SCB_SCR register also set, and
with a low frequency oscillator enabled. To enter EM2, first enable a low frequency oscillator (either LFRCO or LFXO) before going to
deep sleep. In this example, enable the LFRCO and wait for it to stabilize by using the following emlib function:

void CMU_OscillatorEnable(CMU_Osc_Typedef osc, bool enable, bool wait)

Now, enter EM2 by setting SLEEPDEEP and executing the WFI-instruction:

SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
__WFI();

In addition, the EMU emlib functions include functions for entering Energy Modes, which firmware can use instead of setting the
SLEEPDEEP bit and executing the WFI-instruction manually:

void EMU_EnterEM2(bool restore)

It is strongly recommended to take advantage of this function. This emlib function will also avoid or workaround any errata issues affect-
ing the Energy Modes operation.

Note: When in an active debug session, the device will not be allowed to go below EM1. To measure the current consumption in EM2,
end the debugging session and reset the device with the reset button on the STK.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 4 — Energy Modes

silabs.com | Building a more connected world. Rev. 1.20 | 17

7.4 Step 3 — Enter EM3

To enter EM3, first disable all low frequency oscillators before going to deep sleep (which is accomplished by using the same technique
as for EM2). Disable the LFRCO originally enabled in Step 2 by using the following emlib function:

void CMU_OscillatorEnable(CMU_Osc_Typedef osc, bool disable, bool wait)

Now, enter EM3 by setting SLEEPDEEP and executing the WFI-instruction:

SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
__WFI();

In addition, the EMU emlib functions include functions for entering Energy Modes, which firmware can use instead of disabling LF oscil-
lators, setting the SLEEPDEEP bit, and executing the WFI-instruction manually:

void EMU_EnterEM3(bool restore)

It is strongly recommended to take advantage of this function. This emlib function will also avoid or workaround any errata issues affect-
ing the Energy Modes operation.

Note: When in an active debug session, the device will not be allowed to go below EM1. To measure the current consumption in EM3,
end the debugging session and reset the device with the reset button on the STK.

7.5 Step 4 — Configure the Real-Time Counter (RTC) of EFM32 Series 0

To wake up from EM2, configure the Real-Timer Counter (RTC) to give an interrupt after 5 seconds. First, enable the clock to the RTC
by using the CMU emlib functions. To communicate with Low Energy/Frequency peripherals like the RTC, also enable the clock for the
LE interface (cmuClock_HFLE).

The emlib initialization function for the RTC requires a configuration struct as an input:

void RTC_Init(const RTC_Init_TypeDef *init)

The struct is already declared in the code, but firmware must set the 3 parameters in the struct before using it with the RTC_Init func-
tion:

rtcInit.comp0Top = true;

Next, set compare value 0 (COMP0) in the RTC, which will set interrupt flag COMP0 when the compare value matches the counter
value. Chose a value that will equal 5 seconds given that the RTC runs at 32.768 kHz:

void RTC_CompareSet(unsigned int comp, uint32_t value)

Now the RTC COMP0 flag will be set on a compare match, but the corresponding enable bit must also be set to generate an interrupt
request from the RTC:

void RTC_IntEnable(uint32_t flags)

The RTC interrupt request is enabled on a comparator match, but to trigger an interrupt, the RTC interrupt request line must be enabled
in the Cortex-M. The IRQn_Type to use is RTC_IRQn.

NVIC_EnableIRQ(RTC_IRQn);

An interrupt handler for the RTC is already included in the code (RTC_IRQHandler), but it is empty. In this function, add a function call
to clear the RTC COMP0 interrupt flag. If firmware does not do this, the Cortex-M will be stuck in the interrupt handler, since the inter-
rupt is never deasserted. Look for the RTC emlib function to clear the interrupt flag.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 4 — Energy Modes

silabs.com | Building a more connected world. Rev. 1.20 | 18

7.6 Step 4 — Configure the Real-Time Counter and Calendar (RTCC) of EFM32 Series 1

To wake up from EM2, configure the Real-Timer Counter and Calendar (RTCC) to give an interrupt after 5 seconds. First, enable the
clock to the RTCC by using the CMU emlib functions. To communicate with Low Energy/Frequency peripherals like the RTCC, also
enable the clock for the LE interface (cmuClock_HFLE).

The emlib initialization function for the RTCC requires a configuration struct as an input:

void RTCC_Init(const RTCC_Init_TypeDef *init)

The struct is already declared in the code, but firmware must set the 9 parameters in the struct before using it with the RTCC_Init
function:

rtccInit.cntWrapOnCCV1 = true;

The emlib initialization function for the capture/compare channel of the RTCC requires a configuration struct as an input:

void RTCC_ChannelInit(int ch, RTCC_CCChConf_TypeDef const *confPtr)

The struct is already declared in the code, but firmware must set the 7 parameters in the struct before using it with the RTCC_ChannelIn
it function:

rtccInitCompareChannel.chMode = rtccCapComChModeCompare;

Next, set Capture/Compare Value register 1 (CC1_CCV) in the RTCC, which will set interrupt flag CC1 when the compare value match-
es the counter value. Chose a value that will equal 5 seconds given that the RTCC runs at 32.768 kHz:

void RTCC_ChannelCCVSet(int ch, uint32_t value)

Now the RTCC CC1 flag will be set on a compare match, but the corresponding enable bit must also be set to generate an interrupt
request from the RTCC:

void RTCC_IntEnable(uint32_t flags)

The RTCC interrupt request is enabled on a comparator match, but to trigger an interrupt, the RTCC interrupt request line must be
enabled in the Cortex-M. The IRQn_Type to use is RTCC_IRQn.

NVIC_EnableIRQ(RTCC_IRQn);

An interrupt handler for the RTCC is already included in the code (RTCC_IRQHandler), but it is empty. In this function, add a function
call to clear the RTCC CC1 interrupt flag. If firmware does not do this, the Cortex-M will be stuck in the interrupt handler, since the
interrupt is never deasserted. Look for the RTCC emlib function to clear the interrupt flag.

7.7 Extra Task — Segment LCD Controller in EM2

As an extra task, enable the LCD controller (assuming there's a Segment LCD on the kit in use) and write something on the LCD dis-
play before going to EM2. Use the segment animation from the previous example in EM2.

Note: Since the RTC or RTCC is used by the Memory LCD display driver, this extra task does not apply to the kits that feature a Memo-
ry LCD instead of a segment LCD.

AN0009: Getting Started with EFM32, EFR32, and EZR32
Example 4 — Energy Modes

silabs.com | Building a more connected world. Rev. 1.20 | 19

8. Summary

Congratulations! You now know the basics of Energy Friendly Programming, including register and GPIO operation, use of basic func-
tions on the STK and LCD, in addition to handling different Energy Modes in the device and the emlib/CMSIS functions. The [Software
Examples] and [Application Notes] under [Getting Started] tab in Simplicity Studio provide more examples and Application Notes to
explore.

Figure 8.1. Software Examples and Application Notes in Simplicity Studio

AN0009: Getting Started with EFM32, EFR32, and EZR32
Summary

silabs.com | Building a more connected world. Rev. 1.20 | 20

9. Revision History

9.1 Revision 1.20

2017-1-16

Updated for Simplicity Studio V4.

Removed example for EFM32G development kit.

Added example for EFM32PG starter kit.

9.2 Revision 1.19

2015-11-06

Added support for EFM32 Gemstones and the EFR32 Wireless Gecko portfolio.

9.3 Revision 1.18

2014-05-07

Updated example code to CMSIS 3.20.5

Changed to Silicon Labs license on code examples

Added example projects for Simplicity IDE

Removed example makefiles for Sourcery CodeBench Lite

9.4 Revision 1.17

2013-10-09

Added missing header file

9.5 Revision 1.16

2013-10-08

New cover layout

Added support for the Zero Gecko Starter Kit (EFM32ZG-STK3200)

New text in the Bit field defines chapter

Fixed issue with STK3700 and LCD animation

9.6 Revision 1.15

2013-05-08

Added software projects for ARM-GCC and Atollic TrueStudio.

9.7 Revision 1.14

2012-11-12

Added support for the Giant Gecko Starter Kit(EFM32GG-STK3700)

Adapted software projects to new kit-driver and bsp structure

9.8 Revision 1.13

2012-04-20

Adapted software projects to new peripheral library naming and CMSIS_V3

AN0009: Getting Started with EFM32, EFR32, and EZR32
Revision History

silabs.com | Building a more connected world. Rev. 1.20 | 21

9.9 Revision 1.12

2012-03-14

Added efm32lib file efm32_emu.c to LED projects

Fixed makefile-error for CodeSourcery projects

9.10 Revision 1.11

2011-10-21

Updated IDE project paths with new kits directory

9.11 Revision 1.10

2011-09-08

Added support for Tiny Gecko Starter Kit (EFM32TG-STK3300)

9.12 Revision 1.03

2011-05-18

Updated projects to align with new bsp version

9.13 Revision 1.02

2010-11-19

Corrected solution c-files for new EFM32LIB functions

Corrected pdf document for new EFM32LIB functions

9.14 Revision 1.01

2010-11-16

Changed software/documentation to use the segmentlcd.c functions, lcdcontroller.c is deprecated

Added section about CMSIS Doxygen documentation

Changed example folder structure, removed build and src folders

Updated chip init function to newest efm32lib version

9.15 Revision 1.00

2010-09-20

Initial revision

AN0009: Getting Started with EFM32, EFR32, and EZR32
Revision History

silabs.com | Building a more connected world. Rev. 1.20 | 22

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	1. Introduction
	1.1 Prerequisites
	1.2 How to Use this Application Note

	2. Register Operation
	2.1 Address
	2.2 Register Description
	2.3 Access Types
	2.4 CMSIS and emlib
	2.4.1 CMSIS Documentation
	2.4.2 Peripheral Structs
	2.4.3 Bit Field Defines
	2.4.4 Register Access Examples
	2.4.5 Grouped Registers

	3. Example 1 — Register Operation
	3.1 Step 1 — Enable Timer Clock
	3.2 Step 2 — Start Timer
	3.3 Step 3 — Wait for Threshold
	3.4 Observation

	4. Example 2 — Blinking LEDs with an STK
	4.1 Step 1 — Turn on GPIO clock
	4.2 Step 2 — Configure GPIO Pins for LEDs
	4.3 Step 3 — Configure a GPIO Pin for a Button
	4.4 Step 4 — Change LED Status when a Button is Pressed
	4.5 Extra Task — LED Animation

	5. Example 3a — Segment LCD Controller
	5.1 Step 1 — Initialize the LCD controller
	5.2 Step 2 — Write to the LCD display
	5.3 Step 3 — Animate Segments

	6. Example 3b — Memory LCD
	6.1 Step 1 — Configure the Display Driver
	6.2 Step 2 — Write Text to the Memory LCD

	7. Example 4 — Energy Modes
	7.1 Advanced Energy Monitor with STK
	7.2 Step 1 — Enter EM1
	7.3 Step 2 — Enter EM2
	7.4 Step 3 — Enter EM3
	7.5 Step 4 — Configure the Real-Time Counter (RTC) of EFM32 Series 0
	7.6 Step 4 — Configure the Real-Time Counter and Calendar (RTCC) of EFM32 Series 1
	7.7 Extra Task — Segment LCD Controller in EM2

	8. Summary
	9. Revision History
	9.1 Revision 1.20
	9.2 Revision 1.19
	9.3 Revision 1.18
	9.4 Revision 1.17
	9.5 Revision 1.16
	9.6 Revision 1.15
	9.7 Revision 1.14
	9.8 Revision 1.13
	9.9 Revision 1.12
	9.10 Revision 1.11
	9.11 Revision 1.10
	9.12 Revision 1.03
	9.13 Revision 1.02
	9.14 Revision 1.01
	9.15 Revision 1.00

