PRODUCT SPECIFICATION

SERIAL ATTACH SCSI HOST RECEPTACLE

1.0 SCOPE

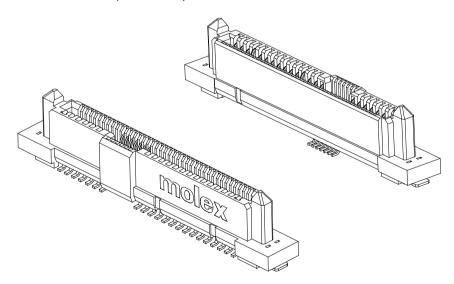
This Product Specification covers the performance requirements of the Serial Attach SCSI / High Speed Serialized host receptacle connector.

2.0 PRODUCT DESCRIPTION

2.1 PRODUCT NAME AND SERIES NUMBER(S)

Product Name Series Number

SERIAL ATTACH SCSI, VERTICAL BACKPLANE, SMT, RECEPTACLE


78728

2.2 DIMENSIONS, MATERIALS, PLATINGS AND MARKINGS

See the appropriate Sales Drawing for information on dimensions, materials, platings and markings.

2.3 SAFETY AGENCY APPROVALS

UL FILE : E29179 VOL 10 CSA : 1699307 (LR 19980)

REVISION:	ECR/ECN INFORMATION: EC No: \$2015-1473 DATE: 2015/06/22	SERI	SERIAL ATTACH SCSI VERTICAL SMT RECEPTACLE					
DOCUMENT NUMBER:		CREATED / REVISED BY: CHECKED BY: APPROVED BY			OVED BY:			
PS-78728-001		SKANG	CWANG25 SHONG		IONG			
	TEMPLATE FILENAME: PRODUCT, SPECISIZE, 44I(V, 1) DOC							

PRODUCT SPECIFICATION

3.0 APPLICABLE DOCUMENTS AND SPECIFICATIONS

The following documents form a part of this specification to the extend specified herewith. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In addition, in the event of conflict between the requirements of this specification and the reference documents, this specification shall take precedence.

4.0 RATINGS

4.1 VOLTAGE

30 Volts Max.

4.2 CURRENT

1.5 Amperes per pin.

4.3 TEMPERATURE

Operating: 0°C to +55°C Non-Operating: -40°C to +85°C

5.0 PERFORMANCE

5.1 ELECTRICAL REQUIREMENTS

ITEM	DESCRIPTION	TEST CONDITION	REQUIREMENT
1	Low Level Contact Resistance (LLCR)	Subject mated connectors to a maximum voltage of 20 mV and a current of 100 mA. (EIA 364-23)	30 mΩ MAXIMUM [Initial] 15 mΩ MAXIMUM [Delta Change from Initial]
2	Temperature Rise (via current cycling) (Power Segment, P1 thru P15)	Mount connector to a test PCB with ½ oz copper layer. Wire power pins P1, P2, P8 and P9 in parallel for power. Wire ground pins P4, P5, P6, P10 and P12 in parallel for return. Supply 6A total DC current to the power pins in parallel, returning from the parallel ground pins. Measure and record temperature after 96 hours (45 minutes ON and 15 minutes OFF per hour).	1.5 A per pin MINIMUM Temperature rise shall not exceed 30°C at any point in the connector when contacts are powered Still Air at Ambient temperature 25°C

A REVISION:	EC No: S2015-1473 DATE: 2015/06/22	SERI	SERIAL ATTACH SCSI VERTICAL SMT RECEPTACLE						
DOCUMENT NUMBER:		CREATED / REVISED BY: CHECKED BY: APPROVED BY			OVED BY:				
PS-78728-001		SKANG	CANG CWANG25 SHO		IONG				
	TEMPLATE ELI ENAME: PRODUCT SPECIOLZE ANIALA DOC								

TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A4](V.1).DOC

PRODUCT SPECIFICATION

3	Insulation Resistance	After 500 VDC for 1 minute, measure the insulation resistance between adjacent terminals of the mated and unmated connector assemblies. (EIA 364-21)	1000 Megohms MINIMUM
4	Dielectric Withstanding Voltage	Subject a voltage of 500 VAC for 1 minute between adjacent terminals of mated and unmated connector at sea level. (EIA 364-20)	No breakdown

5.2 MECHANICAL REQUIREMENTS

ITEM	DESCRIPTION	TEST CONDITION	REQUIREMENT
5	Connector Mate and Unmate Forces	Mate and Unmate connector assemblies at a rate of 25 mm per minute. (EIA 364-13)	Mate force: 25 N MAXIMUM Unmate force: 5 N MINIMUM for Backplane Receptacle [Initial and After Durability]
6	Durability	500 cycles for Backplane Receptacle. All at a maximum rate of 200 cycles per hour. (EIA 364-09)	No Physical damage 15 mΩ MAXIMUM [Delta Change from Initial]
7	Housing Slip Out Force	Apply axial pull out force on housing at a rate of 25.4 mm per minute.	60 N MINIMUM
8	Physical Shock	Subject mated connector to 50 g's half-sine shock pulses of 11 msec duration. Three shocks in each direction applied along three mutually perpendicular planes for a total of 18 shocks. (EIA 364-27 Condition A) Test Set-Up in Section 8.0	No Physical damage 15 mΩ MAXIMUM [Delta Change from Initial] No discontinuities of 1 μs or longer duration

REVISION:	ECR/ECN INFORMATION: EC No: \$2015-1473 DATE: 2015/06/22	SERI	SERIAL ATTACH SCSI VERTICAL SMT RECEPTACLE					
DOCUMEN	T NUMBER:	CREATED / REVISED BY: CHECKED BY: APPROVED B			OVED BY:			
PS-78728-001		SKANG	SKANG CWANG25 S		IONG			
1	TEMPLATE FILENAME: PRODUCT SPECISIZE AAI(V.1) DOC							

PRODUCT SPECIFICATION

9	Random Vibration	Subject mated connector to 4.90 g's RMS. 30 minutes in each of the three mutually perpendicular planes. (EIA 364-28 Condition VII Test letter E) Test Set-Up in Section 8.0	15 mΩ MAXIMUM [Delta Change from Initial] No discontinuities of 1 μs or longer duration [After Stress]
---	------------------	--	---

5.3 ENVIROMENTAL REQUIREMENTS

ITEM	DESCRIPTION	TEST CONDITION	REQUIREMENT
10	Humidity	Subject the connector to temperature and humidity of 40 °C with 90 % to 95 % RH for 96 hours. (EIA 364-31 Method II Test Condition A)	No Physical damage 15 mΩ MAXIMUM [Delta Change from Initial]
11	Solder Time: 3 ± 0.5 seconds Solder Temperature: $260 \pm 5^{\circ}$ C		Dipped portion should have 95% continuous new solder coating coverage
12	Resistance to Soldering Heat	Refer to Section 9.0 for soldering profile	No damage in appearance of connector
13	Temperature Life	Subject mated connector to temperature life at +85°C for 500 hours. (EIA 364-17 Method A Test Condition 3)	No Physical damage 15 mΩ MAXIMUM [Delta Change from Initial]
14	Thermal Shock	Subject connector to 10 cycles between - 55 °C and + 85 °C. (EIA 364-32 Method A Test Condition I)	No Physical damage 15 mΩ MAXIMUM [Delta Change from Initial]
15	Mixed Flowing Gas	1 half of samples are exposed unmated (receptacle only) for 7 days and then mated for additional 7 days. The other half of samples mated for full 14 days test period. (EIA 364-65 Class IIA)	No Physical damage 15 mΩ MAXIMUM [Delta Change from Initial]

REVISION:	ECR/ECN INFORMATION: EC No: \$2015-1473 DATE: 2015/06/22	SERI	SERIAL ATTACH SCSI VERTICAL SMT RECEPTACLE					
DOCUMEN	T NUMBER:	CREATED / REVISED BY: CHECKED BY: APPROVED BY			OVED BY:			
PS-78728-001		SKANG	SKANG CWANG25 S		IONG			
	TEMPLATE FUENAME: PRODUCT SPECISIZE 441/V 1) DOC							

PRODUCT SPECIFICATION

6.0 PACKAGING

Parts shall be packaged to protect against damage during handling, transit and storage.

7.0 TEST SEQUENCES

Α	В	С	D	Е	F	G
1, 5	1,10	1,9	1,6	1,10	1,8	1
2, 4	2,5,7,9	2,4,6,8		2,5,7,9	2,5,7	
						3,6
						4,7
			5			
3	3 ^(a)	3 ^(a)	2 ^(a)	3 ^(a)	3 ^(a)	
	8					
	6					
				6		5
	4 ^(b)	5	3		4 ^(b)	
		7	4	8		
				4		
						2
					6	
	1, 5	1, 5 1,10 2, 4 2,5,7,9 3 3 ^(a) 8 6	1, 5 1,10 1,9 2, 4 2,5,7,9 2,4,6,8 3 3 ^(a) 3 ^(a) 8 6 4 ^(b) 5	1, 5 1,10 1,9 1,6 2, 4 2,5,7,9 2,4,6,8 5 3 3 ^(a) 3 ^(a) 2 ^(a) 8 6 4 ^(b) 5 3	1, 5 1,10 1,9 1,6 1,10 2, 4 2,5,7,9 2,4,6,8 2,5,7,9 3 3(a) 3(a) 2(a) 3(a) 8 6 6 6 4(b) 5 3 3 7 4 8	1, 5 1,10 1,9 1,6 1,10 1,8 2, 4 2,5,7,9 2,4,6,8 2,5,7,9 2,5,7 3 3(a) 3(a) 3(a) 3(a) 3(a) 8 6 6 6 4(b) 5 3 4(b) 7 4 8 4 4

Note -

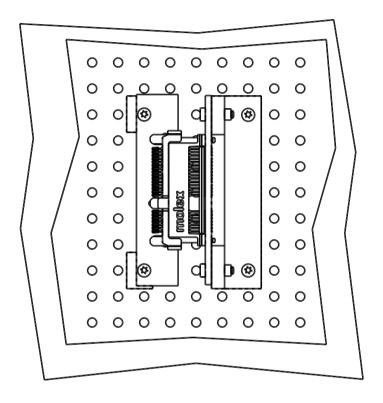
- (a) Preconditioning, 50 cycles for the 500-durability cycles requirement. The mate and unmate cycle is at a maximum rate of 200 cycles per hour.
- (b) Preconditioning, 105°C for 72 hours

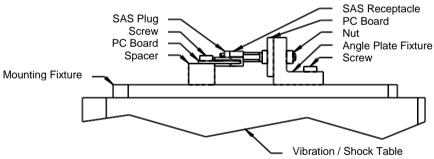
REVISION:	ECR/ECN INFORMATION:	TITLE:	AL ATTACH SCSI		SHEET No.
Α	EC No: S2015-1473	VERTICA	5 of 8		
	DATE: 2015/06/22				0 01 0
DOCUMEN	T NUMBER:	CREATED / REVISED BY:	CHECKED BY:	<u>APPR</u>	OVED BY:
PS-78728-001		SKANG	SKANG CWANG25 S		IONG

TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A4](V.1).DOC

PRODUCT SPECIFICATION

7.0 TEST SEQUENCES (CONTINUED)

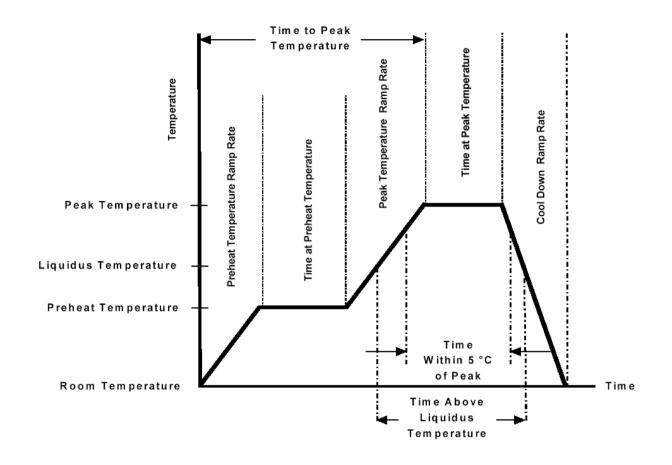

Test Group →	Н	I	J
Test or Examination Ψ			
Examination of the connector(s)	1,7		1
Low Level Contact Resistance (LLCR)			
Insulation Resistance			
Dielectric Withstanding Voltage			
Temperature Rise			
Insertion Force	2,5		
Removal Force	3,6		
Durability	4		
Physical Shock			
Vibration			
Humidity			
Temperature Life			
Reseating (manually unplug/plug three times)			
Thermal Shock			
Housing Slip Out Force			3
Resistance to Soldering Heat			2
Solderability		1	
Mixed Flowing Gas			


REVISION:	ECR/ECN INFORMATION: EC No: S2015-1473 DATE: 2015/06/22	SERI	AL ATTACH SCSI L SMT RECEPTA	•	SHEET No. 6 of 8
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY: APPROVED BY:		OVED BY:
PS-78728-001		SKANG	CWANG25	SHONG	
TEMPLATE FILENAME: PRODUCT_SPECISIZE_A4I(V,1).DOC					

PRODUCT SPECIFICATION

8.0 VIBRATION/SHOCK TEST SET-UP

SAS Receptacle mated with SAS Plug (For Reference Only)



REVISION:	ECR/ECN INFORMATION: EC No: \$2015-1473 DATE: 2015/06/22	SERI. VERTICA	7 of 8		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
PS-78728-001		SKANG	CWANG25	SHONG	
TEMPLATE FILENAME: PRODUCT SPECISIZE A4/V/1) DOC					

PRODUCT SPECIFICATION

9.0 SOLDERING PROFILE

Description	Requirement
Average Ramp Rate	3°C/sec Max
Preheat Temperature	150°C Min to 200°C Max
Preheat Time	60 to 180 sec
Ramp to Peak	3°C/sec Max
Time over Liquidus (217°C)	60 to 150 sec
Peak Temperature	260 +0/-5°C
Time within 5°C of Peak	20 to 40 sec
Ramp - Cool Down	6°C/sec Max
Time 25°C to Peak	8 min Max

REVISION:	ECR/ECN INFORMATION: EC No: \$2015-1473 DATE: 2015/06/22	SERI. VERTICA	SHEET No. 8 of 8		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY: APPROVED BY		OVED BY:
PS-78728-001		SKANG	CWANG25	SHONG	
TEMPLATE FILENAME: PRODUCT_SPECISIZE_A4I(V, 1).DOC					