intersil

ISL8273MEVAL1Z Evaluation Board User Guide

Description

The <u>ISL8273M</u> is a 80A step-down DC/DC power supply module with an integrated digital PWM controller, dual-phase synchronous power switches, inductors and passives. Only input/output capacitors and minimal passives are needed to finish the design. 80A of continuous output current can be delivered without a need of airflow or heatsink. The ISL8273M uses ChargeMode[™] control (ASCR) architecture, which responds to a transient load within a single switching cycle.

The ISL8273MEVAL1Z evaluation board is a 4.7inx4.8in 8-layer FR4 board with 2oz. copper on all layers. This evaluation board comes with placeholders for pin-strap resistor population to adjust output voltage, switching frequency, soft-start/stop timing and input UVLO threshold, ASCR gain and residual parameters and device PMBus[™] address. More configurations, such as sequencing, Digital-DC[™] (DDC) bus configuration and fault limits can be easily programmed or changed via PMBus compliant serial bus interface.

The optional ZLUSBEVAL3Z (USB to PMBus adapter) is provided with this evaluation board, which connects the evaluation board to a PC to activate the PMBus communication interface. The PMBus command set is accessed by using the PowerNavigator™ evaluation software from a PC running Microsoft Windows. The ISL8273MEVAL1Z can operate in pin-strap mode without needing the ZLUSBEVAL3Z adapter or PMBus communication.

References

ISL8273M datasheet

Key Features

- + $V_{\mbox{IN}}$ range of 4.5V to 14V, $V_{\mbox{OUT}}$ adjustable from 0.6V to 2.5V
- Programmable V_{OUT}, margining, input and output UVP/OVP, I_{OUT} limit, OTP/UTP, soft-start/stop, sequencing and external synchronization
- Monitor: $V_{IN},\,V_{OUT},\,I_{OUT},$ temperature, duty cycle, switching frequency and faults
- ChargeMode[™] control tunable with PMBus
- · Mechanical switch for enable and power-good LED indicator

Specifications

This board has been configured for the following operating conditions by default:

- V_{IN} = 5V to 12V
- V_{OUT} = 1V
- I_{MAX} = 80A
- f_{SW} = 364kHz
- Peak efficiency: >90% at 70% load
- Output ripple: <10mV_{P-P}
- ASCR gain = 200, ASCR residual = 90
- On/off delay = 5ms; On/off ramp time = 5ms

Ordering Information

PART NUMBER	DESCRIPTION	
ISL8273MEVAL1Z	ISL8273M evaluation board, ZLUSBEVAL3Z adapter, USB cable	

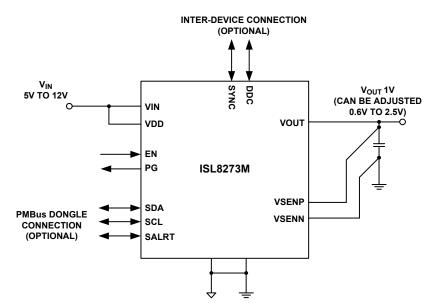


FIGURE 1. BLOCK DIAGRAM

August 7, 2015 UG036.0

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2015. All Rights Reserved Intersil (and design), PowerNavigator, ChargeMode and Digital-DC are trademarks owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners.

User Guide 036

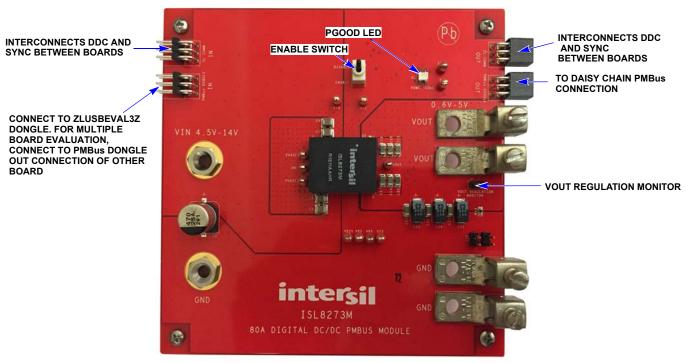


FIGURE 2. TOP SIDE

FIGURE 3. BOTTOM SIDE

Recommended Equipment

- DC power supply with minimum 15V/40A sourcing capacity
- Electronic load capable of sinking current up to 80A
- Digital Multimeters (DMMs)
- Oscilloscope with higher than 100MHz bandwidth

Functional Description

The ISL8273MEVAL1Z provides all circuitry required to evaluate the features of the ISL8273M. A majority of the features of the ISL8273M, such as compensation-free ChargeMode[™] control, soft-start delay and ramp times, supply sequencing and voltage margining are available on this evaluation board. For sequencing evaluation, the board can be connected to any Intersil digital module evaluation board that supports the DDC bus.

 $\underline{\mbox{Figures 2}}$ and $\underline{\mbox{3}}$ show the board images of the ISL8273MEVAL1Z evaluation board.

Quick Start Guide

Pin-strap Option

ISL8273MEVAL1Z can be configured in pin-strap mode with standard 1% 0603 resistors. PMBus interface is not required to evaluate ISL8273M in pin-strap mode. Output voltage (V_{OUT}), switching frequency (f_{SW}), soft-start/stop delay and ramp time, input undervoltage protection (UVL0) threshold, ASCR gain and residual, and device PMBus address can be changed by populating recommended resistors at placeholders provided in the evaluation board. By default, the evaluation board operates in pin-strap mode and regulates at $V_{OUT} = 1V$, $f_{SW} = 364$ kHz, soft-start/stop delay time = 5ms, soft-start/stop ramp time = -5ms to 5ms, UVL0 = 4.5V, ASCR gain = 200, ASCR residual = 90 and PMBus address = 28h. Follow these steps to evaluate the ISL8273M in pin-strap mode.

- 1. Set ENABLE switch to "DISABLE".
- 2. Connect Load to VOUT lug connectors (J7-J8 and J9-J10).
- 3. Connect power supply to VIN connectors (J5 and J6). Make sure power supply is not enabled when making connection.
- 4. Turn power supply on.
- 5. Set ENABLE switch to "ENABLE".
- 6. Measure 1V V_{OUT} at probe point labeled "VOUT REGULATION MONITOR" (J11).
- 7. Observe switching frequency of 364kHz at probe points labeled "PHASE1" (TP10) and "PHASE2" (TP11).
- 8. To measure the module efficiency, connect the multimeter voltage probes at probe points labeled "VIN" (TP1), "GND" (TP2) and "VOUT" (TP12).
- 9. To change V_{OUT}, disconnect board from the setup and populate a 1% standard 0603 resistor at RVSET placeholder location on bottom layer. Refer to the "Output Voltage Resistor Settings" table in the <u>ISL8273M</u> datasheet for recommended values. By default, VOUT_MAX is set to 110% of V_{OUT} set by pin-strap resistor.
- 10. To change switching frequency, disconnect board from the setup and populate a 1% standard 0603 resistor at the RFSET

placeholder location on bottom layer. Refer to the "Switching Frequency Resistor Settings" table in the <u>ISL8273M</u> datasheet for recommended values.

- 11. To change soft-start/stop delay and ramp time, disconnect board from the setup and populate a 1% standard 0603 resistor at R₆ placeholder location on bottom layer. Refer to the "Soft Start/Stop Resistor Settings" table in the <u>ISL8273M</u> datasheet for recommended values.
- 12. To change UVLO, disconnect board from the setup and populate a 1% standard 0603 resistor at the R₆ placeholder location on bottom layer. Refer to the "UVLO Resistor Settings" table in the ISL8273M datasheet for recommended values. Notice that the UVLO programming shares the same pin with soft-start/stop programming.
- 13. To change ASCR gain and residual, disconnect board from the setup and populate a 1% standard 0603 resistor at the R_7 placeholder location on bottom layer. Refer to the "ASCR Resistor Settings" table and the design guide matrix in the <u>ISL8273M</u> datasheet for recommended values.

PMBus Option

ISL8273MEVAL1Z can be evaluated for all features using the provided ZLUSBEVAL3Z dongle and PowerNavigator[™] evaluation software. Follow these steps to evaluate theISL8273M with PMBus option.

- 1. Install PowerNavigator™ software from the following Intersil website: <u>www.intersil.com/powernavigator</u>
- 2. Set ENABLE switch to "DISABLE".
- 3. Connect Load to VOUT lug connectors (J7-J8 and J9-J10).
- 4. Connect power supply to VIN connectors (J5 and J6). Make sure power supply is not enabled when making connection.
- 5. Connect the ZLUSBEVAL3Z dongle (USB to PMBus[™] adapter) to the ISL8273MEVAL1Z board using the 6-pin male connector labeled "PMBus DONGLE IN".
- 6. Turn power supply on.
- 7. Connect supplied USB cable from computer USB to ZLUSBEVAL3Z dongle.
- 8. Launch PowerNavigator[™] software.
- 9. It is optional to load a predefined setup from a configuration file using the PowerNavigator[™] software. The ISL8273M device on the board operates in pin-strap mode from factory default, but the user may modify the operating parameters through the evaluation software or by loading a predefined set-up from a configuration file. A sample <u>"Configuration File"</u> on page 7 is provided and can be copied to a notepad editor to make desired changes. The default pin-strap configurations will be overwritten if a user-defined configuration file is loaded.
- 10. Set the ENABLE switch to "ENABLE". Alternatively, the PMBus ON_OFF_CONFIG and OPERATION commands may be used from the PowerNavigator™ software to allow PMBus Enable.
- 11. Monitor and configure the ISL8273MEVAL1Z board using the PMBus commands in the evaluation software. To store the configuration changes, disable the module and use the command STORE_USER_ALL. To restore factory default

settings, disable the module and use the command RESTORE_FACTORY and STORE_USER_ALL.

- 12. PowerNavigator™ tutorial videos are available on the Intersil website. <u>www.intersil.com/powernavigator</u>
- 13. For sequencing via Digital-DC Bus (DDC) or to evaluate multiple Intersil digital power products using a single ZLUSBEVAL3Z dongle, the ISL8273M can be daisy chained with other digital power evaluation boards. The PMBus address can be changed by placing a 1% standard 0603 resistor at the R₄ placeholder location on the bottom layer. Refer to the "SMBus Address Resistor Selection" table in the ISL8273M datasheet for recommended values.

Evaluation Board Information

If input voltage is less than 5.3V, tie the VCC test point directly to VIN or to a separate 5V power supply for best efficiency.

If external synchronization is used, connect the SYNC test point to the external clock. Note that the external clock signal should be active before the module is enabled.

V_{OUT} Transient Response Check

The ISL8273MEVAL1Z board has a built-in transient load test circuit (see the schematic in Figure 4). A 100A N-Channel MOSFET (Manufacturer PN: BSC010NE2LSI) is connected across VOUT and PGND next to the remote voltage sensing location (CVSEN). A 10m Ω current-sense resistor R₅₄ is used for monitoring the drain-to-source current of the MOSFET. For a transient load test, inject the gate drive pulse signal at J16. The load current can be monitored through J15. Because the MOSFET will operate in the saturation region instead of the linear region when the gate turn-on signal is applied, the pulse width and duty cycle of the gate signal must be limited small enough to avoid MOSFET overheating (recommended duty cycle should be less than 2%). The amplitude of the gate driver pulse voltage can be adjusted to obtain a desired transient load current step size.

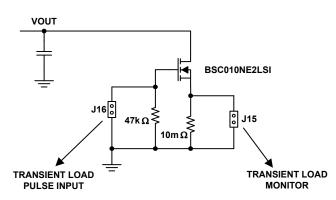


FIGURE 4. SCHEMATIC FOR TRANSIENT LOAD MEASUREMENT

Thermal Considerations and Current Derating

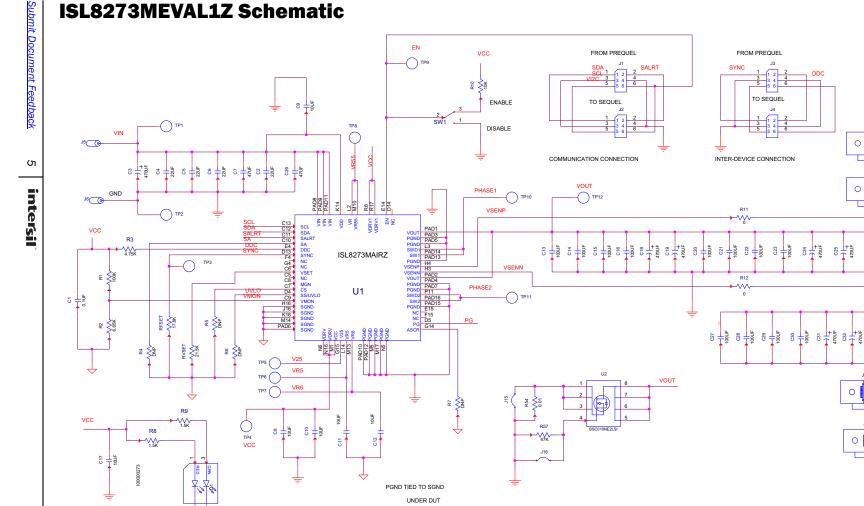
Board layout is very critical in order to make the module operate safely and deliver maximum allowable power. To work in the high temperature environments and carry large currents, the board layout needs to be carefully designed to maximize thermal performance. To achieve this, select enough trace width, copper weight and the proper connectors.

The ISL8273MEVAL1Z evaluation board is designed for running 80A at room temperature without additional cooling systems needed. However, if the output voltage is increased or the board is operated at elevated temperatures, then the available current is derated. Refer to the derated current curves in the ISL8273M datasheet to determine the maximum output current the evaluation board can supply. θ_{JA} is measured by inserting a thermocouple inside the module to measure peak junction temperature.

PCB Layout Guidelines

The ISL8273MEVAL1Z board layout has been optimized for electrical performance, low loss and good thermal performance.

The key features of the ISL8273MEVAL1Z layout are:


- Large PGND planes and a separate SGND plane. The SGND plane is connected to PGND on the second layer with a single point connection. Multiple vias are used for small pins such as J16, H16, K16, M5, M14, M17 and N5 to connect to inner SGND or PGND layer.
- Ceramic capacitors between VIN and PGND, VOUT and PGND, and bypass capacitors between VDD, VDRV and the ground plane are placed close to the module to minimize high frequency noise. Some output ceramic capacitors are placed close to the VOUT pads in the direction of the load current path to create a low impedance path for the high frequency inductor ripple current.
- Large copper areas are used for power path (VIN, PGND, VOUT) to minimize conduction loss and thermal stress. Multiple vias are used to connect the power planes in different layers.
- Remote sensing traces are connected from the regulation point to VSENP and VSENN pins. The two traces are placed in parallel, to achieve tight output voltage regulation. The regulation point is on the right side of the board in between the VOUT power lugs and the PGND power lugs.
- Multiple vias are used to connect PAD14 and 16 (SW1 and SW2) to inner layers for better thermal performance. The inner layer SW1 and SW2 traces are limited in area and are surrounded by PGND planes to avoid noise coupling. Caution was taken that no sensitive traces, such as the remote sensing traces, were placed close to these noisy planes.
- SWD1 (L3) and SWD2 (P10) pins are connected to SW1 and SW2 pads respectively with short loop wires of 40mil width. The wire width should be at least 20mils.

ISL8273MEVAL1Z Schematic

3 Q1

H۲. 2N7002L

PG

 \downarrow

FIGURE 5. SCHEMATIC

÷

DDC

00

00

22UF

GND

VOUT

J9

0

0

0

2 F

470UF

C25

C24

Bill of Materials

REFERENCE DESIGNATORS	QTY	MANUFACTURER	MANUFACTURER PART	DESCRIPTION
C1	1	PANASONIC	ECJ-2VB1E104K	CAP, SMD, 0805, 0.1µF, 25V, 10%, X7R, ROHS
CVSEN	1	JOHANSON DIELECTRICS INC	6R3R15X226KV4E	CAP, SMD, 0805, 22µF, 6.3V, 10%, X5R, ROHS
C8, C9, C10, C11, C12, C17	6	VENKEL	C1206X7R250-106KNE	CAP, SMD, 1206, 10µF, 25V, 10%, X7R, ROHS
C13-C16, C20-C23, C27-C30	12	MURATA	GRM31CR60J107ME39L	CAP, SMD, 1206, 100µF, 6.3V, 20%, X5R, ROHS
C2, C4, C5, C6	4	MURATA	GRM32ER71C226KE18L	CAP, SMD, 1210, 22µF, 16V, 10%, X7R, ROHS
C7, C26	2	ток	C3225X5R1C476M	CAP, SMD, 1210, 47µF, 16V, 20%, X5R, ROHS
C18, C19, C24, C25, C31, C32	6	SANYO	6TPE470MI	CAP-POSCAP, LOW ESR, SMD, D4, 470µF, 6.3V, 20%, 18mΩ, ROHS
C3	1	PANASONIC	EEE-1EA471P	CAP, SMD, 10mm, 470µF, 25V, 20%, ALUM.ELEC., 380mA, ROHS
J5, J6	2	JOHNSON COMPONENTS	108-0740-001	CONN-JACK, BANANA-SS-SDRLESS, VERTICAL, ROHS
TP1-TP12	12	KEYSTONE	5005	CONN-COMPACT TEST PT, VERTICAL, RED, ROHS
J11, J15, J16	3	BERG/FCI	69190-202HLF	CONN-HEADER, 1x2, RETENTIVE, 2.54mm, 0.230x0.120 ROHS
J2, J4	2	SAMTEC	SSQ-103-02-T-D-RA	CONN-SOCKET STRIP, TH, 2x3, 2.54mm, TIN, R/A, ROHS
J1, J3	2	SAMTEC	TSW-103-08-T-D-RA	CONN-HEADER, 2x3, BRKAWY, 2.54mm, TIN, R/A, ROHS
D1	1	LUMEX	SSL-LXA3025IGC-TR	LED, SMD, 3x2.5mm, 4P, RED/GREEN, 12/20MCD, 2V
U1	1	INTERSIL	ISL8273MAIRZ	IC-80A DIGITAL DC/DC MODULE, 42P, HDA, ROHS
Q1	1	ON SEMICONDUCTOR	2N7002LT1G	TRANSISTOR-MOS, N-CHANNEL, SMD, SOT23, 60V, 115mA, ROHS
U2	1	INFINEON TECHNOLOGY	BSC010NE2LSI	TRANSIST-MOS, N-CHANNEL, 8P, PG-TDSON-8, 25V, 100A ROHS
R4-R7	0			RESISTOR, SMD, 0603, 0.1%, MF, DNP-PLACE HOLDER
R11, R12	2	VENKEL	CR0603-10W-000T	RES, SMD, 0603, 0Ω, 1/10W, TF, ROHS
R10	1	КОА	RK73H1JT1002F	RES, SMD, 0603, 10k, 1/10W, 1%, TF, ROHS
R1	1	VENKEL	CR0603-10W-1003FT	RES, SMD, 0603, 100k, 1/10W, 1%, TF, ROHS
R8, R9	2	VENKEL	CR0603-10W-1501FT	RES, SMD, 0603, 1.5k, 1/10W, 1%, TF, ROHS
RFSET	1	PANASONIC	ERJ-3EKF1782V	RES, SMD, 0603, 17.8k, 1/10W, 1%, TF, ROHS
R13	1	VENKEL	CR0603-10W-2000FT	RES, SMD, 0603, 200Ω, 1/10W, 1%, TF, ROHS
RVSET	1	VENKEL	CR0603-10W-2152FT	RES, SMD, 0603, 21.5k, 1/10W, 1%, TF, ROHS
R57	1	YAGEO	RC0603FR-0747KL	RES, SMD, 0603, 47k, 1/10W, 1%, TF, ROHS
R3	1	VENKEL	CR0603-10W-4751FT	RES, SMD, 0603, 4.75k, 1/10W, 1%, TF, ROHS
R2	1	YAGEO	RC0603FR-076K65L	RES, SMD, 0603, 6.65k, 1/10W, 1%, TF, ROHS
R54	1	VISHAY	WSL2512R0100FEA	RES-CURR.SENSE, SMD, 2512, 0.01Ω, 1W, 1%, ROHS
SW1	1	C&K COMPONENTS	GT13MCBE	SWITCH-TOGGLE, THRU-HOLE, 5PIN, SPDT, 3POS, ON-OF ON, ROHS
J7-J10	4	BERG/FCI	KPA8CTP	HDWARE,MTG, CABLE TERMINAL,6-14AWG, LUG and SCREW, ROHS

Configuration File

Sample Configuration File for ISL8273M Module. Copy and paste (from RESTORE FACTORY TO ### End User Store) to a notepad and save it as Confile_file_name.txt. The # symbol is used for a comment line. Following settings are already loaded to ISL8273M module

as factory defaults. RESTORE_FACTORY STORE_USER_ALL # VOUT Related VOUT_COMMAND VOUT_MAX VOUT_MARGIN_HIGH VOUT MARGIN LOW VOUT_OV_FAULT_LIMIT VOUT_OV_FAULT_RESPONSE VOUT_OV_WARN_LIMIT VOUT_UV_WARN_LIMIT VOUT_UV_FAULT_LIMIT VOUT_UV_FAULT_RESPONSE POWER_GOOD_ON VOUT_TRANSITION_RATE VOUT_DROOP VOUT CAL OFFSET # IOUT Related IOUT_CAL_GAIN IOUT_CAL_OFFSET IOUT_OC_FAULT_LIMIT IOUT_UC_FAULT_LIMIT MFR_IOUT_OC_FAULT_RESPONSE MFR_IOUT_UC_FAULT_RESPONSE ISENSE_CONFIG **#** Other Faults OT_FAULT_LIMIT OT_FAULT_RESPONSE OT_WARN_LIMIT UT_WARN_LIMIT UT_FAULT_LIMIT UT FAULT RESPONSE VIN_OV_FAULT_LIMIT VIN_OV_FAULT_RESPONSE VIN_OV_WARN_LIMIT VIN_UV_WARN_LIMIT VIN_UV_FAULT_LIMIT VIN_UV_FAULT_RESPONSE #Enable, Timing and Sequence Related ON_OFF_CONFIG TON_DELAY TON RISE TOFF_DELAY TOFF_FALL POWER_GOOD_DELAY FREQUENCY_SWITCH SYNC CONFIG SEQUENCE # Manufacturer Related MFR ID MFR_MODEL MFR_REVISION MFR_LOCATION MFR_DATE MFR_SERIAL USER_DATA_00 # Advance Settings USER_CONFIG DDC_CONFIG DDC_GROUP **#** Loop Compensation ASCR_CONFIG STORE_USER_ALL

End User Store

reset device to the factory setting # Clears user memory space

0x80 # Disable and no retry 0x80 # Disable and no retry 0xba00 # 1 mV/us 0x0000 # 0 mV/A # 0 mV/A 0x0000 0xb370 # 0.86 mV/A 0x0000 # 0 A 0x80 # Disable and no retry 0x80 # Disable and no retry 0xebe8 # 125 °C 0x80 # Disable and no retry 0xeb70 # 110 °C 0xdc40 #-30 °C 0xe530 #-45 °C # Disable and no retry 0x80 0xd380 # 14 V 0x80 # Disable and no retry 0xd353 # 13.3 V 0xca5d # 4.73 V # 4.5 V 0xca40 0x80 # Disable and no retry 0x16 # Pin Enable, Soft Off 0xca80 # 5 ms 0xca80 # 5 ms 0xca80 # 5 ms 0xca80 # 5 ms 0xca00 # 4 ms 0x00 # Use Pin-strap for FSW setting 0x0000 # Sequence Disabled Intersil Corp # Example Only # Example Only Rev-1 # Example Only Milpitas, CA # Example Only 09/05/2014 # Example Only 1234 # Example Only Module # Example Only 0x80 # ASCR on for Start, Open Drain PG # DDC rail ID = 10, 2-phase 0x0a01 0x0000000 # All Broadcast disabled # ASCR gain = , Residual = # Store all above settings to NVRAM

intersil

Layout

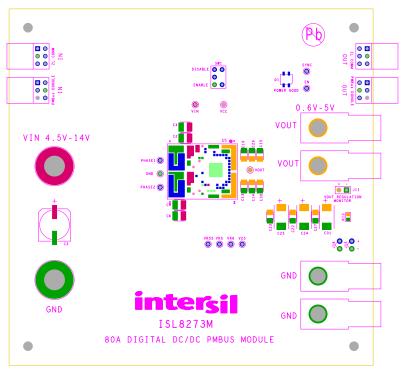


FIGURE 6. SILKSCREEN TOP

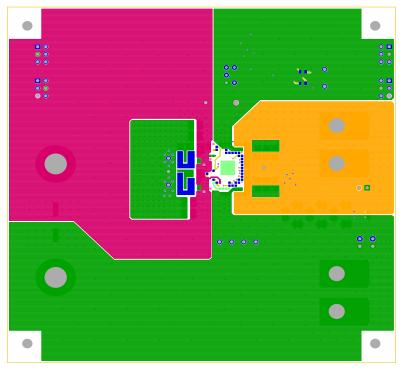


FIGURE 7. TOP LAYER COMPONENT SIDE

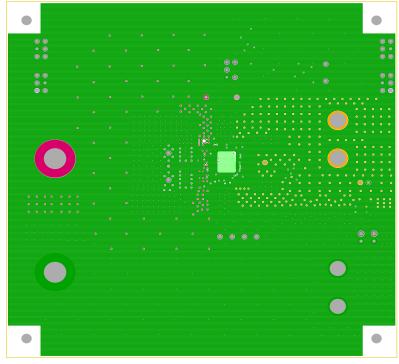


FIGURE 8. LAYER 2

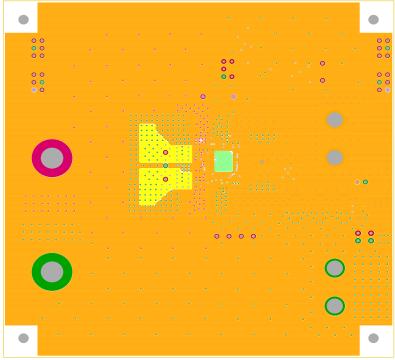


FIGURE 9. LAYER 3

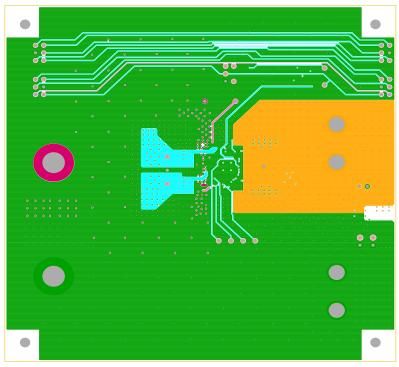


FIGURE 10. LAYER 4

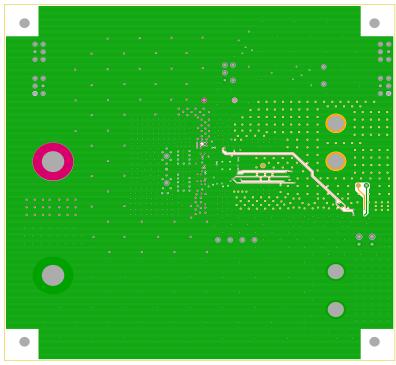


FIGURE 11. LAYER 5

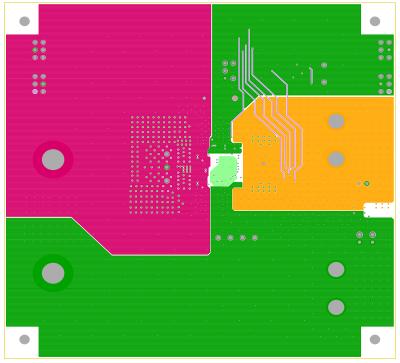


FIGURE 12. LAYER 6

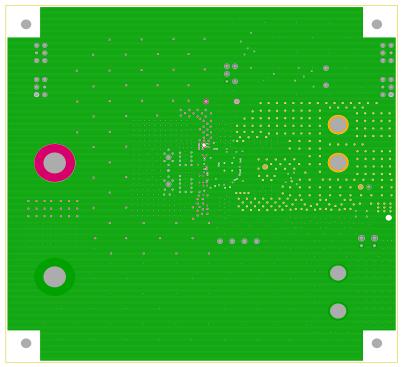


FIGURE 13. LAYER 7

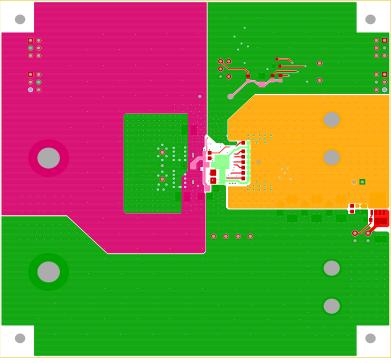


FIGURE 14. BOTTOM LAYER SOLDER SIDE

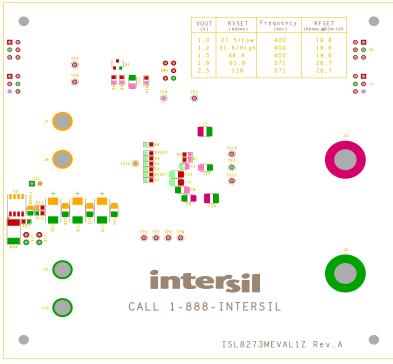
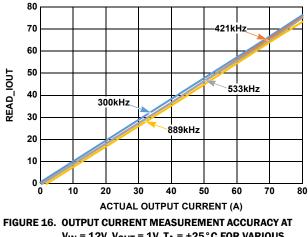



FIGURE 15. SILKSCREEN BOTTOM

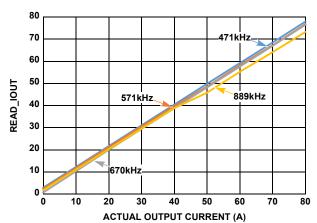
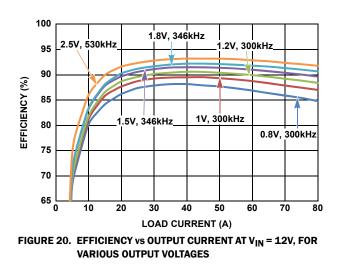



FIGURE 18. OUTPUT CURRENT MEASUREMENT ACCURACY AT $V_{IN} = 12V$, $V_{OUT} = 2.5V$, $T_A = +25^{\circ}C$ FOR VARIOUS SWITCHING FREQUENCIES

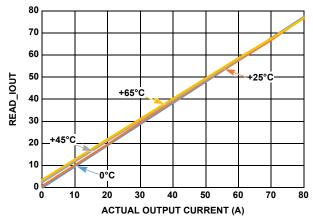


FIGURE 17. OUTPUT CURRENT MEASUREMENT ACCURACY AT V_{IN} = 12V, V_{OUT} = 1V, f_{SW} = 300kHz FOR VARIOUS AMBIENT TEMPERATURES

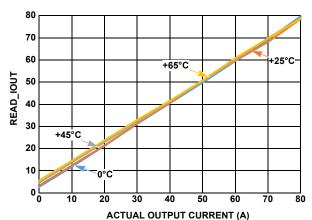
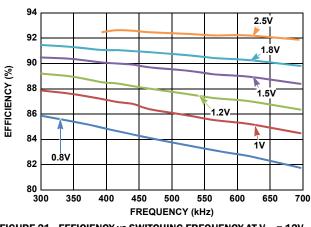



FIGURE 19. OUTPUT CURRENT MEASUREMENT ACCURACY AT V_{IN} = 12V, V_{OUT} = 2.5V, f_{SW} = 571kHz FOR VARIOUS AMBIENT TEMPERATURES

Typical Performance Data The following data was acquired using a ISL8273MEVAL1Z evaluation board. (Continued)

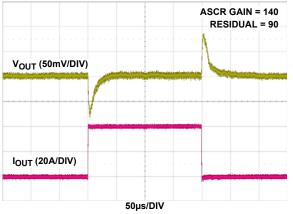
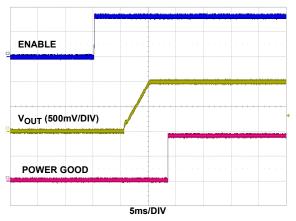
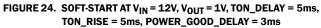




FIGURE 22. LOAD TRANSIENT RESPONSE AT V_{IN} = 12V, V_{OUT} = 1V, I_{OUT} = 0A TO 40A (>100A/µs), f_{SW} = 300kHz. C_{OUT} = 14 x 100µF CERAMIC + 6 x 470µF POSCAP

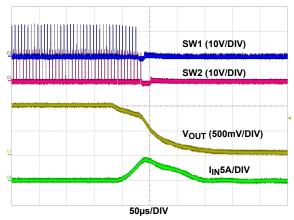


FIGURE 26. OUTPUT SHORT-CIRCUIT PROTECTION AT V_{IN} = 12V, V_{OUT} = 1V, f_{SW} = 421 \text{kHZ}

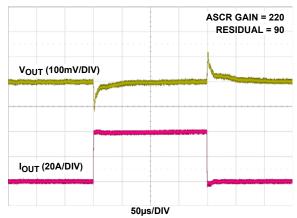
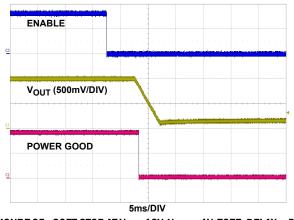
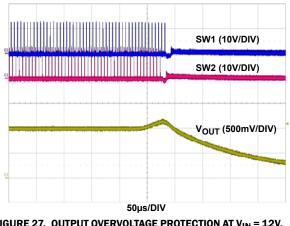
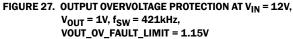
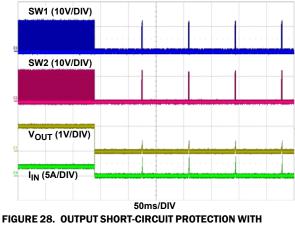
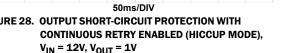


FIGURE 23. LOAD TRANSIENT RESPONSE AT V_{IN} = 12V, V_{OUT} = 2.5V, I_{OUT} = 0A TO 40A (>100A/µs), f_{SW} = 800kHz. C_{OUT} = 6 x 100µF CERAMIC + 3 x 470µF POSCAP


FIGURE 25. SOFT-STOP AT V_{IN} = 12V, V_{OUT} = 1V, TOFF_DELAY = 5ms, TOFF_FALL = 5ms

Typical Performance Data The following data was acquired using a ISL8273MEVAL1Z evaluation board. (Continued)

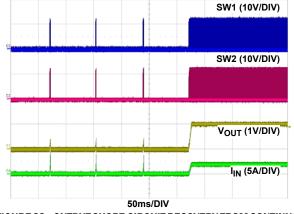


FIGURE 29. OUTPUT SHORT-CIRCUIT RECOVERY FROM CONTINUOUS RETRY (HICCUP MODE). VIN = 12V, VOUT = 1V

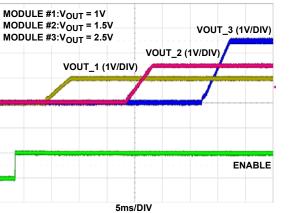
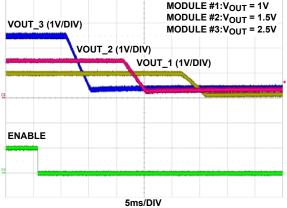



FIGURE 30. SOFT-START WITH OUTPUT SEQUENCING AT $V_{IN} = 12V$, THREE ISL8273MEVAL1Z BOARDS ARE CONNECTED IN DAISY CHAIN

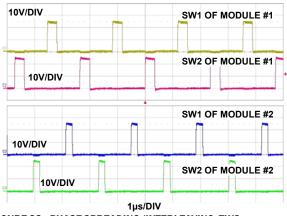


FIGURE 33. PHASE SPREADING/INTERLEAVING, TWO ISL8273MEVAL1Z BOARDS ARE CONNECTED IN DAISY CHAIN, MODULE #1 RAIL POSITION: 0; MODULE #2 RAIL POSITION:4. VIN = 12V, VOUT_1 = 1.8V, VOUT_2 = 1.2V, f_{SW} = 421kHz

Typical Performance Data The following data was acquired using a ISL8273MEVAL1Z evaluation board. (Continued)

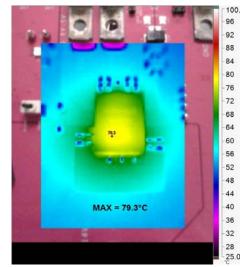


FIGURE 34. THERMAL IMAGE AT V_{IN} = 12V, V_{OUT} = 1V, I_{OUT} = 80A, f_{SW} = 300kHz, T_A = +25 $^\circ$ C, NO AIRFLOW

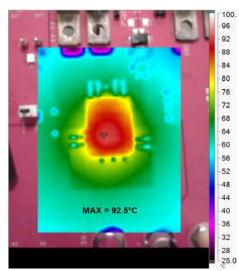


FIGURE 35. THERMAL IMAGE AT V_{IN} = 12V, V_{OUT} = 1.8V, I_{OUT} = 80A, f_{SW} = 350 kHz, T_A = +25 \,^\circ\text{C}, NO AIRFLOW

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the document is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com