

MAX32660 USER GUIDE

UG6659; Rev 0; 7/18

Abstract: This user guide provides application developers information on how to use the memory and peripherals of the MAX32660 microcontroller. Detailed information for all registers and fields in the device are covered. Guidance is given for managing the clocks, power and initialization of the product.

Table of Contents

1	Introdu	ction	. 13
	1.1 Relat	ed Documentation	13
2	Overvie	w	. 13
3		y, Register Mapping, and Access	
		view	
		dard Memory Regions	
	3.2.1	Code Space	
	3.2.2	SRAM Space	
	3.2.3	Peripheral Space	
	3.2.4 3.3 Devi	System Area (Private Peripheral Bus) ce Memory Instances	
		-	
	3.3.1 3.3.2	Main Program Flash Memory Instruction Cache Memory	
	3.3.3	System SRAM	
	3.3.4	AHB Bus Matrix and AHB Bus Interfaces	18
	3.3.5	Core AHB Interface	
	3.3.6 3.4 Perin	AHB Master heral Register Map	
4		Clocks, Reset, and Power Management	
		Operating Voltage Range Selection	
	4.1.1 4.1.2	Setting the Operating Voltage Range Flash Wait States	
	=	em Clocks	
		llator Sources and System Clock Selection	
	4.3.1	High-Frequency Internal Oscillator	26
	4.3.2	32.768kHz External Crystal or Clock	26
	4.3.3	8kHz Ultra-Low Power Nano-Ring Internal Oscillator	
		em Oscillators Reset rating Modes	
	4.5.1	ACTIVE Mode	
	4.5.2	SLEEP Low Power Mode	
	4.5.3	DEEPSLEEP Low Power Mode	
	4.5.4	BACKUP Low Power Mode	
	4.5.5 4.6 Shut	Wake-Up Sources down State	
		ce Resets	
	4.7.1	Peripheral Reset	29
	4.7.2	Soft Reset	
	4.7.3	System Reset	
	4.7.4 4.8 Instr	Power-On Reset uction Cache Controller	
	4.8.1 4.8.2	Enabling ICCO Disabling ICCO	
	4.8.3	Flushing the ICCO Cache	
) Registers	
	4.9.1	ICCO Register Details	31

	4.10	RAM Memory Management	32
	4.10.1	On-Chip Cache Management	
	4.10.2		
	4.10.3 4.11	Global Control Registers (GCR)	
		-	
	4.11.1 4.12	Global Control Register Details System Initialization Registers	
	4.12.1 4.13	System Initialization Register Details Function Control Registers	
	4.13.1 4.14	Function Control Register Details Power Supply Monitoring	
	4.15	Power Sequencer Registers	
	4.15.1	Power Sequencer Register Details	
5		Controller	
	5.1.1	Features	51
		/erview	
		age	
	5.3.1	Clock Configuration	51
	5.3.2	Lock Protection	52
	5.3.3	Flash Write Width	
	5.3.4 5.3.5	Flash Write	
	5.3.5 5.3.6	Page Erase Mass Erase	
		ish Controller Registers	
6	Gene	ral-Purpose I/O and Alternate Function Pins	. 58
	6.1 G	ral-Purpose I/O and Alternate Function Pins neral Description wer-On-Reset Configuration	58
	6.1 G	neral Description	58 59
	6.1 Go 6.2 Pc 6.2.1 6.2.2	neral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration	58 59 60 60
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3	eneral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration Output Mode Configuration	58 59 60 60 60
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4	eneral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration Output Mode Configuration GPIO Drive Strength	58 59 60 60 60
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al	eneral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration Output Mode Configuration GPIO Drive Strength ternate Function Configuration	58 59 60 60 60 61
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Co	eneral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration Output Mode Configuration GPIO Drive Strength ternate Function Configuration infiguring GPIO (External) Interrupts	58 59 60 60 60 61 61
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1	eneral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration Output Mode Configuration GPIO Drive Strength ternate Function Configuration Infiguring GPIO (External) Interrupts Interrupts	58 59 60 60 60 61 61 61
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2	eneral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration Output Mode Configuration GPIO Drive Strength ternate Function Configuration infiguring GPIO (External) Interrupts	58 59 60 60 60 61 61 62 62
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2	eneral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration Output Mode Configuration GPIO Drive Strength ternate Function Configuration infiguring GPIO (External) Interrupts Interrupts Using GPIO for Wakeup from Low Power Modes PIO Registers	58 59 60 60 60 61 61 62 62 63
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 Gl 6.5.1	eneral Description wer-On-Reset Configuration I/O Mode and Alternate Function Selection Input mode configuration Output Mode Configuration GPIO Drive Strength ternate Function Configuration infiguring GPIO (External) Interrupts Interrupts Using GPIO for Wakeup from Low Power Modes.	58 59 60 60 60 61 61 62 62 63 63
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 Gl 6.5.1 DMA	eneral Description	58 59 60 60 61 61 62 63 63 63
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 G 6.5.1 DMA 7.1 D	eneral Description	58 59 60 60 61 61 61 62 63 63 63 71
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 Gl 6.5.1 DMA 7.1 Di 7.2 Di 7.3 Di	eneral Description	58 59 60 60 60 61 61 62 63 63 71 71 72 73
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 G 6.5.1 DMA 7.1 Di 7.2 Di 7.3 Di 7.3 Di 7.4 Di	eneral Description	58 59 60 60 61 62 62 63 63 71 72 73 73
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 Gl 6.5.1 DMA 7.1 Di 7.2 Di 7.3 Di 7.4 Di 7.5 Di	eneral Description	58 59 60 60 61 61 62 62 63 71 72 73 73 73
	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 Gl 6.5.1 DMA 7.1 Di 7.2 Di 7.3 Di 7.4 Di 7.5 Di 7.6 Cc	eneral Description	58 59 60 61 61 62 63 63 71 73 73 73 74 74
7	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 Gl 6.5.1 DMA 7.1 Di 7.2 Di 7.2 Di 7.3 Di 7.4 Di 7.5 Di 7.6 Cc 7.7 Cl	eneral Description	58 59 60 60 61 61 61 61 63 63 71 73 73 73 74 74
7	6.1 G 6.2 Pc 6.2.1 6.2.2 6.2.3 6.2.4 6.3 Al 6.4 Cc 6.4.1 6.4.2 6.5 Gl 6.5.1 DMA 7.1 Di 7.2 Di 7.3 Di 7.3 Di 7.4 Di 7.5 Di 7.6 Cc 7.7 Cl 7.8 Di	eneral Description	58 59 60 60 61 61 61 61 63 63 71 73 73 73 74 74 74 74 74

	7.11 Cł	nannel and Register Access Restrictions	
	7.12	Memory-to-Memory DMA	
	7.13	Standard DMA Control Registers	77
	7.13.1	Standard DMA Control Register Details	77
	7.15	Standard DMA Channel O to 3 Register Base Addresses	
	7.16	Standard DMA Channel Configuration Register Offsets	
~	7.16.1	6 6	
8	UARI		84
	8.1.1	Features:	84
	8.2 U,	ART Frame Characters	84
	8.3 U,	ART Interrupts	85
	8.4 U	ART Bit Rate Calculation	85
	8.4.1	Example Baud Rate Calculation:	85
	- · · · ·	ART DMA Using the TX and RX FIFOs	
	8.5.1	RX FIFO DMA Operation	
	8.5.2	TX FIFO DMA Operation	
		ushing the UART FIFOs	
		ardware Flow Control	
	8.8 U,	ART Registers	
	8.8.1	UART Register Details	87
9	Real-	Time Clock (RTC)	96
	9.1 O	verview	96
		ΓC Alarm Functions	
	9.2.1	Time-of-Day Alarm	
	9.2.2	Sub-Second Alarm	
	9.2.3	RTC Wakeup From DEEPSLEEP/BACKUP Power Modes	
	9.3 R ⁻	C Register Access	98
	9.3.1	RTC Register Write Protection	
	9.3.2	RTC Register Read Protection	
	9.3.3	RTC Count Register Access	
	9.3.4	RTC Alarm Register Access	
	9.3.5	RTC Trim Register Access	
	9.3.6	RTC Oscillator Control Register Access	
	9.4 R ⁻	۲C Output Pin	100
		۲C Calibration	
	9.6 R ⁻	۲C Registers	100
	9.6.1	RTC Register Details	100
1(mers	
	10.1	Features	
	10.2	Basic Operation	
	10.3	Timer Pin Functionality	
	10.4	One-Shot Mode (000b)	
	10.4.1	Timer Period	107
	10.4.2	8	
	10.5	Continuous Mode (001b)	109
	10.5.1	Timer Period	109
	10.5.2		
	10.6	Counter Mode (010b)	

10.6.1	Timer Period	111
10.6.2	Configuration	
10.7 I	PWM Mode (011b)	
10.7.1	Timer Period	113
10.7.2	PWM Mode Configuration	
	Capture Mode (100b)	
	•	
10.8.1	Timer Period	
10.8.2	Configuration	
10.9	Compare Mode (101b)	
10.9.1	Timer Period	117
10.9.2	Configuration	
10.10	Gated Mode (110b)	119
10.10.1	Timer Period	
10.10.2		
	Capture/Compare Mode (111b)	
10.11.1	Timer Period	
10.11.1		
	Timer Registers	
	-	
	Timer Register Details	
11 Wa	atchdog Timer (WDT)	126
11.1 Fea	atures	126
	age	
	errupt and Reset Period Timeout Configuration	
	Enabling the Watchdog Timer	
11.4.1	Enable sequence	128
	abling the Watchdog Timer	
11.5.1	Manual Disable	
11.5.2	Automatic Disable	
11.6 Res	setting the Watchdog Timer	128
11.6.1	Reset Sequence	
	tection of a Watchdog Reset Event	
11.8	Watchdog Timer Registers	129
1.1.1	Watchdog Timer Register Details	
	Master/Slave Serial Controller	
	-	
12.1.1	Related Documentation	
12.1.2	I²C Bus Terminology I²C Master/Slave Features	
	I ² C Overview	
12.5		
12.3.1	I ² C Bus Speeds	
12.3.2	I ² C Transfer Protocol Operation	
12.3.3	START and STOP Conditions	
12.3.4	Master and Slave Overview	
12.3.5	Slave Addressing	
12.3.6	Acknowledge and Not Acknowledge	
12.3.7	Bit Transfer Process	
12.3.8	SCL and SDA Bus Drivers I ² C Interrupt Sources	
12.3.9		
12.3.10		

l ² C Bus Timeout	
I ² C Addressing	
I ² C TX FIFO and RX FIFO Management	139
1 Transmit Lockout	
SCL Clock Generation for Hs-Mode	
TX FIFO Preloading	
-	
PI Port O	
Overview	160
I Four-Wire SPI Signals	
÷	
8	
6 Master Mode Serial Clock Generation	
12 SPI FIFOs	
I3 SPI Interrupts and Wakeups	
SPIO Registers	169
1 SPIO Register Details	
PIMSS (SPI1/I ² S)	178
Overview	178
Features	178
2 Four-Wire SPI Signals	
3 l ² S Signals	
1 Serial Clock	182
	2 Transmit and Receive FIFOs

14.3.2 SPI Slave Select Configuration	
14.3.3 SPI Character Size	
14.3.4 SPI Data Movement	
14.3.5 SPI Master Configuration	
14.3.6 SPI Slave Configuration	
14.4 I ² S Mode	
14.4.1 Mute	
14.4.2 Pause	
14.4.3 Mono	185
14.4.4 Left Justify	
14.5 SPI and I ² S Error Detection	186
14.5.1 Transmit Overrun	186
14.5.2 SPI Slave Mode Abort	
14.5.3 Receive Overrun	
14.6 SPI1 and I ² S Interrupts	
14.6.1 Data Interrupt	
14.6.2 Forced Interrupt	
14.6.3 Error Condition Interrupt	
14.6.4 Bit Rate Generator Time-out Interrupt	
14.7 SPIMSS Bit Rate Generator	
14.7.1 SPI and I ² S Slave Mode	188
14.7.2 SPI and I ² S Master Mode Bit Rate Generator	
14.7.3 Timer Mode	
14.8 SPIMSS (SPI1/I ² S) Registers	
14.8.1 SPIMSS Register Details	
15 Trademarks	
16 Revision History	
,	

List of Figures

Figure 2-1: MAX32660 High Level Block Diagram	14
Figure 3-1: Code Memory Mapping	
Figure 3-2: Data Memory Map	
Figure 4-1: Clock Tree Diagram	24
Figure 7-1: DMAC Block Diagram	71
Figure 9-1. RTC Block Diagram	97
Figure 10-1: One-Shot Mode Diagram	107
Figure 10-2: Continuous Mode Diagram	109
Figure 10-3: Counter Mode Diagram	111
Figure 10-4: Capture Mode Diagram	115
Figure 10-5: Counter Mode Diagram	117
Figure 10-6: Gated Mode Diagram	
Figure 11-1: Watchdog Timer Block Diagram	
Figure 12-1: The Roles of I ² C Devices and the Direction the I ² C Signals	132
Figure 12-2: I ² C Write Data Transfer	
Figure 12-3: I ² C Specification Minimum and Maximum Clock Parameters for Standard and Fast Mode	
Figure 12-4: I ² C Clock Period	
Figure 13-1: SPIO Block Diagram	
Figure 13-2: 4-Wire SPI Connection Diagram	160
Figure 13-3: 3-Wire SPI Connection Diagram	
Figure 13-4: SCK Clock Rate Control	
Figure 13-5: SPI Clock Polarity	
Figure 13-6. SPI Timing (SPI0_CTRL2.clk_pha = 0)	165
Figure 13-7. SPI Timing (SPI0_CTRL2.clk_pha = 1)	
Figure 13-8: Three-Wire SPI Read	167
Figure 13-9: Three-Wire SPI Write	167
Figure 14-1. SPIMSS Block Diagram	179
Figure 14-2: 4-Wire SPI Connection Diagram	180
Figure 14-3: I ² S Audio Data in Standard I ² S Operation	
Figure 14-4: I ² S Mode (i2s_en=1, i2s_lj=1)	186

List of Tables

9
1
3
5
5
8
9
1
1
1
2
2
3
3
4
6
8
8
0
2
2
3
3
4
4
4
4
5
5
5
5
6
7
9
9
9
1
2
3
4
6
7
7
7
7
9
1355891112233468802233444455567999123467777

Table 6-2: GPIO Port, Pin Name and Alternate Function Matrix, 20-TQFN	. 59
Table 6-3: Standard GPIO Drive Strength Selection	. 61
Table 6-4: GPIO with I ² C Alternate Function Drive Strength Selection	. 61
Table 6-5: GPIO Mode and Alternate Function Selection	. 61
Table 6-6: GPIO Port Interrupt Vector Mapping	. 62
Table 6-7: GPIO Wakeup Interrupt Vector	
Table 6-8: GPIO Port 0 Registers	
Table 6-9: GPIO Alternate Function 0 Select Register	
Table 6-10: GPIO Output Enable Register	. 64
Table 6-11: GPIO Output Register	
Table 6-12: GPIO Input Register	
Table 6-13: GPIO Port Interrupt Mode Register	. 65
Table 6-14: GPIO Port Interrupt Polarity Registers	. 65
Table 6-15: GPIO Port Interrupt Enable Registers	. 65
Table 6-16: GPIO Interrupt Flag Register	. 66
Table 6-17: GPIO Wakeup Enable Registers	. 66
Table 6-18: GPIO Interrupt Dual Edge Mode Registers	. 66
Table 6-19: GPIO Pullup/Pulldown Enable Register	. 67
Table 6-20: GPIO Alternate Function Select Register	. 67
Table 6-21: GPIO Input Hysteresis Enable Register	. 67
Table 6-22: GPIO Slew Rate Enable Register	. 67
Table 6-23: GPIO Drive Strength 0 Select Register	. 68
Table 6-24: GPIO Drive Strength 1 Select Register	
Table 6-25: GPIO Pullup/Pulldown Select Register	
Table 7-1: DMA Channel Registers	
Table 7-2: Channel Reload Registers	
Table 7-3: Source and Destination Address Definition	
Table 7-4: Data movement from source to DMA FIFO	. 73
Table 7-5: Data movement from the DMA FIFO to destination	
Table 7-6: Standard DMA Control Registers, Offsets, Access and Descriptions	
Table 7-7: DMA Interrupt Enable Register	
Table 7-8: DMA Interrupt Flag Register	
Table 7-9: Standard DMA Channel 0 to Channel 15 Offsets	
Table 7-10: DMAn Channel Registers, Offsets, Access and Descriptions	
Table 7-11: DMA Configuration Register	
Table 7-12: DMA Status Register	
Table 7-13: DMA Source Register	
Table 7-14: DMA Destination Register	
Table 7-15: DMA Count Register	
Table 7-16: DMA Source Reload Register	
Table 7-17: DMA Destination Reload Register	
Table 7-18: DMA Count Reload Register	
Table 8-1: Example Baud Rate Calculation Results, Target Bit Rate = $1.8Mbps$, $f_{PCLK}=48MHz$	
Table 8-2: UART Registers, Offset Addresses and Descriptions	
Table 8-3: UART Control 0 Register	
Table 8-4: UART Control 1 Register	
Table 8-5: UART Status Register	
Table 8-6: UART Interrupt Enable Register	

Table 8-7: UART Interrupt Flags Register	
Table 8-8: UART Rate Integer Register	93
Table 8-9: UART Baud Rate Decimal Register	
Table 8-10: UART FIFO Register	94
Table 8-11: UART DMA Configuration Register	
Table 8-12: UART TX FIFO Data Output Register	
Table 9-1. RTC Registers, Offsets and Descriptions	100
Table 9-2: RTC Seconds Counter Register	
Table 9-3: RTC Sub-Seconds Counter Register	
Table 9-4: RTC Sub-Seconds Counter Register	101
Table 9-5: RTC Sub-Second Alarm Register	101
Table 9-6: RTC Control Register	
Table 9-7: RTC Trim Register	
Table 10-1: Timer Register Offsets, Names, Access and Descriptions	122
Table 10-2: Timer Count Registers	
Table 10-3: Timer Compare Registers	122
Table 10-4: Timer PWM Registers	
Table 10-5: Timer Interrupt Registers	123
Table 10-6: Timer Control Registers	
Table 11-1: Watchdog Timer Interrupt Period with f_{SYSCLK} = 96MHz and f_{PCLK} = 48MHz	
Table 11-2: Watchdog Timer Registers	
Table 11-3: Watchdog Timer Control Register	129
Table 11-4: Watchdog Timer Reset Register	130
Table 12-1: I ² C Bus Terminology	131
Table 12-2: I ² C Address Byte Format	
Table 12-3: I ² C Registers	
Table 12-4: I ² C Control Registers 0	
Table 12-5: I ² C Status Registers	
Table 12-6: I ² C Interrupt Status Flags Registers 0	
Table 12-7: I ² C Interrupt Enable 0 Registers	
Table 12-8: I ² C Interrupt Status Flags 1 Registers	
Table 12-9: I ² C Interrupt Enable Registers 1	
Table 12-10: I ² C FIFO Length Registers	
Table 12-11: I ² C Receive Control Registers 0	
Table 12-12: I ² C Receive Control 1 Registers	
Table 12-13: I ² C Transmit Control Registers 0	
Table 12-14: I ² C Transmit Control Registers 1	
Table 12-15: I ² C Data Registers	
Table 12-16: I ² C Master Mode Control Registers	
Table 12-17: I ² C SCL Low Control Register	
Table 12-18: I ² C SCL High Control Register	
Table 12-19: I ² C Timeout Registers	
Table 12-20: I ² C Timeout Registers	
Table 12-21: I ² C Slave Address Register	
Table 12-22: I ² C DMA Register	
Table 13-1: Four-Wire SPI Signals	
Table 13-2: Three-Wire SPI Signals	
Table 13-3: SPIO Pins	162

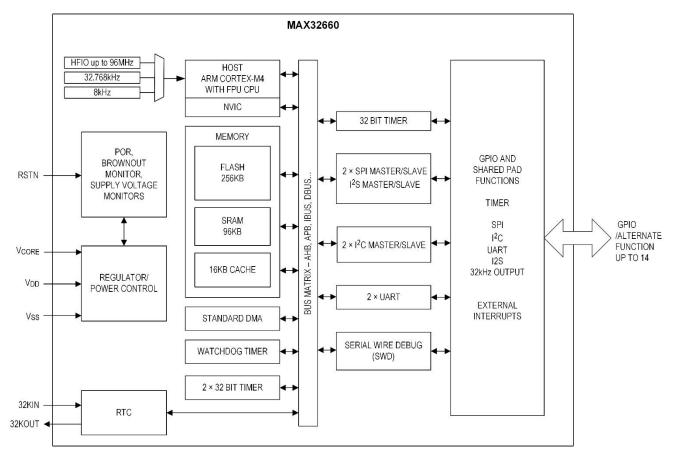
Table 13-4. Clock Phase and Polarity Operation	
Table 13-5: SPIO Master Register Addresses and Descriptions	169
Table 13-6: SPI FIFO Data Registers	169
Table 13-7: SPI Master Signals Control Registers	169
Table 13-8: SPI Transmit Packet Size Register	171
Table 13-9: SPI Static Configuration Registers	171
Table 13-10: SPI Slave Select Timing Register	172
Table 13-11: SPI Master Clock Configuration Registers	172
Table 13-12: SPI DMA Control Registers	173
Table 13-13: SPI Interrupt Flag Registers	174
Table 13-14: SPI Interrupt Enable Registers	
Table 13-15: SPI Wakeup Status Flags Registers	177
Table 13-16: SPI Wakeup Enable Registers	177
Table 13-17: SPI Status Registers	177
Table 14-1: Four-Wire SPI Signals	179
Table 14-2: I ² S Signals	180
Table 14-3: SPIMSS Pins for SPI1 and I ² S	181
Table 14-4. Clock Phase and Polarity Operation	182
Table 14-5: SPIMSS Register Offsets, Access and Descriptions	189
Table 14-6. SPIMSS Data Register	
Table 14-7: SPIMSS Control Register	189
Table 14-8: SPIMSS Interrupt Flag Register	
Table 14-9: SPIMSS Mode Register	191
Table 14-10: SPIMSS Bit Rate Generator Register	192
Table 14-11: SPIMSS DMA Register	192
Table 14-12: SPIMSS I ² S Control Register	101

1 Introduction

For ordering information, mechanical and electrical characteristics for the MAX32660 family of devices please refer to the datasheet. For information on the Arm[®] Cortex[®]-M4 with FPU core, please refer to the *Cortex*-M4 with FPU *Technical Reference Manual*.

1.1 Related Documentation

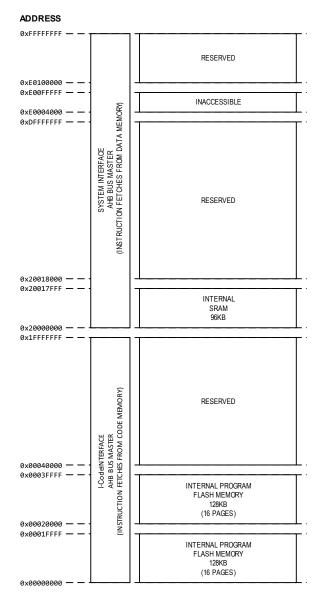
The MAX32660 datasheet and errata are available from the Maxim Integrated website, <u>http://www.maximintegrated.com</u>.


2 Overview

The MAX32660 is an ultra-low power, cost effective highly integrated microcontroller designed for battery-powered devices and wireless sensors. It combines a flexible and versatile power management unit with the powerful Arm Cortex-M4 with FPU (Floating Point Unit). The device enables designs with complex sensor processing without compromising battery life. It also offers legacy designs an easy and cost optimal upgrade path from 8 or 16-bit microcontrollers. The device integrates up to 256KB of flash memory and 96KB of SRAM to accommodate application and sensor code.

The device features four powerful and flexible power modes. It can operate from a single supply battery voltage, or a dual supply typically provided by a PMIC. The I²C (Inter-Integrated Circuit) port supports standard, fast, fast-plus and high-speed modes operating up to 3400Kbps. The SPI ports can run up to 48MHz in both master and slave mode, and the UARTs can run up to 4Mbps. Three general-purpose 32-bit timers, a watchdog timer, and a real-time clock are also provided. An I²S (Inter-IC Sound) interface provides audio streaming to or from an external audio codec.

Figure 2-1: MAX32660 High Level Block Diagram


3 Memory, Register Mapping, and Access

3.1 Overview

The Arm Cortex-M4 with FPU core defines a standard memory space for unified code and data access. This memory space is addressed in units of single bytes but is most typically accessed in 32-bit (4 byte) units. It may also be accessed, depending on the implementation, in 8-bit (1 byte) or 16-bit (2 byte) widths. The total range of the memory space is 32-bits in width (4GB addressable total), from addresses 0x0000 0000 to 0xFFFF FFFF.

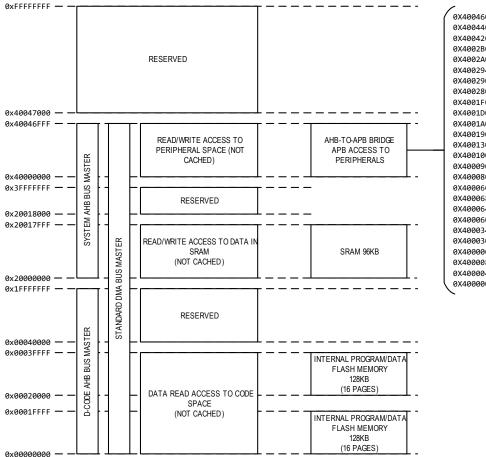

It is important to note, however, that the architectural definition does not require the entire 4GB memory range to be populated with addressable memory instances.

Figure 3-2: Data Memory Map

0046000	SPI0
0044000	RESERVED
0042000	UART (0,1)
0028000	RESERVED
002A000	INTERNAL CACHE CONTROLLER
0029400	RESERVED
0029000	FLASH CONTROLLER
0028000	STANDARD DMA
001F000	RESERVED
001D000	I2C (0,1)
001A000	RESERVED
0019000	SPIMSS(I2S)
0013000	RESERVED
0010000	TIMER (0,1,2)
0009000	RESERVED
0008000	GPIO PORT 0
0006C00	RESERVED
0006800	POWER SEQUENCER
0006400	RESERVED
0006000	RTC
0003400	RESERVED
0003000	WATCHDOG TIMER 0
0000C00	RESERVED
0000800	FUNCTION CONTROL REGISTERS
0000400	SI REGISTERS
0000000	GLOBAL CONTROL REGISTERS

3.2 Standard Memory Regions

Many standard memory regions are defined for the Arm Cortex-M4 architecture; the use of many of these is optional for the system integrator. At a minimum, the MAX32660 must contain code and data memory for application code, stack and heap usage, as well as certain components which are part of the implemented architecture.

3.2.1 Code Space

The code space area of memory is designed to contain the primary memory used for code execution by the device. This memory area is defined from byte address range 0x0000 0000 to 0x1FFF FFFF (0.5GB maximum). Two different standard core bus masters are used by the Arm Cortex-M4 core and the Arm debugger to access this memory area. The I-Code AHB bus master is used for instruction decode fetching from code memory, while the D-Code AHB bus master is used for data fetches from code memory. This is arranged so that data fetches avoid interfering with instruction execution.

On the MAX32660, the code space memory area contains the main internal flash memory that typically contains the instruction code that will be executed on the device. The internal flash memory is mapped into both code and data space from 0x0000 0000 to 0x0003 FFFF. This program memory area must also contain the default system vector table and the initial settings for all system exception handlers and interrupt handlers. The reset vector for the device is 0x0000 0000.

3.2.2 SRAM Space

The SRAM area of memory is intended to contain the primary SRAM data memory of the device and is defined from byte address range 0x2000 0000 to 0x3FFF FFFF (0.5GB maximum). This memory can be used for general purpose variable and data storage, code execution, and the Arm Cortex-M4 stack.

On the MAX32660, this memory area contains the main system SRAM 96KB, which is mapped from 0x2000 0000 to 0x2001 7FFF.

The entirety of the SRAM memory space on the MAX32660 is contained within the dedicated Arm Cortex-M4 with FPU's SRAM bit-banding region from 0x2000 0000 to 0x200F FFFF (1MB maximum for bit-banding). This means that the CPU can access the entire SRAM either using standard byte/word/doubleword access or using bit-banding operations. The bit-banding mechanism allows any single bit of any given SRAM byte address location to be set, cleared, or read individually by reading from or writing to a corresponding doubleword (32-bit wide) location in the bit-banding alias area.

The alias area for the SRAM bit-banding is located beginning at 0x2200 0000 and is a total of 32MB maximum, which allows the entire 1MB bit banding area to be accessed. Each 32-bit (4 byte aligned) address location in the bit-banding alias area translates into a single bit access (read or write) in the bit-banding primary area. Reading from the location performs a single bit read, while writing either a 1 or 0 to the location performs a single bit set or clear.

Note: The Arm Cortex-M4 with FPU translates the access in the bit-banding alias area into the appropriate read cycle (for a single bit read) or a read-modify-write cycle (for a single bit set or clear) of the bit-banding primary area. This means that bit-banding is a core function (i.e., not a function of the SRAM memory interface layer or the AHB bus layer), and thus is only applicable to accesses generated by the core itself. Reads/writes to the bit-banding alias area by other (non-Arm -core) bus masters such as the Standard DMA AHB bus master will not trigger a bit-banding operation and will instead result in an AHB bus error.

The SRAM area on the MAX32660 is capable code execution. Code stored in the SRAM is accessed directly for execution using the system bus and is not cached. The SRAM is where the Arm Cortex-M4 stack must be located, as it is the only general-purpose SRAM memory on the device. A valid stack location inside the SRAM must be set in the vector table stored at address 0x0000 0000 in the internal flash memory. Refer to the *Cortex-M4 with FPU Technical Reference Manual*. The MAX32660 specific AHB Bus Masters can also access the SRAM to use as general storage or working space.

3.2.3 Peripheral Space

The peripheral space area of memory is intended for mapping of control registers, internal buffers/working space, and other features needed for the firmware control of non-core peripherals. It is defined from byte address range 0x4000 0000 to 0x5FFF FFFF (0.5GB maximum). On the MAX32660, all device-specific module registers are mapped to this memory area, as well as any local memory buffers or FIFOs which are required by modules.

As with the SRAM region, there is a dedicated 1MB area at the bottom of this memory region (from 0x4000 0000 to 0x400F FFFF) that is used for bit-banding operations by the Arm Cortex-M4 with FPU. Four-byte-aligned read/write operations in the peripheral bit-banding alias area (32MB in length, from 0x4200 0000 to 0x43FF FFFF) are translated by the core into read/mask/shift or read/modify/write operation sequences to the appropriate byte location in the bit-banding area.

Note: The bit-banding operation within peripheral memory space is, like bit-banding function in SRAM space, a core remapping function. As such, it is only applicable to operations performed directly by the Arm Cortex-M4 core. If another memory bus master (such as the Standard DMA AHB master) accesses the peripheral bit-banding alias region, the bit-banding remapping operation will not take place. In this case, the bit-banding alias region will appear to be a non-implemented memory area (causing an AHB bus error).

On the MAX32660, access to the region that contains most peripheral registers (0x4000 0000 to 0x400F FFFF) goes from the AHB bus through an AHB-to-APB bridge. This allows the peripheral modules to operate on the slower, easier to handle APB bus matrix. This also ensures that peripherals with slower response times do not tie up bandwidth on the AHB bus, which must necessarily have a faster response time since it handles main application instruction and data fetching.

Note: The APB bus supports 32-bit width access only. All access to the APB peripheral register area (0x4000 0000 to 0x400F FFFF) must be 32-bit width only with 32-bit (4 byte) alignment. Access using 8-bit or 16-bit width to this memory region is not supported and will result in an AHB memory fault exception (returned by the AHB-to-APB bridge interface).

3.2.4 System Area (Private Peripheral Bus)

The system area (private peripheral bus) memory space contains register areas for functions that are only accessible by the Arm Cortex-M4 core itself (and the Arm debugger, in certain instances). It is defined from byte address range 0xE000 0000 to 0xE00F FFFF. This APB bus is restricted and can only be accessed by the Arm core and core-internal functions. It cannot be accessed by other modules which implement AHB memory masters, such as the Standard DMA.

In addition to being restricted to the core, application code is only allowed to access this area when running in the privileged execution mode (as opposed to the standard user thread execution mode). This helps ensure that critical system settings controlled in this area are not altered inadvertently or by errant code that should not have access to this area.

Core functions controlled by registers mapped to this area include the SysTick timer, debug and tracing functions, the NVIC (interrupt handler) controller, and the Flash Breakpoint controller.

3.3 Device Memory Instances

This section details physical memory instances on the MAX32660 (including internal flash memory and SRAM instances) that are accessible as standalone memory regions using either the AHB or APB bus matrix. Memory areas which are only accessible via FIFO interfaces, or memory areas consisting of only a few registers for a peripheral, are not covered here.

3.3.1 Main Program Flash Memory

The main program flash memory is 256KB in size and consists of 32 logical pages of 8KB each.

3.3.2 Instruction Cache Memory

The internal flash memory instruction cache is 16KB in size and is used to cache instructions fetched using the I-Code bus. This includes instructions fetched from the internal flash memory. Note that the cache is used for instruction fetches only. Data fetches (including code literal values) from the internal flash memory do not use the instruction cache.

3.3.3 System SRAM

The system SRAM is 96KB in size and can be used for general purpose data storage, the Arm system stack, USB data transfers (endpoints), and Standard DMA operations, as well as code execution if desired.

3.3.4 AHB Bus Matrix and AHB Bus Interfaces

This section details memory accessibility on the AHB bus matrix and the organization of AHB master and slave instances.

3.3.5 Core AHB Interface

3.3.5.1 I-Code

This AHB master is used by the Arm core for instruction fetching from memory instances located in code space from byte addresses 0x0000 0000 to 0x1FFF FFFF. This bus master is used to fetch instructions from the internal flash memory. Instructions fetched by this bus master are returned by the instruction cache, which in turn triggers a cache line fill cycle to fetch instructions from the internal flash memory when a cache miss occurs.

3.3.5.2 D-Code

This AHB master is used by the Arm Cortex-M4 with FPU core for data fetches from memory instances located in code space from byte addresses 0x0000 0000 to 0x1FFF FFFF. The D-Code AHB master has access to the full internal flash memory.

3.3.5.3 System

This AHB master is used by the Arm core for all instruction fetches and data read and write operations involving the SRAM. The APB mapped peripherals (through the AHB-to-APB bridge) and AHB mapped peripheral and memory areas are also accessed using this bus master.

3.3.6 AHB Master

3.3.6.1 Standard DMA

The Standard DMA bus master has access to all off-core memory areas accessible by the System bus. It does not have access to the Arm Private Peripheral Bus area.

3.4 Peripheral Register Map

Table 3-1, below, contains the base address for each of the APB mapped peripherals. The base address for a given peripheral is the start of the register map for the peripheral. For a given peripheral, the address for a register within the peripheral is defined as the peripheral base address plus the register's offset.

Peripheral	Peripheral Register Prefix	Base Address	End Address
Global Control	GCR_	0x4000 0000	0x4000 03FF
System Interface	SIR_	0x4000 0400	0x4000 07FF
Function Control	FCR_	0x4000 0800	0x4000 0BFF
Watchdog Timer 0	WDT0_	0x4000 3000	0x4000 33FF
Real-Time Clock	RTC_	0x4000 6000	0x4000 63FF
Power Sequencer	PWRSEQ_	0x4000 6800	0x4000 6BFF
GPIO Port 0	GPIO0_	0x4000 8000	0x4000 8FFF
Timer 0	TMR0_	0x4001 0000	0x4001 0FFF
Timer 1	TMR1_	0x4001 1000	0x4001 1FFF
Timer 2	TMR2_	0x4001 2000	0x4001 2FFF
SPIMSS	SPIMSS_	0x4001 9000	0x4001 9FFF

Table 3-1: APB Peripheral Base Address Map

Peripheral	Peripheral Register Prefix	Base Address	End Address	
I ² C 0	I2C0_	0x4001 D000	0x4001 DFFF	
I ² C 1	I2C1_	0x4001 E000	0x4001 EFFF	
Standard DMA	DMA_	0x4002 8000	0x4002 8FFF	
Flash Controller	FLC_	0x4002 9000	0x4002 93FF	
Internal Cache Controller	ICC_	0x4002 A000	0x4002 AFFF	
UART 0	UART0_	0x4004 2000	0x4004 2FFF	
UART 1	UART1_	0x4004 3000	0x4004 3FFF	
SPIO	SPIO_	0x4004 6000	0x4004 6FFF	

4 System Clocks, Reset, and Power Management

The MAX32660 includes a High-Frequency Internal Oscillator (HFIO), an 8kHz nano-ring oscillator and support for an external 32kHz crystal or external clock. Support for selectable core operating voltage is provided and the HFIO frequency is scaled based on the specific core operating voltage range selected.

4.1 Core Operating Voltage Range Selection

The MAX32660 supports three selections for the core Operating Voltage Range (OVR). In single supply operation, changing the OVR sets the output of the internal LDO regulator to the voltage shown in *Table 4-1*. For dual supply designs, setting the OVR allows the MAX32660 to use an external PMIC to provide the required V_{CORE} voltage dynamically. Changing the OVR also reduces the output frequency of the High-frequency Internal Oscillator (HFIO), further reducing power consumption.

Changes to the OVR affect the access time of the internal flash memory and the application firmware must set the flash wait states for each OVR setting as outlined in section 4.1.2 Flash Wait States for details on minimum flash wait states for the internal flash memory.

Changing the core operating voltage immediately reduces the output frequency of the High Frequency Internal Oscillator as shown in *Table 4-1, below*. When operating the MAX32660 using dual external supplies requires special considerations and must be handled carefully in the application firmware.

Table 4-1: Operating Vo	ltage Range Selection a	and the Effect on V _{COR}	е and f нғіo

PWRSEQ_LP_CTRL ovr	FLC_CTRL lve	V _{CORE} Typical	f нғіо
0	1	0.9	24
1	1	1.0	48
2	0	1.1	96

4.1.1 Setting the Operating Voltage Range

The Operating Voltage Range (OVR) selection is controlled using the Power Sequencer Low Power Control Register *PWRSEQ_LP_CTRL.ovr* which is only reset by a Power-On Reset (POR) and these bits should be checked after every reset to determine the correct clock speed and flash wait states. Adjusting the OVR setting effects the frequency of the HFIO. Prior to changing the OVR settings, it is required to set the system clock to either the 8kHz Low-Frequency Internal Oscillator or the 32.768kHz External Oscillator. The MAX32660 coordinates OVR change between the internal LDO and the HFIO set frequency. When changing the OVR setting, the MAX32660 must be operating from the internal LDO. In a system using an external supply for V_{CORE}, firmware must transition to the internal LDO prior to changing the OVR setting.

The following steps describe how to change the OVR:

- 1. Ensure the part is operating from the internal LDO for V_{CORE} .
 - a. Set *PWRSEQ_LP_CTRL.ldo_dis* to 0.
 - b. If using an external supply for V_{CORE}, ensure the external supply is set to the same voltage as the current OVR setting. The external supply must be equal to or greater than the set OVR voltage.
- Set either the 32.768kHz external oscillator or 8kHz nano-ring oscillator as the system clock source.
 a. Refer to section 4.3 Oscillator Sources and System Clock Selection for details on system clock selection.
- 3. Set the number of Flash Wait States to the POR default value of 5.
 a. GCR MEM CTRL.fw = 5
- 4. Change the OVR setting to the desired range.
- a. Set *PWRSEQ_LP_CTRL.ovr* to either 0, 1, or 2 as shown in *Table 4-1, above*.
- 5. Set the Flash Low Voltage Enable according to the OVR setting set in step 4.a.
 - a. Set *FLC_CTRL.lve* to either 0 or 1 as required. Reference *Table 4-1, above* for the required value.
- 6. If desired, set the system clock source to the HFIO and update the system clock prescaler to the desired value.a. Set GCR_CLK_CTRL.clksel = 0.
 - b. Wait for the system clock ready bit, *GCR_CLK_CTRL.clkrdy*, to read 1.
 - c. Set *GCR_CLK_CTRL.psc* to the desired prescaler value.
- 7. Set the number of Flash Wait States per *Table 4-2, below*.
 a. Set *GCR MEM CTRL.fws* to the minimum value shown for the selected OVR and System Clock
- 8. Perform a Peripheral Reset.
 - a. Set GCR_RSTO.periph_rst = 1.

On each subsequent reset event:

- 1. If *PWRSEQ_LP_CTRL.ovr* is set to 0, set the flash low voltage enable bit to 1 (*FLC_CTRL.lve* = 1)
- 2. Set the clock prescaler, GCR_CLK_CTRL.psc, as needed by the system.
- 3. Set the number of flash wait states, *GCR_MEM_CTRL.fws*, as needed based on the OVR settings using *Table 4-2*, *below*.

4.1.2 Flash Wait States

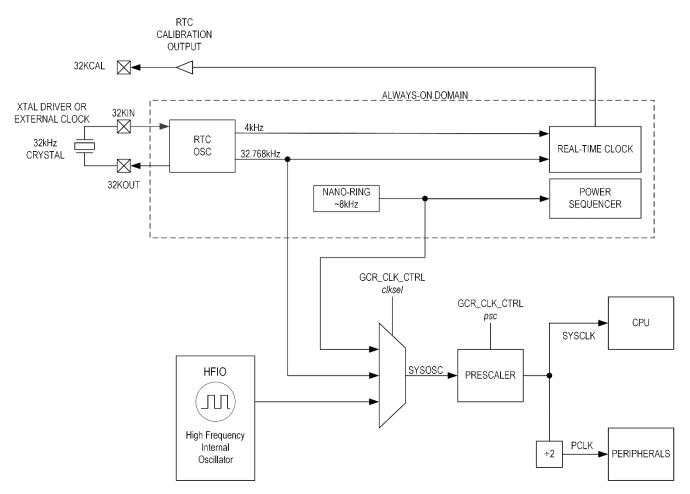
Power-On Reset, System Reset and Watchdog Reset all reset the Flash Wait State field, *GCR_MEM_CTRL.fws*, to the POR default setting of 5. The Flash Wait State field is the number of system clock cycles for accessing the internal flash memory and is dependent on the OVR settings, the system oscillator selected and the system oscillator prescaler.

The setting for the number of flash wait states effects performance and it is critical to set it correctly based on the OVR settings and the system clock frequency. Set the number of flash wait states using the field *GCR_MEM_CTRL.fws* per *Table 4-2, below*. The *GCR_MEM_CTRL.fws* field should always be set to the default POR reset value of 5 prior to changing the *PWRSEQ_LP_CTRL.ovr* settings.

Important: Flash reads may fail and result in unknown instruction execution if the Flash Wait State setting is lower than the minimum required for a given OVR setting and the selected system clock frequency.

Note: When changing the system clock prescaler to move from a slower system clock frequency to a faster system clock frequency, always set the Flash Wait State field to the minimum required for the faster system clock frequency prior to changing the system oscillator prescaler.

Core Operating Voltag	e Range Setting	Core Voltage Range	fнғıo	System Clock Prescaler	System Clock	Minimum Flash Wait State Setting								
PWRSEQ_LP_CTRL.ovr	FLC_CTRL./ve	V _{CORE} (V)	(MHz)	GCR_CLK_CTRL.psc	fsysclк (MHz)	GCR_MEM_CTRL.fws								
0	1	0.9	24	0	24	2								
0	Ĩ	0.9	24	1	12	1								
1	1		40	0	48	3								
L	1	1.0	48	1	24	2								
				0	96	4								
2	0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1 96	96	1	48	2
				2	24	1								


Table 4-2: Minimum Flash Wait State Setting for Each OVR Setting (fsysclk = fhfio)

4.2 System Clocks

Figure 4-1, below, shows a high-level diagram of the MAX32660 clock tree.

The selected System Oscillator (SYSOSC) is the clock source for most internal blocks. Select SYSOSC from the following clock sources:

- High-Frequency Internal Oscillator (HFIO)
- 8kHz Internal Ultra-Low Power Nano-Ring Oscillator
- 32.768kHz External Crystal Oscillator

The selected SYSOSC is the input to the system oscillator prescaler, which generates the System Clock (SYSCLK). The system oscillator prescaler divides SYSOSC by a prescaler using the GCR_CLK_CTRL.psc field as shown in Equation 4-1.

Equation 4-1: System Clock Scaling

$$SYSCLK = \frac{SYSOSC}{2^{psc}}$$

GCR_CLK_CTRL.psc is selectable from 0 to 7, resulting in divisors of 1, 2, 4, 8, 16, 32, 64 or 128.

SYSCLK drives the Arm[®] Cortex-M4 with FPU and is used to generate the following internal clocks:

- Advanced High-Performance Bus (AHB) Clock
 HCLK = SYSCLK
- Advanced Peripheral Bus (APB) Clock,

-
$$PCLK = \frac{SYSCLK}{2}$$

The Real-Time Clock (RTC) uses the 32.768kHz oscillator for its clock source.

All oscillators are reset to their POR reset default state during a Power-On Reset, System Reset and a Watchdog Reset. Oscillator settings are not reset during a Soft Reset or Peripheral Reset. *Table 4-3* shows each oscillator's enabled state for each type of reset source in the MAX32660. *Table 4-4* details the effect each reset source has on the System Clock selection and the System Clock prescaler settings.

Table 4-3: Reset Sources and Effect on Oscillator Status

	Reset Source					
Oscillator	POR	System	Watchdog	Soft	Peripheral	
HFIO	Enabled	Enabled	Enabled	Retains State	Retains State	
8kHz nano-ring	Enabled	Enabled	Enabled	Enabled	Enabled	
32kHz oscillator	Disabled	Retains State	Retains State	Retains State	Retains State	

Table 4-4: Reset Sources and Effect on System Oscillator Selection and Prescaler

	Reset Source						
Clock Field	POR	System	Watchdog	Soft	Peripheral		
System Oscillator GCR_CLK_CTRL.clksel	0 (HFIO)	0 (HFIO)	0 (HFIO)	Retains State	Retains State		
System Clock Prescaler GCR_CLK_CTRL.psc	1	1	1	Retains State	Retains State		

4.3 Oscillator Sources and System Clock Selection

Before using any oscillator, the oscillator must first be enabled by setting its corresponding enable bit in the System Clock Control Register, GCR_CLK_CTRL. Before setting any oscillator as SYSOSC, its corresponding oscillator ready bit in the GCR_CLK_CTRL register must first be checked.

Once the corresponding oscillator ready bit is set, the oscillator can then be selected as SYSOSC by configuring the Clock Source Select field (*GCR_CLK_CTRL.clksel*). If an oscillator's ready bit reads 0, the hardware does not allow selecting the oscillator as the SYSOSC.

Any time firmware changes SYSOSC by changing *GCR_CLK_CTRL.clksel*, the Clock Ready bit, *GCR_CLK_CTRL.clkrdy*, is automatically cleared to indicate that a SYSOSC switchover is in progress. The application should read the clock ready field until it returns 1. While the clock ready field reads 0, the prior clock is used as the SYSOSC.

Immediately before entering any low-power mode the application must enable any oscillator needed during the low power mode.

Refer to Table 4-3 and Table 4-4 for details on reset sources and effects on each of the oscillators described below.

4.3.1 High-Frequency Internal Oscillator

The MAX32660 includes a High-Frequency Internal Oscillator (HFIO) that is the default system oscillator after a POR, System and Watchdog Reset.

To enter *DEEPSLEEP*, the HFIO must be powered down by setting register bit *GCR_PM.hfiopd* to 1. Failure to set this bit to 1 will inhibit the processor from entering *DEEPSLEEP*.

Refer to *Table 4-3* and *Table 4-4* for details on reset sources and the effect on the HFIO oscillator.

4.3.2 32.768kHz External Crystal or Clock

This is a very low power oscillator used for the RTC and optionally can be selected as the System Clock. This oscillator can be driven using an external clock or a 32.768kHz crystal. The 32.768kHz clock signal is available as an output on GPIO 32KCAL.

This oscillator is the dedicated clock for the Real-Time Clock (RTC). If the RTC is enabled, the 32.768kHz external oscillator must be enabled, independent of the selection of the System Clock.

When this oscillator is active, an RTC alarm can wake this device from *SLEEP* or *DEEPSLEEP* mode if the *GCR_PM.rtcwk_en* is set to 1 and the RTC alarm is configured.

The 32kHz oscillator is disabled by hardware by a Power-On Reset. All other forms of reset do not change the 32kHz oscillator enable bit. Refer to *Table 4-3* and *Table 4-4* for details on reset sources and the effect on the 32kHz oscillator.

4.3.3 8kHz Ultra-Low Power Nano-Ring Internal Oscillator

An ultra-low power internal 8kHz nano-ring oscillator is available and can be set as the System Oscillator (SYSOSC). This oscillator is enabled at device powerup by hardware and cannot be disabled by application firmware.

4.4 System Oscillators Reset

On Power-On Reset (POR) and System Reset, all oscillator states are reset to their Power-On Reset default:

- The HFIO and the 8kHz nano-ring oscillators are enabled.
- The 32.768kHz external oscillator is disabled.
- The system clock selection and prescaler are reset.

The oscillator enable fields, system clock selection field and the system clock prescaler fields are not affected by a Soft Reset or Peripheral Reset.

4.5 **Operating Modes**

The MAX32660 supports four operating modes:

- ACTIVE
- SLEEP
- DEEPSLEEP
- BACKUP

ACTIVE mode is the only mode is which code execution occurs.

For the low power modes, the Arm Cortex-M4 with FPU does not execute code. Each low power mode of operation supports wakeup events that result in the MAX32660 to re-enter *ACTIVE* mode operation. For *SLEEP* mode, wakeup events include any external or internal interrupt, RTC wakeup, and the Watchdog Interrupt. *DEEPSLEEP* and *BACKUP* mode wakeup events are limited to any enabled GPIO external interrupt or from an enabled RTC wakeup event.

The Arm Cortex-M family of CPUs have two built-in low power modes, designated *SLEEP* and *DEEPSLEEP*. Implementation of these low-power modes are specific to the microcontroller's design. These modes are enabled using the Arm Cortex-M4 with FPU System Control Register (SCR). Write register bit SCR.*deepsleep* to select the low power mode as shown in the pseudocode below.

SCR.sleepdeep = 0; // SLEEP mode enabled
SCR.sleepdeep = 1; // DEEPSLEEP mode enabled

Once enabled, the device enters the enabled low power mode when either a WFI (Wait for Interrupt) or WFE (Wait for Event) instruction is executed.

Immediately before entering any low-power mode, enable the SYSOSC to be used in that low-power mode. If the selected SYSOSC is disabled in the selected low power mode, it will be enabled upon returning to *ACTIVE* mode.

Refer to the *Cortex*-M4 with FPU *Technical Reference Manual* for more information on the SCR register and the WFI and WFE instructions.

4.5.1 ACTIVE Mode

This is the highest performance mode. All internal clocks, registers, memory, and peripherals are enabled. The CPU is running and executing application code. All oscillators are available for application use, if enabled.

Dynamic clocking allows firmware to selectively enable or disable clocks and power to individual peripherals, providing the optimal mix of high-performance and power conservation. Internal RAM that can be enabled, disabled, or placed in low-power RAM Retention Mode include data SRAM memory blocks, on-chip cache, and on-chip FIFOs. Refer to *RAM Low Power Modes* for details on RAM power mode control.

4.5.2 SLEEP Low Power Mode

This is a low power mode that suspends the CPU with a fast wakeup time to *ACTIVE* mode. In *SLEEP* mode, the microcontroller remains in an *ACTIVE* state with the system clock disabled for the Cortex core. Code execution stops during *SLEEP* mode. All enabled oscillators remain active and the RAM retains state if enabled. Refer to *RAM Low Power Modes* for details on enabling and disabling RAM sector data retention.

SLEEP mode wakeup events include any external or internal interrupt.

The following pseudocode places the device in SLEEP mode:

```
GCR_PMR.mode = 0; // Set mode field to ACTIVE to ensure DEEPSLEEP mode is entered
SCR.sleepdeep = 0; // SLEEP mode enabled
WFI; // Enter SLEEP mode, WFI can be replaced with WFE
```

Refer to the *Cortex*-M4 with FPU *Technical Reference Manual* for more information on the SCR register and the WFI and WFE instructions.

4.5.3 DEEPSLEEP Low Power Mode

In *DEEPSLEEP* mode all internal clocks are gated off including the system clock and the Watchdog Timer. The RTC continues operation, if enabled, during *DEEPSLEEP*. The Arm Cortex-M4 with FPU state and all system and peripheral registers retain

their state (settings) during *DEEPSLEEP* mode. RAM retention is disabled by default. The application can explicitly enable RAM retention for each RAM sector using the *PWRSEQ_LP_CTRL.ramret_sel[3:0]*. Set *PWRSEQ_LP_CTRL.ramret_sel[3:0]* fields to 1 to enable data retention for each RAM sector respectively during *DEEPSLEEP* mode. GPIO also retain their configuration during *DEEPSLEEP* mode.

Wakeup from *DEEPSLEEP* can occur from an external GPIO interrupt or from a RTC alarm, both of which must be enabled separately. Refer to *Table 4-5* for Wake-up sources for each low-power mode.

The High Frequency Oscillator, HFIO, must be powered off when entering *DEEPSLEEP* mode. Set *GCR_PM.hfiopd* = 1 to enter *DEEPSLEEP* mode. The 8kHz and 32.768kHz oscillators are available. Additionally, the *GCR_PM.mode* field should be set to 0 prior to entering *DEEPSLEEP* mode.

```
GCR_PMR.hfiopd = 1; // Set HFIO to automatic power down for DEEPSLEEP
GCR_PMR.mode = 0; // Set mode field to ACTIVE ensure DEEPSLEEP mode is entered
SCR.sleepdeep = 1; // DEEPSLEEP mode enabled
WFI; // Enter DEEPSLEEP mode, WFI can be replaced with WFE
```

4.5.4 BACKUP Low Power Mode

This is the lowest power operating mode. The HFIO is disabled in *BACKUP* mode. The 8kHz oscillator remains on. If the 32kHz oscillator is enabled, it remains enabled during *BACKUP* mode. The Arm Cortex-M4 with FPU state and all system and peripheral registers do not retain state. The RTC and AoD registers do retain state during *BACKUP* mode.

RAM retention in *BACKUP* mode requires the Retention Regulator. If RAM retention is required, enable the RAM Retention Regulator by setting the *PWRSEQ_LP_CTRL.retreg_en* field to 1. Enable each RAM sector individually for data retention during *BACKUP* mode by setting the *PWRSEQ_LP_CTRL.ramret_sel[3:0]* fields to 1. By default, the RAM sectors do not retain state during *BACKUP* mode.

Wakeup from *BACKUP* mode can occur from an external GPIO interrupt or from an RTC alarm, both of which must be enabled separately. Refer to *Table 4-5* for Wakeup sources for each low-power mode.

Set *GCR_PM.mode* = 4 to immediately enter *BACKUP* mode.

4.5.5 Wake-Up Sources

Table 4-5, below, lists the wake-up sources for each of the low-power modes supported by the MAX32660. Wake-up from a GPIO interrupt and the RTC alarm must be enabled by the application to wake-up the device from *SLEEP, DEEPSLEEP* and *BACKUP* mode.

	Low Power Mode					
Wake-Up Source	SLEEP	DEEPSLEEP	BACKUP			
Internal Interrupt	Y	N	N			
External Reset	Y	Y	Y			
GPIO Interrupt	Y	Y	Y			
RTC Alarm	Y	Y	Y			

Table 4-5: Wake-Up Sources for Each Low-Power Mode

4.6 Shutdown State

Shutdown State is not a low-power mode. It is intended to wipe all volatile memory from the device. In the Shutdown State, internal logic gates off all internal power. There is no data, register, or RAM retention in this mode. All wakeup sources,

wakeup logic, and interrupts are disabled. The Always-on Domain (AoD) is disabled as well. The device only recovers through a Power-On Reset (POR) which re-initializes the device.

Setting *GCR_PM.mode* = 6 results in the part immediately entering Shutdown State.

4.7 Device Resets

Four device resets are available:

- Peripheral Reset
- Soft Reset
- System Reset
- Power-On Reset

On completion of any of the four reset cycles, all peripherals are reset, HCLK and PCLK are operational, the CPU core receives clocks and power, and the device enters *ACTIVE* mode. Program execution begins at the reset vector address.

Each peripheral in the MAX32660 can be reset individually by firmware using the GCR_RST0 and GCR_RST1 registers.

4.7.1 Peripheral Reset

This resets all peripherals. The CPU retains its state. The GPIO, Watchdog Timers, RAM Retention, and Global Control Registers (GCR), including the clock configuration, are unaffected.

Initiate a Peripheral Reset by setting GCR_RSTO.periph_rst to 1.

4.7.2 Soft Reset

This is the same as a Peripheral Reset except that it also resets the GPIO to its Power-On Reset state. All alternate functions are tri-stated.

Initiate a Soft Reset by setting GCR_RST0.soft to 1.

4.7.3 System Reset

This is the same as Soft Reset and additionally resets all GCR registers, resetting the clocks to their default state. The CPU state is reset as well as the watchdog timers. The AoD and RAM Retention are unaffected.

A watchdog timer reset event initiates a System Reset. To start a System Reset from the application, set GCR_RSTO.system = 1.

4.7.4 Power-On Reset

A POR resets everything in the device to its power-on reset default state. *Table 4-6* shows the effects of the four reset types and the four power modes supported by the MAX32660.

Table 4-6: Reset and Low Power Mode Effects

	Peripheral Reset	Soft Reset	System Reset	POR	ACTIVE Mode	SLEEP Mode	DEEPSLEEP Mode	BACKUP Mode
GCR Registers	No	No	Reset	Reset	N/A	N/A	N/A	N/A

	Peripheral Reset	Soft Reset	System Reset	POR	<i>ACTIVE</i> Mode	SLEEP Mode	DEEPSLEEP Mode	BACKUP Mode
8kHz Osc	On	On	On	On	On	On	On	On
High Freq Osc	-	-	On	On	Y	Y	Auto Off	Off
PCLK	On	On	On	On	On	On	Off	Off
HCLK	On	On	On	On	On	On	Off	Off
CPU Clock	On	On	On	On	On	Off	Off	Off
V _{CORE}	On	On	On	On	On	On	Off	Off
CPU State Retention	On	On	Reset	Reset	N/A	On	On	Off
RTC	-	-	Reset	Reset	Y	Y	Y	Y
Standard DMA	Reset	Reset	Reset	Reset	Y	Y	Off	Off
Watchdog Timer	-	-	Reset	Reset	Y	Y	Off	Off
GPIO	-	Reset	Reset	Reset	Y	Y	Y	Y
Flash Controller, ICC0 Cache	Reset	Reset	Reset	Reset	Y	Y	Off	Off
Other Peripherals	Reset	Reset	Reset	Reset	Y	Y	Off	Off
AoD	On	Y	Y	Y	Y	On	On	Auto Off
RAM Retention	Y	Y	Y	Reset	Y	Y	Y	Auto Off

Table key:

Y = Enabled, can be disabled by firmware

On = Enabled by hardware (Cannot be disabled)

Off = Disabled by hardware (Cannot be enabled)

Auto Off = Can either be left on, or automatically gated off when in this power mode.

- = No Effect

N/A = Not Applicable

Note: The AoD includes the oscillator trim settings, the RTC, RAM retention, and Low Power Wakeup Control Registers.

Note: Only a Power-On Reset triggers a reset of the AoD.

Note: RAM Retention applies to data SRAM, cache, and all FIFOs.

Note: Peripheral, Soft, and System Resets are initiated by firmware though the GCR_RSTO register.

Note: A Watchdog Reset initiates a System Reset.

4.8 Instruction Cache Controller

ICCO is the Instruction Cache Controller used for the internal Flash Memory. ICCO includes a line buffer, tag RAM and a 16KB 2-way set associative Data RAM.

4.8.1 Enabling ICCO

Perform the following steps to enable ICCO.

- Set ICCO_CACHE_CTRL.enable to 1
- Read ICCO_CACHE_CTRL.ready until it returns 1

4.8.2 Disabling ICC0

Disable ICC0 by setting *ICC0_CACHE_CTRL.enable* to 0.

4.8.3 Flushing the ICC0 Cache

The System Configuration Register (*GCR_SCON*) includes a field for flushing ICC0. Setting *GCR_SCON.ccache_flush* to 1 performs a flush of ICC0's 16KB Cache and the tag RAM. Set the *ICC0_INVALIDATE* register to 1 to invalidate the ICC0 cache and force a cache flush. Read the *ICC0_CACHE_CTRL.ready* field until it returns 1 to determine when the flush is completed.

4.9 ICC0 Registers

The ICCO base peripheral address is 0x4002 A000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Offset	Register Name	Access	Description	
[0x0000]	ICCO_CACHE_ID	RO	Cache ID Register	
[0x0004]	ICCO_MEM_SIZE	RO	Cache Memory Size Register	
[0x0100]	ICCO_CACHE_CTRL	R/W	Cache Control Register	
[0x0700]	ICCO_INVALIDATE	R/W	Cache Invalidate Register	

Table 4-7: Instruction Cache Controller Register Addresses and Descriptions

4.9.1 ICCO Register Details

Table 4-8: ICC Cache ID Register

ICC Cach	e ID Register		-	ICC0_CACHE_ID	[0×0000]
Bits	Name	Access	Reset	Description	
31:16	-	RO	-	Reserved for Future Use Do not modify this field.	
15:10	cchid	RO	-	Cache ID Returns the Cache ID for this Cache instance.	
9:6	partnum	RO	-	Cache Part Number Returns the part number indicator for this Cache	e instance.
5:0	relnum	RO	-	Cache Release Number Returns the release number for this Cache instar	nce.

Table 4-9: ICC Memory Size Register

ICC Memory Size Register				ICC0_MEM_SIZE	[0x0004]
Bits	Name	Access	Reset	Description	
31:16	memsz	RO	-	Addressable Memory Size Indicates the size of addressable memory by this cache controller instance in 128KB units.	
15:0	cchsz	RO	-	Cache Size Returns the size of the cache RAM memory in 1KB units. 16: 16KB Cache RAM	

Table 4-10: ICC Cache Control Register

ICC Cach	e Control Regis	ster		ICC0_CACHE_CTRL	[0x0100]
Bits	Name	Access	Reset	Description	
31:16	-	R/W	-	Reserved for Future Use Do not modify this field.	
16	ready	RO	-	 Ready This field is cleared by hardware anytime the cache as a whole is invalidated (including a Power On Reset event). Hardware automatically sets this field to 1 when the invalidate operation is complete and the cache is ready. 0: Cache Invalidate in process. 1: Cache is ready. Note: While this field reads 0, the cache is bypassed and reads come directly from the line fill buffer. 	
15:1	-	R/W	-	Reserved for Future Use Do not modify this field.	
0	enable	R/W	0		etting this field to 0 automatically invalidates disabled, reads are handled by the line fill

Table 4-11: ICC Invalidate Register

ICC Inval	ICC Invalidate Register			ICC0_INVALIDATE	[0x0700]
Bits	Name	Access	Reset	Description	
31:0	-	WO	-	Invalidate Any write to this register of any value invalidates the cache.	

4.10 RAM Memory Management

This device has many features for managing the on-chip RAM. The on-chip RAM includes data RAM, an instruction cache (ICCO), and the peripheral FIFOs.

4.10.1 On-Chip Cache Management

The MAX32660 includes an instruction cache controller for code fetches from the flash memory. The cache can be enabled, disabled, and zeroized and the cache clock can be disabled by placing it in Light Sleep. Refer to section 4.8 *Instruction Cache Controller* for details.

4.10.2 RAM Zeroization

The GCR Memory Zeroize Control Register, *GCR_MEM_ZCTRL*, allows clearing memory by the application. Zeroization writes all zeros to memory.

The following RAM memories can be zeroized:

- Data RAM
 - Zeroize the entire Data RAM by setting GCR_MEM_ZCTRL.sram_zero bit to 1
- Instruction Cache Controller Data and Tag RAM
 - Set GCR_MEM_ZCTRL.icache_zero to 1 to zeroize the entire 16KB cache RAM and tag RAM

4.10.3 RAM Low Power Modes

RAM can be placed in a low power mode, referred to as Light Sleep, using register *GCR_MEM_CTRL*, Memory Clock Control. Light Sleep gates off the clock to the RAM and makes the RAM unavailable for read/write operations. The RAM contents are retained during Light Sleep mode. Light Sleep is available for the internal Data RAM blocks as well as for the ICCO cache RAM. Turning off Light Sleep mode for a memory enables Read/Write to that memory range.

RAM can also be shut down for power savings using the register *PWRSEQ_LPMEMSD*, RAM Shut Down Control. This conserves power by gating off the power and clock to the RAM. This invalidates the contents of the RAM and the RAM is not accessible until the RAM shutdown mode is disabled. When enabling a RAM partition from a shutdown state, the RAM contents are cleared.

4.11 Global Control Registers (GCR)

The GCR base peripheral address is 0x4000 0000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

The Global Control Registers are only reset on a System Reset, Watchdog Timer Reset and a Power-On Reset. Soft Reset and Peripheral Reset do not affect these registers.

Offset	Register Name	Access	Description
[0x0000]	GCR_SCON	R/W	System Control Register
[0x0004]	GCR_RST0	R/W	Reset Register 0
[0x0008]	GCR_CLK_CTRL	R/W	Clock Control Register
[0x000C]	GCR_PM	R/W	Power Management Register
[0x0024]	GCR_PCLK_DIS0	R/W	Peripheral Clocks Disable 0
[0x0028]	GCR_MEM_CTRL	R/W	Memory Clock Control
[0x002C]	GCR_MEM_ZCTRL	R/W	Memory Zeroize Register
[0x0040]	GCR_SYS_STAT	RO	System Status Flags
[0x0044]	GCR_RST1	R/W	Reset Register 1
[0x0048]	GCR_PCLK_DIS1	R/W	Peripheral Clocks Disable 1
[0x004C]	GCR_EVTEN	R/W	Event Enable Register
[0x0050]	GCR_REV	RO	Revision Register
[0x0054]	GCR_SYS_IE	R/W	System Status Interrupt Enable

Table 4-12: Global Control Registers, Offsets and Descriptions

4.11.1 Global Control Register Details

Table 4-13: System Control Register

System Co	System Control Register			GCR_SCON	[0x0000]
Bits	Name	Access	Reset	Description	
31:15	-	RO		Reserved for Future Use Do not modify this field.	

System Control Register				GCR_SCON	[0x0000]	
Bits	Name	Access	Reset	Description		
14	swd_dis	R/W	See Description	Serial Wire Debug Disable 0: JTAG SWD enabled. 1: JTAG SWD disabled. Note: If the Arm ICE is unlocked (GCR_SYS_ST.ice bit is 0. If the Arm ICE is locked (GCR_SYS_ST.ice bit is 1 and is not writable.		
13:7	-	RO	-	Reserved for Future Use Do not modify this field.		
6	icc0_flush	R/W10	0	Instruction Cache Controller Flush Write 1 to flush the internal flash cache. This bi flush is complete. 0: Flush not in process. 1: Write 1 to flush the code cache.	t is cleared by hardware when the	
5	fpu_dis	R/W	0	Floating Point Unit (FPU) Disable Set this field to 1 to disable the Cortex-M4 Floa 0: FPU enabled. 1: FPU disabled.	ting Point Unit.	
4	flash_page_flip	RO	0	Flash Page Flip Flag Flips the bottom and top halves of the internal hardware. Firmware should not change the star Any change to this bit flushes the instruction ca 0: Physical layout matches logical layout 1: Top and Bottom halves flipped.	te of this bit during normal operation.	
3:0	-	R/W	-	Reserved for Future Use Do not modify this field.		

Table 4-14: Reset 0 Register

Reset 0 Register			GCR_RST0 [0x0004]		
Bits	Name	Access	Reset	Description	
31	system	R/W10	0	System ResetWrite 1 to perform a System Reset of the MAX32660. Weverything on the device except the AoD registers and tregisters, peripherals, the CPU core and the watchdog tby hardware when the reset is complete.0: Reset complete.1: Write 1 to perform a System Reset.Refer to the Device Resets section for additional informed	he RAM retention. All other imer are reset. This field is cleared
30	periph	R/W1O	0	System Peripheral Reset Write 1 to perform a Peripheral Reset. All peripherals are reset except for the GPIO port proceeding on the configuration and Watchdog Timer. 0: Reset complete. 1: Write 1 to perform the Peripheral reset. <i>Refer to the Device Resets section for additional information.</i>	

Reset 0 Register		GCR_RST0 [0x0004]				
Bits	Name	Access	Reset	Description		
29	soft	R/W10	0	 Soft Reset Write 1 to perform a soft reset. A soft reset resets all peripherals including the GPIO port pin configuration but does not reset the Watchdog Timer peripheral. 0: Reset complete. 1: Write 1 to perform the soft reset. Refer to the Device Resets section for additional information. 		
28:18	-	RO	-	Reserved for Future Use Do not modify this field.		
17	rtc	R/W10	0	 RTC Reset Write 1 to reset the peripheral state to the reset default state. When complete this field will read 0. 0: RTC peripheral not in reset. 1: Write 1 to reset the RTC peripheral. 		
16	i2c0	R/W10	0	 I2C0 Reset Write 1 to reset the peripheral state to the reset defaul read 0. 0: I2C0 peripheral not in reset. 1: Write 1 to reset the I2C0 peripheral. 	lt state. When complete this field will	
15	-	RO	0	Reserved for Future Use Do not modify this field.		
14	spi1	R/W10	0	 SPIMSS (SPI1/I²S) Reset Write 1 to reset the peripheral state to the reset defaul read 0. 0: SPIMSS (SPI1/I²S) peripheral not in reset. 1: Write 1 to reset the SPIMSS (SPI1/I²S) peripheral. 	lt state. When complete this field will	
13	spi0	R/W10	0	 SPI0 Reset Write 1 to reset the peripheral state to the reset default state. When complete this field will read 0. 0: SPI0 peripheral not in reset. 		
12	uart1	R/W10	0	1: Write 1 to reset the SPIO peripheral. UART1 Reset Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is reset. 0: Reset complete.		
11	uart0	R/W10	0	1: Write 1 to reset the UART1 peripheral. UART0 Reset Write 1 to reset the peripheral state to the reset default state. When complete this field will read 0. 0: UART0 peripheral not in reset. 1: Write 1 to reset the UART0 peripheral.		
10:8	-	RO	0	Reserved for Future Use Do not modify this field.		
7	timer2	R/W10	0	Timer2 Reset Write 1 to reset the peripheral state to the reset default state. When complete this field will read 0. 0: TMR2 peripheral not in reset. 1: Write 1 to reset the TMR2 peripheral.		

Reset 0 Register				GCR_RST0	[0x0004]	
Bits	Name	Access	Reset	Description		
6	timer1	R/W10	0	Timer1 Reset Write 1 to reset the peripheral state to the reset defaul read 0. 0: TMR1 peripheral not in reset. 1: Write 1 to reset the TMR1 peripheral.	t state. When complete this field will	
5	timer0	R/W10	0	Timer0 Reset Write 1 to reset the peripheral state to the reset default state. When complete this field will read 0. 0: TMR0 peripheral not in reset. 1: Write 1 to reset the TMR0 peripheral.		
4:3	-	RO	0	Reserved for Future Use Do not modify this field.		
2	gpio0	R/W10	0	 GPIO0 Reset Write 1 to reset the peripheral state to the reset defaul read 0. 0: GPIO peripheral not in reset. 1: Write 1 to reset the GPIO peripheral. 	t state. When complete this field will	
1	wdt0	R/W10	0	 Watchdog Timer 0 Reset Write 1 to reset the peripheral state to the reset defaul read 0. 0: WDT0 peripheral not in reset. 1: Write 1 to reset the WDT0 peripheral. 	t state. When complete this field will	
0	dma	R/W10	0	Standard DMA Reset Write 1 to reset the peripheral state to the reset defaul read 0. 0: Standard DMA peripheral not in reset. 1: Write 1 to reset the Standard DMA peripheral.	t state. When complete this field will	

System Clock Control Register			GCR_CLK_CTRL	[0x0008]		
Bits	Name	Access	Reset	Description		
31:30	-	RO	0b11	Reserved for Future Use Do not modify this field.		
29	lirc8k_rdy	RO	0	 8kHz Internal Oscillator Ready Status On POR or System Reset this field reads 0 until the 8kHz low-frequency oscillator is ready for use. 0: Not ready or not enabled. 1: Oscillator ready. 		
28:27	-	RO	0	Reserved for Future Use Do not modify this field.		
26	hirc_rdy	RO	0	High-Frequency Internal Oscillator Ready On POR or System Reset this field reads 0 until the HFIO oscillator is ready. If the HFIO is disabled (GCR_CLK_CTRL.hirc_en = 0) and firmware enables it (GCR_CLK_CTRL.hirc_en = 1), reading this field will return 0 until the HFIO is ready for use. 0: Oscillator not ready or not enabled. 1: Oscillator ready.		

System Clock Control Register			GCR_CLK_CTRL [0x0008]			
Bits	Name	Access	Reset	Description		
25	x32k_rdy	RO	0	 32.768kHz External Oscillator Ready Status On POR or System Reset this field is set to 0. S field to 0 and hardware sets this field to 1 auto 0: Oscillator not ready. 1: Oscillator ready. 	etting <i>GCR_CLK_CTRL.x32k_en</i> to 1 forces this omatically when the oscillator is ready for use.	
24:19	-	RO	-	Reserved for Future Use Do not modify this field.		
18	hirc_en	R/W	1	High-Frequency Internal Oscillator (HFIO) Ena Write 0 to disable the internal HFIO. When thi clears the GCR_CLK_CTRL.hirc_rdy bit. 0: Set to 0 to disable the HFIO. 1: Set to 1 to enable the HFIO.		
17	x32k_en	R/W	0	 32.768kHz External Oscillator Enable Write 1 to enable the 32kHz external oscillator. After setting this field to 1, hardware automatically clears GCR_CLK_CTRL.x32k_rdy. When the GCR_CLK_CTRL.x32k_rdy bit reads 1, the 32.768kHz oscillator is ready. 0: Disable the 32kHz oscillator (POR default). 1: Enable the 32kHz oscillator. 		
16:14	-	RO	-	Reserved for Future Use Do not modify this field.		
13	clkrdy	R/W	0	System Oscillator Clock Source Ready When the System Oscillator source is modified by changing the GCR_CLK_CTRL.clksel field, the GCR_CLK_CTRL.clkrdy field reads 0 until the switchover completes. This field is set to 1 by hardware when the selected clock source is ready.		
12	_	RO	_	0: The selected System Oscillator is not read 1: The selected clock source (<i>GCR_CLK_CTRL</i> Reserved for Future Use	•	
				Do not modify this field. System Oscillator Source Select Selects the system oscillator (SYSOSC) source Modifying this field immediately clears the GC 0: High-Frequency Internal Oscillator (HFIO) 1: Reserved for Future Use	R_CLK_CTRL.clkrdy field.	
11:9 clksel R/W		0	2: Reserved for Future Use 2: Reserved for Future Use 3: 8kHz Low-Frequency Internal Oscillator 4: Reserved for Future Use 5: Reserved for Future Use 6: 32.768kHz External Oscillator 7: Reserved for Future Use			
8:6	psc	R/W	0	System Oscillator Prescaler Sets the divider for generating the System Clock (SYSCLK) from the selected System Oscillator (SYSOSC) as shown in the following equation: $f_{SYSCLK} = \frac{f_{SYSOSC}}{2^{psc}}$		
5:0	-	R/W	8	Reserved for Future Use Do not modify this field.		

Table 4-16: Power Management Register

Power M	anagement Re	gister		GCR_PM	[0x000C]
Bits	Name	Access	Reset	Description	
31:16	-	RO	0	Reserved for Future Use Do not modify this field.	
15	hfiopd	R/W	0	 HFIO DEEPSLEEP Auto Off When set, the High-Frequency Internal Oscillator is automatically powered off when in DEEPSLEEP mode. If the HFIO is not enabled, GCR_CLK_CTRL.hirc_en = 1, when entering DEEPSLEEP mode, the value of this field is ignored. 0: HFIO oscillator is active, powered on, during DEEPSLEEP mode if the HFIO is enabled (GCR_CLK_CTRL.hirc_en = 1). 1: HFIO Oscillator is powered off in DEEPSLEEP mode. Note: This field should be set to 1 prior to entering DEEPSLEEP mode to achieve the lowest power numbers for the device if the HFIO is enabled (GCR_CLK_CTRL.hirc_en = 1). 	
14:6	-	R/W	0	Reserved for Future Use Do not modify this field.	
5	rtcwk_en	R/W	0	RTC Alarm Wakeup Enable When this field is set to 1, If the RTC is configured to generate a wakeup alarm, an RTC wakeup event causes the MAX32660 to exit all low power modes and transition directly to ACTIVE mode. Refer to section 9.2.3 RTC Wakeup From DEEPSLEEP/BACKUP Power Modes for details on enabling the RTC as a wakeup source. 0: Wakeup from RTC disabled, regardless of the RTC alarm configuration. 1: Wakeup from RTC alarm enabled	
4	gpiowk_en	R/W	0	1: Wakeup from RTC alarm enabled. GPIO Wakeup Enable When enabled, activity on any GPIO pin configured for wakeup causes an exit from SLEEP and DEEPSLEEP low power modes and transitions directly to ACTIVE mode. 0: Wakeup from GPIO disabled, regardless of the GPIO wakeup configuration. 1: Wakeup from GPIO enabled. Note: Refer to section 6.4.2: Using GPIO for Wakeup from Low Power Modes for additional details.	
3	-	RO	0	Reserved for Future Use Do not modify this field.	
2:0	mode	R/W	0	Operating Mode Configures the current operating mode for the device. 0: ACTIVE mode 1: Reserved for Future Use 2: Reserved for Future Use 3: Reserved for Future Use 4: BACKUP Low Power Mode 5: Reserved for Future Use 6: Shutdown Mode Note: All other values are Reserved for Future Use.	

Table 4-17: Peripheral Clock Disable 0 Register

Periphera	Peripheral Clocks Disable 0 Register			GCR_PCLK_DIS0	[0x0024]
Bits	Name	Access	Reset	Description	
31:29	-	R/W	0	Reserved for Future Use Do not modify this field.	

Periphera	l Clocks Disab	le 0 Registe	er	GCR_PCLK_DIS0	[0x0024]
Bits	Name	Access	Reset	Description	
28	i2c1d	R/W	0	 I2C1 Clock Disable Setting this field disables the APB clock to this perip peripheral power consumption is reduced, and the peripheral does not affect the peripheral clock to the peripheral does not affect the periphera Write 1 to disable, set to 0 to enable. 0: Peripheral Enabled 1: Peripheral Disabled 	peripheral is disabled. Disabling the
27:18	-	R/W	0	Reserved for Future Use Do not modify this field.	
17	timer2d	R/W	0	Timer2 Clock Disable Setting this field disables the APB clock to this peripheral. When the clock is disabled, the peripheral power consumption is reduced, and the peripheral is disabled. Disabling the clock to the peripheral does not affect the peripheral's registers. Write 1 to disable, set to 0 to enable. 0: Peripheral Enabled	
16	timer1d	R/W	0	1: Peripheral Disabled Timer1 Clock Disable Setting this field disables the APB clock to this peripheral. When the clock is disabled, the peripheral power consumption is reduced, and the peripheral is disabled. Disabling the clock to the peripheral does not affect the peripheral's registers. Write 1 to disable, set to 0 to enable. 0: Peripheral Enabled 1: De indeed Enabled	
15	timer0d	R/W	0	1: Peripheral Disabled Timer0 Clock Disable Setting this field disables the APB clock to this peripheral. When the clock is disabled, the peripheral power consumption is reduced, and the peripheral is disabled. Disabling the clock to the peripheral does not affect the peripheral's registers. Write 1 to disable, set to 0 to enable.	
14	-	R/W	0	0: Peripheral Enabled 1: Peripheral Disabled Reserved for Future Use Do not modify this field.	
13	i2c0d	R/W	0	 I2C0 Clock Disable Setting this field disables the APB clock to this peripheral. When the clock is disabled, th peripheral power consumption is reduced, and the peripheral is disabled. Disabling the clock to the peripheral does not affect the peripheral's registers. Write 1 to disable, set to 0 to enable. 0: Peripheral Enabled 	
12:11	-	RO	-	1: Peripheral Disabled Reserved for Future Use Do not modify this field.	
10	uart1d	R/W	0	UART1 Clock Disable Setting this field disables the APB clock to this peripheral. When the clock is disabled, the peripheral power consumption is reduced, and the peripheral is disabled. Disabling the clock to the peripheral does not affect the peripheral's registers. Write 1 to disable, set to 0 to enable. 0: Peripheral Enabled 1: Peripheral Disabled	

Periphera	Peripheral Clocks Disable 0 Register		r	GCR_PCLK_DIS0 [0x0024]	
Bits	Name	Access	Reset	Description	
9	uart0d	R/W	0	UARTO Clock Disable Setting this field disables the APB clock to this periph peripheral power consumption is reduced, and the p clock to the peripheral does not affect the periphera Write 1 to disable, set to 0 to enable. 0: Peripheral Enabled 1: Peripheral Disabled	peripheral is disabled. Disabling the
8	-	R/W	0	Reserved for Future Use Do not modify this field.	
7	spi1d	R/W	0	 SPI1 Clock Disable Setting this field disables the APB clock to this peripheral. When the clock is disabled, the peripheral power consumption is reduced, and the peripheral is disabled. Disabling the clock to the peripheral does not affect the peripheral's registers. Write 1 to disable, set to 0 to enable. 0: Peripheral Enabled 1: Peripheral Disabled 	
6	spi0d	R/W	0	SPIO Clock Disable Setting this field disables the APB clock to this peripheral. When the clock is disabled, the peripheral power consumption is reduced, and the peripheral is disabled. Disabling the clock to the peripheral does not affect the peripheral's registers. Write 1 to disable, set to 0 to enable.	
5	dmad	R/W	0	0: Peripheral Enabled 1: Peripheral Disabled Standard DMA Clock Disable Setting this field disables the APB clock to this peripheral. When the clock is disabled, the peripheral power consumption is reduced, and the peripheral is disabled. Disabling the clock to the peripheral does not affect the peripheral's registers. Write 1 to disable, set to 0 to enable. 0: Peripheral Enabled 1: Peripheral Disabled	
4:1	-	R/W	0	Reserved for Future Use Do not modify this field.	
0	gpio0d	R/W	0	GPIO0 Port and Pad Logic Clock Disable Write 1 to disable, set to 0 to enable. Disabling the GPIO Port and Pad Logic gates off the clock from the GPIO Port and the individual GPIO pads. 0: Peripheral Enabled 1: Peripheral Disabled	

Table 4-18: Memory Clock Control Register

Memory Clock Control Register			GCR_MEM_CTRL	[0x0028]	
Bits	Name	Access	Reset	Description	
31:13	-	R/W	0	Reserved for Future Use Do not modify this field.	

Memory Clock Control Register		GCR_MEM_CTRL [0x0028]		[0x0028]	
Bits	Name	Access	Reset	Description	
12	icache_ret	R/W	0	 ICC0 Cache RAM Light Sleep Enable Set this field to 1 to enable Light Sleep mode for the Internal Cache Controller's 16KB RAM. Setting this field to 1 retains the state of the cache but the cache is not accessible. This is useful if executing code from RAM or while in <i>SLEEP</i> mode operation. 0: ICC0 Cache RAM is active. 1: ICC0 Cache RAM is in Light Sleep mode. Note: Any reset event that results in a Cache RAM reset will reset the Cache RAM regardless of the state of this field. 	
11	ram3_ls		0	System RAM 3 Light Sleep Enable Set this field to 1 to enable Light Sleep for System RAM 3 (0x2001 0000 - 0x2001 7FFF). In Light Sleep mode, the System RAM contents are retained but the Data Memory cannot be read. 0: System RAM 3 retention is not enabled. 1: System RAM 3 is in Light Sleep mode. Note: Any reset event that results in RAM reset will reset the RAM regardless of the state of this field. Note: To put RAM in a shutdown mode that removes all power from the RAM and reset the RAM contents, use the register PWRSEQ_LPMEMSD "Low Power Mode RAM Shut Down Control".	
10	ram2_ls		0	System RAM 2 Data Retention Enable Set this field to 1 to enable Light Sleep mode for System RAM 2 (0x2000 8000 - 0x2000 FFFF). In Light Sleep mode, the System RAM contents are retained but the Data Memory cannot be read. 0: System RAM 2 retention is not enabled 1: System RAM 2 is in Light Sleep mode. Note: Any reset event that results in RAM reset will reset the RAM regardless of the state of this field. Note: To put RAM in a shutdown mode that removes all power from the RAM and reset the RAM contents, use the register PWRSEQ_LPMEMSD "Low Power Mode RAM Shut Down Control".	
9	ram1_ls		0	System RAM 1 Light Sleep Enable Set this field to 1 to enable Light Sleep for System RAM 1 (0x2000 4000 - 0x2000 7FFF). If light sleep is enabled, the System RAM contents are retained but the Data Memory cannot be read. 0: System RAM 1 retention is not enabled 1: System RAM 1 data retention is enabled for BACKUP mode. Note: Any reset event that results in RAM reset will reset the RAM regardless of the state of this field. Note: To put RAM in a shutdown mode that removes all power from the RAM and reset the RAM contents, use the register PWRSEQ_LPMEMSD "Low Power Mode RAM Shut Down Control".	

Memory Clock Control Register			GCR_MEM_CTRL [0x0028]		
Bits	Name	Access	Reset	Description	
				System RAM 0 Light Sleep Enable Set this field to 1 to enable Light Sleep for System light sleep is enabled, the System RAM contents a cannot be read.	
8	ram0_ls		0	0: System RAM 0 is Active. 1: System RAM 0 is in Light Sleep mode. Note: Any reset event that results in RAM reset wi of this field.	ll reset the RAM regardless of the state
				Note: To put RAM in a shutdown mode that remove the RAM contents, use the register PWRSEQ_LPM Down Control".	
7:3	-	R/W	0	Reserved for Future Use Do not modify this field.	
				Flash Wait States Number of wait-states (system clock cycles) for in section Flash Wait States for additional information	
2:0	fws	R/W	5	 0: Reserved for Future Use. 1: 1 Wait State (1 System Clock) 2: 2 Wait States 3: 3 Wait States 4: 4 Wait States (Minimum value for HFIO=System 5: 5 Wait States (Reset default) 6: 6 Wait States 7: 7 Wait States 	em Clock=96MHz)

Table 4-19: Memory Zeroization Control Register

Memory Zeroization Control Register		er	GCR_MEM_ZCTRL	[0x002C]	
Bits	Name	Access	Reset	Description	
31:2	-	RO	0	Reserved for Future Use Do not modify this field.	
1	icache_zero	R/W10	0	Internal Cache Data and Tag RAM Zeroization Write 1 to clear the Internal Cache Controller's 16KB data cache and the associated Tag RAM. The bit is set to 0 by hardware when the operation is complete. 0: Operation complete 1: Zeroize memory	
0	sram_zero	R/W10	0	System Data RAM Zeroization Write 1 to clear the contents of the Internal Data RAM, all ranges. The bit is set to 0 by hardware when the operation is complete. 0: Operation complete 1: Zeroize memory	

Table 4-20: System Status Flag Register

System St	System Status Flag Register			GCR_SYS_STAT	[0x0040]
Bits	Name	Access	Reset	Description	
31:1	-	RO	0	Reserved for Future Use Do not modify this field.	

System Status Flag Register				GCR_SYS_STAT	[0x0040]
Bits	Name	Access	Reset	Description	
				Arm Cortex-M4 with FPU ICE Lock Status Flag This field is set in the factory and if set to 1 disables J	TAG SWD access to the device.
0	icelock	RO	0	0: Arm ICE is unlocked and JTAG debug may be ena 1: Arm ICE is locked (disabled), JTAG SWD is disable read-only.	•

Table 4-21: Reset Register 1

Reset Register 1				GCR_RST1	[0x0044]	
Bits	Name	Access	Reset	Description		
31:1	-	R/W10	0	Reserved for Future Use Do not modify this field.		
0	0 i2c1 R/W1O 0		0	I2C1 Reset Write 1 to reset the peripheral state to the reset def will read 0.	ault state. When complete this field	
				0: I2C1 peripheral not in reset.1: Write 1 to reset the I2C1 peripheral.		

Table 4-22: Peripheral Clock Disable Register 1

Periphera	l Clock Disab	le Register 1		GCR_PCLK_DIS1 [0x0048]					
Bits	Name	Access	Reset	Description					
31:12	-	R/W	0	Reserved for Future Use Do not modify this field.					
11 iccd		R/W	0	ICC Clock Disable Setting this field disables the APB clock to this perip the peripheral power consumption is reduced, and the clock to the peripheral does not affect the perip	the peripheral is disabled. Disabling				
				Write 1 to disable the icc clock disable.					
				0: ICC Clock Enabled					
				1: ICC Clock Disabled.					
		R/W		Flash Controller Disable Setting this field disables the APB clock to this perip the peripheral power consumption is reduced, and the clock to the peripheral does not affect the perip	the peripheral is disabled. Disabling				
				Write 1 to disable the clock to the Flash Controller.					
3	flcd		0	0: Flash Controller Clock Enabled 1: Flash Controller Clock Disabled. Note: Disabling the clock to the Flash Controller prevents code fetches from the flas Care should be taken to ensure code execution is performed from RAM while the Fl Controller peripheral clock is disabled.					
2:0		R/W	0	Reserved for Future Use					
2.0	2:0 -		0	Do not modify this field.					

Table 4-23: Event Enable Register

Event Er	Event Enable Register			GCR_EVTEN [0x004C]			
Bits	Name	Access	Rese	t Description			
31:2	-	RO	-	Reserved for Future Use Do not modify this field.			
1	rx_evt	R/W	0	RX Event Enabled Set this field to 1 to enable generation of an RXEV event to wake the CPU from a Wait for Event (WFE) sleep state. 0: RX Event is disable. 1: RX Event is enabled.			
0	dmaevent	R/W	0	DMA CTZ Event Wake-Up Enable When set, when a DMA block transfer is completed and the DMA counter <i>DMAn_CNT.cnt</i> = 0, a CTZ DMA event occurs which generates an RXEV to wake-up the device from a low power mode entered with a WFE instruction.			

Table 4-24: Revision Register

Revision Register			GCR_REV		[0x0050]
Bits	Name	Access	Reset	Description	
31:16	-	RO	-	Reserved for Future Use Do not modify this field.	
15:0	revision	RO	N/A	Maxim Integrated Chip Revision This field reads the chip revision id (A1), ascii encoded. Revision 'A1': 0x4131	

Table 4-25: System Status Interrupt Enable Register

System Status Interrupt Enable				GCR_SYS_IE	[0x0054]		
Bits	Name	Access	Reset	Description			
31:1	-	RO	-	Reserved for Future Use Do not modify this field.			
0	iceulie	R/W	0	Arm ICE Unlocked Interrupt Enable Set this bit to enable a PWRSEQ IRQ if the Arm ICE is unlocked. 0: Interrupt disabled 1: Interrupt enabled			

4.12 System Initialization Registers

The SIR base peripheral address is 0x4000 0400. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Offset	Register Name	Access	Description
[0x0000]	SIR_STAT	RO	System Initialization Status Register
[0x0004]	SIR_ADDR_ER	RO	System Initialization Address Error Register

Table 4-26: System Initialization Registers, Offsets and Descriptions

4.12.1 System Initialization Register Details

Table 4-27: Function Control Register 0

System Initialization Status Register			r	SIR_STAT	[0x0000]		
Bits	Name	Access	Reset	Reset Description			
31:2	-	RO	-	Reserved for Future Use Do not modify this field.			
				Configuration Error Flag This field is set by hardware during reset if an e detected.	rror in the device configuration is		
1 cfg_er	cfg_err	RO	See Description	0: Configuration valid. 1: Configuration invalid. Note: If this field reads 1 a device error has occu Integrated technical support for additional assis contained in SIR_ADDR_ER.addr.			
0	cfg_valid	RO	See Description	Configuration Valid Flag This field is set to 1 by hardware during reset if the device configuration is valid. 0: Configuration Invalid 1: Configuration Valid Note: If this field reads 0 the device configuration is invalid and a device error has occurred. Please contact Maxim Integrated technical support for additional assistance.			

Table 4-28: System Initialization Address Error Register

System Initialization Status Register				SIR_ADDR_ER	[0x0000]	
Bits	Name	Access	Reset	eset Description		
31:0	addr	RO	Ŭ	Configuration Error Address If the SIR_STAT.cfg_err field is set to 1, the valu configuration failure.	e in this register is the address of the	

4.13 Function Control Registers

The FCR base peripheral address is 0x4000 0800. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Table 4-29: Function Control Registers, Offsets and Descriptions

Offset	Register Name	Access	Description
[0x0000]	FCR_REG0	R/W	Function Control Register 0

4.13.1 Function Control Register Details

Table 4-30: Function Control Register 0

Function			FCR_REG0	[0x0000]	
Bits	Name	Access	Reset	Description	
31:24	-	RO	0	Reserved for Future Use Do not modify this field.	

Function	Function Control Register 0			FCR_REG0	[0x0000]
Bits	Name	Access	Reset	Description	
23	i2c1_scl_filter_en	R/W	0	I2C1 SCL Filter Enable 0: Filter disabled 1: Filter enabled	
22	i2c1_sda_filter_en	R/W	0	I2C1 SDA Filter Enable 0: Filter disabled 1: Filter enabled	
21	i2c0_scl_filter_en	R/W	0	I2C0 SCL Filter Enable 0: Filter disabled 1: Filter enabled	
20	i2c0_sda_filter_en	R/W	0	I2C0 SDA Filter Enable 0: Filter disabled 1: Filter enabled	
19:0	-	R/W	-	Reserved for Future Use Do not modify this field.	

4.14 **Power Supply Monitoring**

MAX32660 has a power monitor that monitors the external supply voltages during operation. The following power supplies are monitored:

- V_{CORE} (VCORE) Supply Voltage, CPU Core
- V_{DD} (VDD) Supply Voltage

Each of these supplies has a dedicated power monitor setting in the Power Sequencer Low Power Voltage Control Register, *PWRSEQ_LP_CTRL*. When the corresponding power monitor is enabled, the input voltage pin is constantly monitored. If the voltage drops below the trigger threshold, all registers and peripherals in that power domain are reset. This improves reliability and safety by guarding against a low voltage condition corrupting the contents of the registers and the device state. Disabling a power monitor risks data corruption of internal registers and corruption of the device state should the input voltage drop below the safe minimum value.

V_{CORE} has a power fail monitor. When enabled, if the power supply drops below the power fail reset voltage the entire device goes into a Power-On Reset.

Refer to the MAX32660 datasheet for the trigger threshold value and power fail reset voltage. When the power supply monitor is tripped, a Power Fail Warning Interrupt is triggered.

4.15 **Power Sequencer Registers**

The PWRSEQ base peripheral address is 0x4000 6800. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Offset	Register Name	Access	Reset	Description
[0x0000]	PWRSEQ_LP_CTRL	R/W	POR Low Power Voltage Control Register	
[0x0004]	PWRSEQ_LP_WAKEFL	R/W	POR	Low Power Mode Wakeup Flags for GPIO0
[0x0008]	PWRSEQ_LPWK_EN	R/W	POR	GPIO0 Wakeup Enable
[0x0040]	PWRSEQ_LPMEMSD	R/W	POR	RAM Shut Down Control

Table 4-31: Power Sequencer Low Power Control Registers, Offsets, Access and Descriptions

4.15.1 Power Sequencer Register Details

Table 4-32: Low Power Voltage Control Register

Low Pow	Low Power Voltage Control Register			PWRSEQ_LP_CTRL	[0x0000]	
Bits	Name	Access	Reset	Description		
31:26	-	R/W	0	Reserved for Future Use Do not modify this field.		
25	vddio_por_dis	R/W	0	V _{DDIO} Power-On-Reset Monitor Disable Set this field to 1 to disable the V _{DDIO} POR monitor. 0: V _{DDIO} POR Enabled 1: V _{DDIO} POR Disabled		
24:21	-	R/W	0	Reserved for Future Use Do not modify this field.		
20	vcore_svm_dis	R/W	0	V _{CORE} Supply Voltage Monitor Disable Set this field to 1 to disable the V _{CORE} SV 0: V _{CORE} SVM Enabled	/M.	
19:17	-	R/W	0	1: V _{CORE} SVM Disabled Reserved for Future Use Do not modify this field		
16	ldo_dis	R/W	See Description	Do not modify this field. LDO Disable This field initializes to 1 on a Power-On Reset until the hardware determines if an external power source is connected to the V _{CORE} pin. If no power supply is connected, this bit is set to 0 by the hardware. If a power supply is connected to V _{CORE} , the bit remains set to 1. Set this field to 1 to manually disable the LDO. 0: LDO Enabled. 1: LDO Disabled. Default after a POR.		
15:13	-	R/W	0	Reserved for Future Use Do not modify this field.		
12	vcore_por_dis	R/W	1	V _{CORE} POR Disable for DEEPSLEEP and BACKUP Mode Setting this bit to 1 blocks the Power-On-Reset signal to the core when the device is in DEEPSLEEP and BACKUP mode operation. Disconnecting the POR signal from the core during DEEPSLEEP and BACKUP modes prevents the core from detecting a POR event while the device is in DEEPSLEEP or BACKUP mode. 0: POR signal is connected to the core during DEEPSLEEP and BACKUP mode.		
11	bg_off	R/W	1	1: POR signal is not connected to the core during DEEPSLEEP and BACKUP mode. Band Gap Disable for DEEPSLEEP and BACKUP Mode Setting this field to 1 powers off the Bandgap during DEEPSLEEP and BACKUP mode. 0: System Bandgap (SVM) is on in DEEPSLEEP and BACKUP modes		
10	fast_wk_en	R/W	0	1: System Bandgap (SVM) is off in DEEPSLEEP and BACKUP modes. Fast Wakeup Enable for DEEPSLEEP Mode Set to 1 to enable fast wakeup from DEEPSLEEP mode. When enabled, the system exits DEEPSLEEP mode faster by: Bypassing the 8kHz RO warmup Reducing the warmup time for the High-Frequency Internal Oscillator. Reducing the warmup time for the LDO. O: Fast Wakeup Mode Disabled 1: Fast Wakeup Mode Enabled		

Low Pov	ver Voltage Control F	Register		PWRSEQ_LP_CTRL	[0x0000]
Bits	Name	Access	Reset	Description	
9	-	R/W	0	Reserved for Future Use Do not modify this field.	
8	retreg_en	R/W	1	RAM Retention Regulator Enable for E This field selects the source used to ret mode operation. Setting this field to 0 during BACKUP mode and disables the 0: RAM retention regulator disabled, of the internal SRAM as configured PWRSEQ_LP_CTRL.ramret_sel[3:0] 1: RAM retention regulator enabled. configured with the PWRSEQ_LP_C	tain the RAM contents during BACKUP sets the V_{DD} supply for RAM retention RAM retention regulator. the V_{DD} supply is used to retain the state d by the fields. RAM retention in BACKUP mode is
7	-	R/W	0	Reserved for Future Use Do not modify this field.	
6	vcore_det_bypass	R/W	0	Bypass V _{CORE} External Supply Detection Set this field to 1 if the system runs fro connected to an external supply. Bypas external supply on V _{CORE} enables a fast O: V _{CORE} External Supply Detection En 1: V _{CORE} External Supply Detection Dis	m a single supply only and V _{CORE} is not ssing the hardware detection of an er wakeup time. nabled.
5-4	ovr	R/W	2	Output Voltage Range for Internal Reg Set these bits to control the output vol selection of the internal core operating	gulator tage of the internal regulator allowing g voltage and the frequency of the internal Power-On-Reset, this field defaults to 1.1V MHz. nal supply voltage, this field should be
3	ramret_sel3	R/W	0	System RAM 3 Data Retention Enable Set this field to 1 to enable Data Retent 0x2001 0000 to 0x2001 7FFF. 0: Data retention for System RAM 3 a	for BACKUP Mode tion for System RAM 3, address range of address space disabled in BACKUP mode. address space enabled in BACKUP mode.
2	ramret_sel2	R/W	0	0x2000 8000 to 0x2000 FFFF. 0: Data retention for System RAM 2 a	for BACKUP Mode tion for System RAM 2, address range of address space disabled in BACKUP mode. address space enabled in BACKUP mode.
1	ramret_sel1	R/W	0	System RAM 1 Data Retention EnableSet this field to 1 to enable Data Retent0x2000 4000 to 0x2000 7FFF.0: Data retention for System RAM 1 at	

Low Pow	ver Voltage Control F	Register		PWRSEQ_LP_CTRL	[0x0000]
Bits	Name	Access	Reset	Description	
0	ramret_sel0	R/W	0	System RAM 0 Data Retention Enable Set this field to 1 to enable Data Retent 0x2000 0000 to 0x2000 3FFF.	for BACKUP Mode ion for System RAM 0, address range of
					ddress space disabled in <i>BACKUP</i> mode. ddress space enabled in <i>BACKUP</i> mode.

Table 4-33: Low Power	Mode	Wakeun	Flaas	for GPIOD
	would	wukeup	riugs	

Low Pow	ver Mode GPIO V	Nakeup Flags	Register	PWRSEQ_LP_WAKEFL	[0x0004]
Bits	Name	Access	Reset	Description	
31:14	-	R/W1C	0	Reserved for Future Use Do not modify this field.	
				GPIO Pin Wakeup Status Flag When a GPIO pin transitions from low-to-high this field is set.	or high-to-low, the corresponding bit in
13:0	wakest	R/W1C	0	If the corresponding interrupt enable bit is set GCR_PM.gpiowk_en bit is set to 1, a PWRSEQ from all low power modes to ACTIVE mode.	0
				Note: To enable the device to wake up from a transition, first set the GCR_PM GPIO wakeup (GCR_PM.gpiowk_en = 1).	

Table 4-34: Low Power Wakeup Enable for GPIO0 Register

Low Powe	er Mode Wakeu	p Enable for	GPIO0	PWRSEQ_LPWK_EN	[0x0008]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0	wakeen	R/W	0	GPIO Pin Wakeup Interrupt Enable Write 1 to a bit to enable the corresponding GP wake up the device from any low power mode f GCR_PM.gpiowk_en bit to 1 to enable GPIO wa A wake up occurs on any low-to-high or high-to GPIO0 pin. Note: To enable the device to wake up from a lo first set the global GPIO wakeup enable field, (G	to ACTIVE mode. Set the ke up events. -low transition on the corresponding ow power mode on a GPIO pin transition,

Table 4-35: RAM Shut Down Register

Low-Pow	er Memory Shu	tdown Regi	ster	PWRSEQ_LPMEMSD	[0x0040]
Bits	Name	Access	Reset	Description	
31:4	-	RO	-	Reserved for Future Use Do not modify this field.	
3	sram3_off	R/W	0	System RAM 3 (0x2001 0000 - 0x2001 7FFF) Sh Write 1 to shut down power to System RAM 3 r 0: System RAM 3 Powered On (Enabled) 1: System RAM 3 Powered Off (Disabled)	

Low-Pow	er Memory Shu	tdown Regi	ster	PWRSEQ_LPMEMSD	[0x0040]
Bits	Name	Access	Reset	Description	
2	sram2_off	R/W	0	System RAM 2 (0x2000 7FFF - 0x2000 FFFF) Shi Write 1 to shut down power to System RAM 2 r 0: System RAM 2 Powered On (Enabled) 1: System RAM 2 Powered Off (Disabled)	
1	sram1_off	R/W	0	System RAM 1 (0x2000 3FFF - 0x2000 7FFF) Sh Write 1 to shut down power to System RAM 1 r 0: System RAM 1 Powered On (Enabled) 1: System RAM 1 Powered Off (Disabled)	
0	sram0_off	R/W	0	System RAM 0 (0x2000 0000 – 0x2000 3FFF) SH Write 1 to shut down power to System RAM 0 r 0: System RAM 0 Powered On (Enabled) 1: System RAM 0 Powered Off (Disabled)	

5 Flash Controller

The MAX32660's Flash Controller is a peripheral that manages read, write, and erase accesses to the internal flash.

5.1.1 Features

- Up to 256KB total internal flash memory
 - 32 pages
 - 8,192 bytes per page
 - 2,048 words by 128 bits per page
- 128-bit data reads
- 32-bit or 128-bit write support
- Page erase and mass erase support
- Write Protection

5.2 Overview

The MAX32660 contains 256KB of internal flash memory for storing user application and data. The internal flash memory is programmable via the JTAG debug interface (in-system) or directly with user application code (in-application).

The flash is organized as an array of pages. Each page is 8,192 bytes per page. *Table 5-1, below,* shows the start address and end address for the internal flash memory. The internal flash memory is mapped with a start address of 0x0000 0000 and an end address of 0x0003 FFFF for a total of 256KB.

Page Number	Size in Bytes	Start Address	End Address
1	8,192	0x0000 0000	0x0000 1FFF
2	8,192	0x0000 2000	0x0000 3FFF
3	8,192	0x0000 4000	0x0000 5FFF
4	8,192	0x0000 6000	0x0000 7FFF
5	8,192	0x0000 8000	0x0000 9FFF
8	8,192	0x0000 E000	0x0000 FFFF
9	8,192	0x0001 0000	0x0001 1FFF
31	8,192	0x0003 C000	0x0003 DFFF
32	8,192	0x0003 E000	0x0003 FFFF

Table 5-1: Internal Flash Memory Organization

5.3 Usage

The Flash Controller manages write and erase operations for internal flash memory and provides a lock mechanism to prevent unintentional writes to the internal flash. In-application and in-system programming, page erase and mass erase operations are supported.

5.3.1 Clock Configuration

The Flash Controller requires a 1MHz peripheral clock for operation. The input clock to the Flash Controller block is the system clock, f_{SYSCLK} . Use the Flash Controller clock divisor to generate $f_{FLC_CLK} = 1MHz$, as shown in Equation 5-1,

below. For the 96MHz Relaxation Oscillator as the system clock, the *FLC_CLKDIV.clkdiv* field should be set to 96 (0x60). If another clock source is set as the system clock, this field must be adjusted to meet the target 1MHz for f_{FLC_CLK} .

Equation 5-1: Flash Controller Clock Frequency

$$f_{FLC_CLK} = \frac{f_{SYSCLK}}{FLC_CLKDIV.clkdiv} = 1MHz$$

5.3.2 Lock Protection

The Flash Controller provides a locking mechanism to prevent accidental writes and erases. Each write or erase requires the *FLC_CTRL.unlock* field be set to 0x2 prior to starting the operation. Writing any other value to the *FLC_CTRL.unlock* field results in the flash remaining locked.

Note: If a write, page erase or mass erase operation is started and the unlock code was not set to 0x2, the Flash Controller hardware sets the access fail flag, FLC_INTR.access_fail, to indicate an access violation occurred.

5.3.3 Flash Write Width

The Flash Controller supports write widths of either 32-bits or 128-bits. Selection of the flash write width is controlled with the *FLC_CTRL.width* field and defaults to 128-bit width on all forms of reset. Setting *FLC_CTRL.width* to 1 selects 32-bit write widths.

In 128-bit width mode, the target address bits FLC_ADDR [3:0] are ignored resulting in 128-bit alignment. In 32-bit width mode, the target address bits FLC_ADDR [1:0] are ignored for 32-bit address alignment. If the desired target address is not 128-bit aligned (FLC_ADDR [3:2] \neq 0), 32-bit width mode is required.

			FLC_ADDR[31:0]																													
Bit Number	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
32-bit Write	0	0	0	0	0	0	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	0	0
128-bit Write	0	0	0	0	0	0	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	0	0	0	0

Table 5-2: Valid Addresses for 32-bit and 128-bit Internal Flash Writes

5.3.4 Flash Write

Perform the following steps to write to the internal flash memory:

- 1. If desired, enable Flash Controller interrupts by setting the *FLC_INTR.access_fail_ie* and *FLC_INTR.done_ie* bits.
- 2. Set the write field, *FLC_CTRL*.width, as described in *Flash Write Width*.
- 3. Set the *FLC_ADDR* register to a valid target address. Reference *Table 5-2*.
- 4. Set the data register or registers.
- 5. For 32-bit write width, set *FLC_DATA0* to the data to write.
- 6. For 128-bit write width, set *FLC_DATA3*, *FLC_DATA2*, *FLC_DATA1*, and *FLC_DATA0* to the data to write. *FLC_DATA3* is the most significant word and *FLC_DATA0* is the least significant word.
- 7. Set *FLC_CTRL.unlock* to 0x2 to unlock the internal flash.
- 8. Read the *FLC_CTRL.busy* bit until it returns 0.
- 9. Start the flash write, set *FLC_CTRL*.write to 1 and this field is automatically cleared by the Flash Controller when the write operation is finished.
- 10. *FLC_INTR.done* is set by hardware when the write completes and if an error occurred, the *FLC_INTR.access_fail* flag is set. These bits generate a flash IRQ if the interrupt enable bits are set.

5.3.5 Page Erase

Perform the following to erase a page of internal flash memory:

- 1. If desired, enable Flash Controller interrupts by setting the *FLC_INTR.access_fail_ie* and *FLC_INTR.done_ie* bits.
- Set the FLC_ADDR register to a page address to erase. FLC_ADDR[12:0] are ignored by the Flash Controller to
 ensure the address is page aligned. Refer to Table 5-3 for the valid page aligned addresses for the internal flash
 memory.
- 3. Set *FLC_CTRL.unlock* to 0x2 to unlock the internal flash.
- 4. Read the *FLC_CTRL.busy* bit until it returns 0.
- 5. Set *FLC CTRL.erase code* to 0x55 for page erase.
- 6. Set *FLC_CTRL.page_erase* to 1 to start the page erase operation.
- 7. The *FLC_CTRL.busy* bit is set by the Flash Controller while the page erase is in progress and the *FLC_CTRL.page_erase* and *FLC_CTRL.busy* are cleared by the Flash Controller when the page erase is complete.
- 8. *FLC_INTR.done* is set by hardware when the page erase completes and if an error occurred, the *FLC_INTR.access_fail* flag is set. These bits generate a flash IRQ if the interrupt enable bits are set.

			FLC_ADDR[31:0]																													
Bit Number	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Page Aligned Address	0	0	0	0	0	0	0	0	0	0	0	0	0	0	x	x	x	x	x	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 5-3: Page Boundary Address Range for Page Erase Operations

5.3.6 Mass Erase

Mass erase clears the internal flash memory. This operation requires the JTAG debug port to be enabled to perform the operation. If the JTAG debug port is not enabled a mass erase operation cannot be performed. Perform the following steps to mass erase the internal flash:

- 1. Set *FLC_CTRL.unlock* to 0x2 to unlock the internal flash.
- 2. Read the *FLC_CTRL.busy* bit until it returns 0.
- 3. Set FLC_CTRL.erase_code to 0xAA for mass erase.
- 4. Set *FLC_CTRL.mass_erase* to 1 to start the mass erase operation.
- 5. The *FLC_CTRL.busy* bit is set by the Flash Controller while the mass erase is in progress and the *FLC_CTRL.mass_erase* and *FLC_CTRL.busy* are cleared by the Flash Controller when the mass erase is complete.
- 6. *FLC_INTR.done* is set by the Flash Controller when the mass erase completes. If an error occurred, the *FLC_INTR.access_fail* flag is set. These bits generate a Flash Controller IRQ if the interrupt enable bits are set.

Note: Mass erase requires the JTAG debug port to be enabled, if the JTAG debug port is disabled on the device an access fail error is generated (FLC_INTR.access_fail = 1).

5.4 Flash Controller Registers

The FLC base peripheral address is 0x4002 9000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Offset	Register Name	Access	Description
[0x0000]	FLC_ADDR	R/W	Flash Controller Address Pointer Register
[0x0004]	FLC_CLKDIV	R/W	Flash Controller Clock Divisor Register
[0x0008]	FLC_CTRL	R/W	Flash Controller Control Register
[0x0024]	FLC_INTR	R/W1C	Flash Controller Interrupt Register
[0x0030]	FLC_DATA0	R/W	Flash Controller Data Register 0
[0x0034]	FLC_DATA1	R/W	Flash Controller Data Register 1
[0x0038]	FLC_DATA2	R/W	Flash Controller Data Register 2
[0x003C]	FLC_DATA3	R/W	Flash Controller Data Register 3

Table 5-4: Flash Controller Registers, Offsets, Access and Descriptions

Table 5-3. Flash Controller Address Pointer Register

Flash Ad	dress Register			FLC_ADDR	[0x00]
Bits	Name	Access	Reset	Description	
31:0	addr	R/W	0	Flash Address This field contains the target address for memory address is required for all write address 0x00000000.	

Table 5-4. Flash Controller Clock Divisor Register

Flash Controller Clock Divisor Register			er	FLC_CLKDIV	[0x04]
Bits	Name	Access	Reset	Description	
31:8	-	RO	-	Reserved for Future Use Do not modify this field.	

Flash Controller Clock Divisor Register		er	FLC_CLKDIV	[0x04]	
Bits	Name	Access	Reset	Description	
7:0	clkdiv	R/W	0x60	clock, f_{FLC_CLK} . The FLC peripheral clock m	n this field to generate the FLC peripheral ust equal 1MHz. The default on all forms of MHz. If the OVR is changed, this field must be D oscillator to achieve $f_{FLC_{CLK}} = 1$ MHz.

Table 5-5. Flash Controller Control Register

Flash Controller Control Register				FLC_CTRL [0x08]		
Bits	Name	Access	Reset	Description		
31:28	unlock_code	R/W	0	Flash Unlock Write the unlock code, 0x2, prior to any f flash. Writing any other value to this field 0x2: flash unlock code	lash write or erase operation to unlock the l locks the internal flash.	
27:26	-	RO	-	Reserved for Future Use Do not modify this field.		
25	lve	R/W	1	Low Voltage Enable Set this field to 1 to enable low voltage operation for the flash memory. Refer to section 4.1 Core Operating Voltage Range Selection for detailed usage information on this setting. 0: Low voltage operation disabled (Default). 1: Low voltage operation enabled. Note: The PWRSEQ_LP_CTRL.ovr field must be set to 0b00 prior to setting this field to		
				1.		
24	busy	RO	0	Flash Busy Flag When this field is set, writes to all flash registers are ignored except for the FLC_INTR register. 0: flash idle 1: flash busy Note: If the Flash Controller is busy (FLC_CTRL.busy = 1), reads, writes and erase		
23:16	-	RO	0	Reserved for Future Use Do not modify this field.	an access failure (FLC_INTR.access_fail = 1).	
15:8	erase_code	R/W	0	Erase Code Prior to an erase operation this field must be set to 0x55 for a page erase or 0xAA for a mass erase. The flash must be unlocked prior to setting the erase code. This field is automatically cleared after the erase operation is complete. 0x00: Erase disabled. 0x55: Page erase code. 0xAA: Enable mass erase via the JTAG debug port.		
7:5	-	R/W	0	Reserved for Future Use Do not modify this field.		
4	width	R/W	0	Data Width Select This field sets the data width of a write to the flash page. The Flash Controller supports either 32-bit wide writes or 128-bit wide writes. 0: 128-bit transactions (FLC_DATA3 - FLC_DATA0) 1: 32-bit transactions (FLC_DATA0 only)		

Flash Controller Control Register			FLC_CTRL	[0x08]		
Bits	Name	Access	Reset	Description		
3	-	R/W	0	Reserved for Future Use Do not modify this field.		
				Page Erase Write a 1 to this field to initiate a page er flash must be unlocked prior to attemptin details.	rase at the address in <i>FLC_ADDR.addr</i> . The ng a page erase, see <i>FLC_CTRL.unlock</i> for	
2	page_erase	R/W10	0	The Flash Controller hardware clears this	bit when a page erase operation is complete.	
	1.0.2			 0: No page erase operation in process of 1: Write a 1 to initiate a page erase. If t progress. 	or page erase is complete. his field reads 1, a page erase operation is in	
				Note: This field is protected and cannot b	e set to 0 by application code.	
		erase R/W1O			rase of the internal flash memory. The flash nass erase, see <i>FLC_CTRL.unlock</i> for details.	
1	mass_erase		0	The Flash Controller hardware clears this completes.	bit when the mass erase operation	
				0: No operation 1: Initiate mass erase		
				Note: This field is protected and cannot b	e set to 0 by application code.	
		R/W10	0	Write If this field reads 0, no write operation is operation, set this bit to 1 and the Flash (FLC_ADDR register.	pending for the flash. To initiate a write Controller will write to the address set in the	
0	write			0: No write operation in process or writ1: Write 1 to initiate a write operation.progress.	te operation complete. If this field reads 1, a write operation is in	
				Note: This field is protected and cannot b	e set to 0 by application code.	

Table 5-5: Flash Controller Interrupt Register

Flash Co	Flash Controller Interrupt Register			FLC_INTR [0x24]	
Bits	Name	Access	Rese	Description	
31:10	-	R/W	0	Reserved for Future Use Do not modify this field.	
9	access_fail_ie	R/W 0		Flash Access Fail Interrupt Enable Set this bit to 1 to enable interrupts on flash access failures. 0: Disabled	
				1: Enabled	
8	done ie	eie R/W 0		Flash Operation Complete Interrupt Enable Set this bit to 1 to enable interrupts on flash oper	ations complete.
0	a uone_ie		0	0: Disabled 1: Enabled	
7:2	-	RO	0	Reserved for Future Use Do not modify this field.	

Flash Controller Interrupt Register				FLC_INTR [0x24]	
Bits	Name	Access	Reset	Description	
1	access_fail	R/W0C	0	 Flash Access Fail Interrupt Flag This bit is set when an attempt is made to write to the flash while the flash is busy or locked. Only hardware can set this bit to 1. Writing a 1 to this bit has no effect. This bit is cleared by writing a 0. 0: No access failure has occurred. 1: Access failure occurred. 	
0	done	R/W0C	0	Flash Operation Complete Interrupt Flag This flag is automatically set by hardware after a flash write or erase operation completes. 0: Operation not complete or not in process. 1: Flash operation complete.	

Table 5-6: Flash Controller Data Register 0

Flash Co	Flash Controller Data Register 0			FLC_DATA0 [0x30]	
Bits	Name	Access	Reset	Description	
31:0	data0	R/W	0	Flash Data 0 Flash data for bits 31:0.	

Table 5-7: Flash Controller Data Register 1

Flash Co	Flash Controller Data Register 1			FLC_DATA1 [0x34]	
Bits	Name	Access	Reset	et Description	
31:0	data1	R/W	0	Flash Data 1 Flash data for bits 63:32	

Table 5-8: Flash Controller Data Register 2

Flash Co	Flash Controller Data Register 2			FLC_DATA2 [0x38]	
Bits	Name	Access	Reset	Description	
31:0	data2	R/W	0	Flash Data 2 Flash data for bits 95:64	

Table 5-9: Flash Controller Data Register 3

Flash Co	Flash Controller Data Register 3			FLC_DATA3 [0x3C]	
Bits	Name	Access	Reset	Description	
31:0	data3	R/W	0	Flash Data 3 Flash data for bits 127:96.	

6 General-Purpose I/O and Alternate Function Pins

The general-purpose I/O (GPIO) pins share both a firmware-controlled I/O mode and up to three peripheral alternate functions. Each pin is individually enabled for GPIO or peripheral alternate function 1 (AF1), alternate function 2 (AF2) or alternate function 3 (AF3). Configuring a pin for an alternate function supersedes its use as a firmware-controlled GPIO, however the input data is always readable via the GPIO input register if the GPIO input is enabled.

Multiplexing between the alternate functions and the I/O function is often static in an application; set at initialization and dedicated as either an alternate function or GPIO. If needed, dynamic multiplexing between AF1, AF2, AF3 and I/O mode is supported. Dynamic multiplexing must be managed by the application firmware and the application must manage the AFs and GPIO to ensure each is set up properly when switching from a peripheral to the I/O function. Refer to the MAX32660 Data Sheet *Electrical Characteristics Table*, <u>http://www.maximintegrated.com</u>, for information on the GPIO pin behavior based on the configurations described in this document.

In GPIO mode each I/O pin supports interrupt function that can be independently enabled, and configured as a level triggered interrupt, a rising edge, falling edge or both rising and falling edge interrupt. All GPIO share the same interrupt vector. No all GPIO are available on all packages.

The GPIO are all bidirectional digital I/O that include:

- Input Mode Features
 - Standard CMOS or Schmitt Hysteresis
 - Input data from the input data register (GPIO0_IN) or to a peripheral (alternate function)
 - Input state selectable for floating (tri-state) or weak pull-up/pull-down
- Output Mode Features
 - Output data from the output data register (*GPIO0_OUT*) in GPIO mode
 - Output data driven from peripheral if an Alternate Function is selected
 - Standard GPIO
 - Four drive strength modes
 - Slow or Fast slew rate selection
 - GPIO with I²C as an Alternate Function
 - Two drive strength modes
- Selectable weak pull-up resistor, weak pull-down resistor or tri-state mode for Standard GPIO pins
- Selectable weak pull-down or tri-state mode for GPIO pins with I²C as an Alternate Function
- Wake from low power modes on rising edge, falling edge or both on the I/O pins

6.1 General Description

The MAX32660 provides up to 14 GPIO pins in the 20-TQFN package and up to 10 GPIO pins in the 16-WLP. Each GPIO pin maps to a GPIO port. For the MAX32660 all GPIO pins are grouped in GPIO port 0 (GPIO0). *Table 6-1* and *Table 6-2*, below, show the GPIO and the assigned AF1, AF2 and AF3 for the 16-WLP and 20-TQFN packages of the MAX32660.

A dedicated interrupt vector is assigned for GPIO port 0 and is detailed in the section *Interrupt*.

Table 6 1. CDIO Dart	Din Nama and	l Altornato Eunction	Matrix 16 M/ID
Table 6-1: GPIO Port,	PIII NUITIE UTIC	Ι ΑΠΕΓΠΟΓΕ ΓΟΠΕΠΟΠ	IVIULIIX. 10-VVLP

	16-WLP										
GPIO Port[bit]	GPIO	Alternate Function 1	Alternate Function 2	Alternate Function 3							
GPIO0[0]	P0.0	SWDIO ¹	SPI1_MISO (I2S_SDI) ²	UART1_TX1							
GPIO0[1]	P0.1	SWDCLK ¹	SPI1_MOSI (I2S_SDO) ²	UART1_RX ¹							
GPIO0[2] ³	P0.2	I2C1_SCL	SPI1_SCK (I2S_BCLK) ²	32KCAL							
GPIO0[3] ³	P0.3	I2C1_SDA	SPI1_SSO (I2S_LRCLK) ²	TMR0							
GPIO0[4]	P0.4	SPI0_MISO	UART0_TX	-							
GPIO0[5]	P0.5	SPI0_MOSI	UARTO_RX	-							
GPIO0[6]	P0.6	SPI0_SCK	UARTO_CTS	UART1_TX1							
GPIO0[7]	P0.7	SPI0_SS0	UARTO_RTS	UART1_RX1							
GPIO0[8] ³	P0.8	I2C0_SCL	SWDIO ¹	-							
GPIO0[9] ³	P0.9	I2C0_SDA	SWDCLK ¹	-							

Table 6-2: GPIO Port, Pin Name and Alternate Function Matrix, 20-TQFN

	20-TQFN									
GPIO Port[bit]	GPIO	Alternate Function 1	Alternate Function 2	Alternate Function 3						
GPIO0[0]	P0.0	SWDIO ^{1,}	SPI1_MISO (I2S_SDI) ^{1,2}	UART1_TX1						
GPIO0[1]	P0.1	SWDCLK ¹	SPI1_MOSI (I2S_SDO) ^{1,2}	UART1_RX ¹						
GPIO0[2]3	P0.2	I2C1_SCL	SPI1_SCK (I2S_BCLK) ^{1,2}	32KCAL						
GPIO0[3]3	P0.3	I2C1_SDA	SPI1_SSO (I2S_LRCLK) ^{1,2}	TMR0						
GPIO0[4]	P0.4	SPI0_MISO	UART0_TX	-						
GPIO0[5]	P0.5	SPI0_MOSI	UART0_RX	-						
GPIO0[6]	P0.6	SPI0_SCK	UART0_CTS	UART1_TX1						
GPIO0[7]	P0.7	SPI0_SS0	UARTO_RTS	UART1_RX ¹						
GPIO0[8] ³	P0.8	I2C0_SCL	SWDIO ¹	-						
GPIO0[9]3	P0.9	I2C0_SDA	SWDCLK ¹	-						
GPIO0[10]	P0.10	SPI1_MISO (I2S_SDI) ^{1,2}	UART1_TX1							
GPIO0[11]	P0.11	SPI1_MOSI_(I2S_SDO) ^{1,2}	UART1_RX ¹							
GPIO0[12]	P0.12	SPI1_SCK (I2S_BCLK) ^{1,2}	UART1_CTS							
GPIO0[13]	P0.13	SPI1_SSO (I2S_LRCLK) ^{1,2}	UART1_RTS							

6.2 **Power-On-Reset Configuration**

During a power-on-reset event all I/O default to GPIO mode as inputs floating except the SWD JTAG pins P0.0 and P0.1. The SWD JTAG pins always default to Alternate Function 1 enabled and the SWD JTAG is enabled.

¹ This alternate function signal is mappable to more than one GPIO pin but there is only one instance of this peripheral in the MAX32660.

² I2S_BCLK, I2S_LRCLK, I2S_SDK, I2S_SDO when the I2S function is enabled.

³ GPIO with I2C as an Alternate Function do not support slew rate control and only support two output drive strength modes.

Following a POR event GPIO[2:13] are configured with the following default settings:

- GPIO mode enabled
 - GPIO0_AF0_SEL[pin] = 1
 - GPIO0_AF1_SEL[pin] = 0
- Pull-up/Pull-down disabled, I/O in Hi-Z mode
 GPIO0_PULL_EN[pin] = 0
- Output mode disabled
 - GPIOO OUT EN[pin] = 0
- Interrupt disabled
 - *GPIO0_INT_EN[pin]* = 0

Note: On parts without a SWD JTAG port, the SWD JTAG port is still available for boundary scan testing, however, the SWD JTAG port is hardware disabled. To use the SWD JTAG pins in I/O mode, set the desired GPIO pins for SWD alternate function and set the JTAG SWD disable field to 1 (GCR_SCON.swd_dis = 1).

6.2.1 I/O Mode and Alternate Function Selection

Each I/O pin supports standard GPIO mode or one of up to three Alternate Function modes. The alternate functions assigned to each I/O pin are shown in the pin description table for the specific package. See *Table 6-1* for the 16-WLP, and *Table 6-2* for the 20-TQFN.

6.2.2 Input mode configuration

Perform the following steps to configure a pin or pins for input mode:

- 1. Set the pin for I/O mode
 - a. *GPIOO_AFO_SEL[pin]* = 1
 - b. *GPIO0_AF1_SEL[pin]* = 0
- 2. Configure the pin for pull-up, pull-down, or high-impedance mode. Refer to *GPIO_PULL_SEL* register for pull-up and pull-down selection
- 3. GPIO pins with I²C as an alternate function (GPIO[9:8] and GPIO[3:2]) only support high-impedance mode or a weak pull-down resistor.
- 4. Set *GPIO0_PULL_EN[pin]* to 1 to enable the pull resistor or clear the bit to set the input to high impedance mode.
- 5. Read the input state of the pin using the *GPIOO_IN[pin]* field.

6.2.3 Output Mode Configuration

Perform the following steps to configure a pin for output mode:

- 1. Set the pin for I/O mode.
 - a. GPIOO_AFO_SEL[pin] = 1
 - b. *GPIOO_AF1_SEL[pin]* = 0
 - c. Enable the output buffer for the pin by setting *GPIO0_OUT_EN[pin]* to 1.
- 2. Set the output drive strength using the GPIO0_DS1_SEL [pin] and GPIO0_DS0_SEL[pin] bits.
 - a. Refer to the *GPIO Drive Strength* for configuration details and the modes supported.
 - b. Reference the MAX32660 datasheet for the electrical characteristics for the drive strength modes.
- 3. Set the output high or low using the *GPIO0_OUT[pin]* bit.

6.2.4 GPIO Drive Strength

Each I/O pin supports multiple selections for drive strength. Standard GPIO pins are configured for the supported modes using the *GPIO0_DS1_SEL* and *GPIO0_DS0_SEL* registers as shown in *Table 6-3, below*.

For GPIO with I²C as an Alternate Function, *Table 6-4* shows the drive strength setting options.

Drive Strength V _{DD} = 1.62V	Drive Strength V _{DD} = 3.63V	GPIO_DS1_SEL[pin]	GPIO_DS0_SEL[pin]
1mA	2mA	0	0
2mA	4mA	0	1
4mA	8mA	1	0
8mA	12mA	1	1

Table 6-3: Standard GPIO Drive Strength Selection

Table 6-4: GPIO with I²C Alternate Function Drive Strength Selection

Drive Strength V _{DD} = 1.62V	Drive Strength V _{DD} = 3.63V	GPIO_DS0_SEL[pin]
2mA	4mA	0
10mA	20mA	1

Note: The drive strength currents shown are targets only. Refer to the MAX32660 Data Sheet Electrical Characteristics table for details of the Vol_GPIO, VoH_GPIO, VoL_I2C and VOH_I2C parameters.

6.3 Alternate Function Configuration

Table 6-5, below, shows the alternate function selection matrix. Write the *GPIO0_AF0_SEL* and *GPIO0_AF1_SEL* fields as shown in the table to select the desired alternate function.

GPIO MODE	GPIO0_AF1_SEL[pin]	GPIO0_AF0_SEL[pin]
I/O	0	1
Alternate Function 1	0	0
Alternate Function 2	1	0
Alternate Function 3	1	1

Table 6-5: GPIO Mode and Alternate Function Selection

Note: Each Alternate Function for a given peripheral is independently selectable. Mixing functions assigned to AF1, AF2 or AF3 is supported if all of the peripheral's required functions are enabled.

6.4 Configuring GPIO (External) Interrupts

Each GPIO supports external interrupt events when the GPIO is configured for I/O mode and the input mode is enabled. If the GPIO is configured as a peripheral alternate function, the interrupts are peripheral controlled. GPIO interrupts can be

enabled for any number of GPIO on each GPIO port. The following procedure details the steps for enabling Active mode interrupt events for a GPIO pin:

- Disable interrupts by setting the GPIOO_INT_EN[pin] field to 0. This will prevent any new interrupts on the pin from triggering but will not clear previously triggered (pending) interrupts. The application can disable all interrupts for GPIO by writing 0 to GPIOO_INT_EN[13:0]. To maintain previously enabled interrupts, read the GPIOO_INT_EN register and save the value to memory prior to setting the register to 0.
- 2. Clear pending interrupts by writing 1 to the GPIO0_INT_FL[pin] bit.
- 3. Set *GPIO0_INT_MODE[pin]* to select either level (0) or edge triggered (1) interrupts.
 - a. For level triggered interrupts, the interrupt triggers on an input high or low.
 - i. *GPIOO_INT_POL[pin]* = 1: Input high triggers interrupt.
 - ii. *GPIOO_INT_POL[pin]* = 0: Input low triggers interrupt.
 - b. For edge triggered interrupts, the interrupt triggers on an edge event.
 - i. *GPIO0_INT_POL[pin]* = 0: Input rising edge triggers interrupt.
 - ii. *GPIO0_INT_POL[pin]* = 1: Input falling edge triggers interrupt.
 - c. Optionally set *GPIOO_INT_DUAL_EDGE[pin]* to 1 to trigger on both the rising and falling edges of the input signal.
- 4. Set *GPIO0_INT_EN[pin]* to 1 to enable the interrupt for the pin.

6.4.1 Interrupts

The GPIO pins generate interrupts if the pin is configured for I/O mode and the interrupt is enabled for the pin (*GPIOO_INT_EN[pin]* = 1). See *Table 6-5* for details on configuring a pin for I/O mode.

Table 6-6: GPIO Port Interrupt Vector Mapping

GPIO Interrupt Source	GPIO Interrupt Flag Register	Device Specific Interrupt Vector Number	GPIO Interrupt Vector	
GPIO0[13:0]	GPIO0_INT_FL	40	GPIO0_IRQHandler	

To handle GPIO interrupts in your interrupt vector handler, complete the following steps:

- 1. Read the *GPIOO_INT_FL* register to determine the GPIO pin that triggered the interrupt. The bit position that reads 1 indicates the pin that resulted in the interrupt event. If multiple bits are set, each of them indicates an interrupt event occurred on the respective pin.
- 2. Complete interrupt tasks associated with the interrupt source pin (application defined).
- 3. Clear the interrupt flag in the *GPIOO_INT_FL* register by writing 1 to the *GPIOO_INT_FL* bit positions that triggered the interrupt. This also clears and rearms the edge detectors for edge triggered interrupts.
- 4. Return from the interrupt vector handler.

6.4.2 Using GPIO for Wakeup from Low Power Modes

Low power modes support wakeup from external edge triggered interrupts on the GPIO ports. Level triggered interrupts are not supported for wakeup because the system clock must be active to detect levels.

For wake-up interrupts on the GPIO a single interrupt vector, GPIOWAKE_IRQHandler, is assigned for all the GPIO pins. When the wakeup event occurs, the application software must interrogate the *GPIOO_INT_FL* register to determine which external pin caused the wake-up event.

Table 6-7: GPIO Wakeup Interrupt Vector

GPIO Wake Interrupt	GPIO Wake Interrupt	Device Specific Interrupt	GPIO Wakeup
Source	Status Register	Vector Number	Interrupt Vector
GPIO0[0:13]	GPIO0_INT_FL	70	

Enable low power mode wakeup (*SLEEP*, *DEEPSLEEP* and *BACKUP*) from an external GPIO event by completing the following steps:

- 1. Set the polarity (rising or falling edge) by writing to the *GPIOO_INT_POL[pin]* field. The wakeup functionality uses rising and falling edge detection circuitry that operates asynchronously and does not require an active clock. Dualedge mode is also an option to accomplish edge detection wakeup.
- 2. Clear pending interrupt flags by writing 0xFF to the *GPIOO_INT_FL* register.
- 3. Activate the GPIO wakeup function by writing 1 to *GPIO0_WAKE_EN[pin]*.
- 4. Configure the power manager to use the GPIO as a wakeup source by writing to the appropriate Global Control register (GCR).

6.5 **GPIO Registers**

The GPIO0 base peripheral address is 0x4000 8000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Table 6-8: 0	GPIO Port (O Registers
--------------	-------------	-------------

Offset	Register Name	Access	Description
[0x0000]	GPIO0_AF0_SEL	R/W	I/O and Alternate Function 1 Select Register
[0x000C]	GPIO0_OUT_EN	R/W	Output Enable Register
[0x0018]	GPIO0_OUT	R/W	Output Register
[0x0024]	GPIO0_IN	RO	Input Register
[0x0028]	GPIO0_INT_MODE	R/W	Interrupt Mode Register
[0x002C]	GPIO0_INT_POL	R/W	Interrupt Polarity Select Register
[0x0034]	GPIO0_INT_EN	R/W	Interrupt Enable Register
[0x0040]	GPIO0_INT_FL	R/W1C	Interrupt Flag Register
[0x004C]	GPIO0_WAKE_EN	R/W	Wakeup Enable Register
[0x005C]	GPIO0_INT_DUAL_EDGE	R/W	Dual Edge Select Interrupt Register
[0x0060]	GPIO0_PULL_EN	R/W	Input Pullup/Pulldown Select Register
[0x0068]	GPIO0_AF1_SEL	R/W	Alternate Function 2/3 Select Register
[0x00A8]	GPIO0_INHYS_EN	R/W	Input Hysteresis Enable Register
[0x00AC]	GPIO0_SR_SEL	R/W	Slew Rate Select Register
[0x00B0]	GPIO0_DS0_SEL	R/W	Drive Strength Select 0 Register
[0x00B4]	GPIO0_DS1_SEL	R/W	Drive Strength Select 1 Register
[0x00B8]	GPIO_PULL_SEL	R/W	Pullup/Pulldown Enable Register

6.5.1 GPIO Register Details

GPIO Alternate Function 0 Select Register			er	GPIO0_AF0_SEL	[0x0000]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	1	Reserved for Future Use Do not modify this field.	

GPIO Alternate Function 0 Select Register			er	GPIO0_AF0_SEL	[0x0000]		
Bits	Name	Access	Reset	Description			
13:2		R/W	1	GPIO Alternate Function 0 Mode Select If JTAG debug is available on the part, this pin defaults to the JTAG alternate func (TCK/SWCLK) on all forms of reset.			
				0: Alternate function JTAG TCK/SWCLK enabled (default). 1: GPIO enabled			
1	-	R/W	0	 GPIO Alternate Function 0 Mode Select If JTAG debug is available on the part, this pin defaults to the JTAG alternate (TMS/SWDIO) on all forms of reset. 			
				0: Alternate function JTAG TMS/SWE 1: GPIO enabled	DIO enabled (default).		
0	-	R/W	0	GPIO Enable If JTAG debug is available on the part, (TDO) on all forms of reset.	this pin defaults to the JTAG alternate function		
				0: Alternate function JTAG TDO enab 1: GPIO enabled	led (default).		

Table 6-10: GPIO Output Enable Register

Output Enable Register				GPIO0_OUT_EN	[0x000C]	
Bits	Name	Access	Reset	Description		
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.		
13:2 - R/W		0	GPIO Output Enable Setting a bit to 1 enables the output dr	river for the respective pin.		
		0	0: Output mode disabled, output driv 1: Output mode enabled, output driv			
1 - R/W		1	GPIO Output Enable This bit is set to 1 on POR and is used f output driver enabled.	or the SWDIO alternate function with the		
				0: Output mode disabled, output driv 1: Output mode enabled, output driv		
0	-	R/W	0		or the SWDCLK alternate function with the to 1 enables the output driver for the pin.	
				0: Output mode disabled, output driv 1: Output mode enabled, output driv		

Table 6-11: GPIO Output Register

GPIO Output Register				GPIO0_OUT	[0x0018]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0	-	R/W	0	GPIO Output Level Set the corresponding output pin h 0: Drive the corresponding outpu 1: Drive the corresponding outpu Note: This bit is ignored if the correspondence register is not set or if the pin is con	t pin low (logic 0). t pin high (logic 1). sponding bit position in the GPIO0_OUT_EN

Table 6-12: GPIO Input Register

GPIO Input Register				GPIO0_IN	[0x0024]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0 -		RO	-	pin regardless of the pin's configura	g input pin. The input state is always readable for a ation as an output or alternate function.
				0: Input pin low (logic 0) 1: Input pin high (logic 1)	

Table 6-13: GPIO Port Interrupt Mode Register

GPIO Port Interrupt Mode Register				GPIO0_INT_MODE	[0x0028]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0	-	R/W	0	GPIO Interrupt Mode Interrupt mode selection bit for the corresponding GPIO pin. 0: Level triggered interrupt for corresponding GPIO pin. 1: Edge triggered interrupt for corresponding GPIO pin. Note: This bit has no effect unless the corresponding bit in the GPIO0_INT_EN register is set.	

Table 6-14: GPIO Port Interrupt Polarity Registers

GPIO Interrupt Polarity Register				GPIO0_INT_POL	[0x002C]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0	-	R/W	0	GPIO Interrupt Polarity Interrupt polarity selection bit for t Level triggered mode (<i>GPIOO_INT_I</i>) 0: Input low (logic 0) triggers inte 1: Input high (logic 1) triggers inter Edge triggered mode (<i>GPIOO_INT_I</i>) 0: Falling edge triggers interrupt 1: Rising edge triggers interrupt. <i>Note: This bit has no effect unless this set.</i>	MODE = 0): rrupt. errupt.

Table 6-15: GPIO Port Interrupt Enable Registers

GPIO In	terrupt Enable Regist	er:		GPIO0_INT_EN	[0x0034]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	

GPIO Interrupt Enable Register				GPIO0_INT_EN	[0x0034]
Bits	Name	Access	Reset	Description	
13:0	-	R/W	0	GPIO Interrupt Enable Enable or Disable the interrupt for 0: GPIO interrupt disabled. 1: GPIO interrupt enabled. Note: Disabling a GPIO interrupt do pin. Use the GPIO0 INT CLR registe	es not clear pending interrupts for the associated

Table 6-16: GPIO Interrupt Flag Register

GPIO Interrupt Flag Register				GPIO0_INT_FL	[0x0040]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0	-	RO	0	0: No interrupt pending for assoc 1: GPIO interrupt pending for ass	

Table 6-17: GPIO Wakeup Enable Registers

GPIO Wakeup Enable Register				GPIO0_WAKE_EN	[0x004C]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0 -	-	R/W	0		power modes (SLEEP, DEEPSLEEP, BACKUP).
				0: GPIO is not enabled as a wakeup 1: GPIO is enabled as a wakeup so	•

Table 6-18: GPIO Interrup	t Dual Edge	Mode Registers
---------------------------	-------------	----------------

GPIO Interrupt Dual Edge Mode Register			er	GPIO0_INT_DUAL_EDGE	[0x005C]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0	-	R/W	0	Do not modify this field. GPIO Interrupt Dual-Edge Mode Select Setting this bit selects dual edge mode triggered interrupts (rising and falling edge triggered) if the associated GPIO0_INT_MODE bit is set to edge triggered. When dual edge mode is set, and the interrupt mode is edge-triggered, the associated polarity (GPIO0_INT_POL) setting has no effect. 0: Dual edge detection mode interrupts disabled.	

Table 6-19: GPIO Pullup/Pulldown Enable Register

GPIO Pullup Pulldown Selection 0 Register		ister	GPIO0_PULL_EN	[0x0060]	
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:10	-	R/W	0	GPIO Pull Up/Pull Down Enable Setting this bit to 1 enables either the weak pull-up or weak pull-down resistor on the respective pin. The selection for pull-up or pull-down resistor is set using the <i>GPIO_PULL_SEL</i> register.	
9:8	-	R/W	0	 GPIO_PULL_SEL register. GPIO Pull Down Enable Setting this bit to 1 enables the weak pull-down resistor on the respective I/O pin. GPIO with I²C as an alternate function do not support a weak pull-up resistor. If either of the GPIO_PULL_SEL[9:8] bits are set to 1, setting the same bit in this register has no effect. 0: Pull down resistor disable. 1: Pull down resistor enabled if respective bit in GPIO_PULL_SEL register is set to 0. 	

Table 6-20: GPIO Alternate Function Select Register

GPIO Alternate Function Select Register		er	GPIO0_AF1_SEL	[0x0068]	
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0	-	R/W	0	GPIO Alternate Function 1 Mode Select This bit combined with the corresponding bit in the <i>GPIOO_AFO_SEL</i> register set the I/O pin to GPIO mode or to Alternate Function 1, 2, or 3. <i>Refer to Table 6-5: GPIO</i> <i>Mode and Alternate Function Selection</i> for details on selection.	

Table 6-21: GPIO Input Hysteresis Enable Register

GPIO Input Hysteresis Enable Register			GPIO0_INHYS_EN	[0x00A8]	
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:0	-	R/W	0	immunity on the respective bit's por	•
				0: Input pin uses a standard CMOS 1: Schmitt input enabled.	input.

Table 6-22: GPIO Slew Rate Enable Register

GPIO Sle	GPIO Slew Rate Select Register			GPIO0_SR_SEL	[0x00AC]
Bits	Name	Access	Reset	Description	
31: 14	-	R/W	0	Reserved for Future Use Do not modify this field.	

GPIO Slew Rate Select Register			GPIO0_SR_SEL	[0x00AC]	
Bits	Name	Access	Reset	Description	
13:10 - R/W		0	GPIO Slew Rate Mode Selects between fast and slow slew rate fo enables slow slew rate for the respective I, 0: Fast slew rate selected. 1: Slow slew rate selected.		
				Note: Refer to the MAX32660 datasheet fo fast and slow slew rates.	r detailed electrical characteristics of the
9:8	-	R/W	0	Reserved for Future Use Do not modify this field.	
7:4	-	R/W	0	GPIO Slew Rate Mode Selects between fast and slow slew rate fo enables slow slew rate for the respective ly 0: Fast slew rate selected. 1: Slow slew rate selected. Note: Refer to the MAX32660 datasheet fo fast and slow slew rates.	/O pin.
3:2	-	R/W	0	Reserved for Future Use Do not modify this field.	
1:0	-	R/W	0	GPIO Slew Rate Mode Selects between fast and slow slew rate fo enables slow slew rate for the respective I, 0: Fast slew rate selected. 1: Slow slew rate selected. Note: Refer to the MAX32660 datasheet fo fast and slow slew rates.	/O pin.

Table 6-23: GPIO Drive Strength 0 Select Register

GPIO D	GPIO Drive Strength 0 Select Register			GPIO0_DS0_SEL	[0x00B0]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:10	-	R/W	0	GPIO Drive Strength 0 SelectThe output drive strength supports four modes. The mode selection is set using the combination of the GPIO0_DS1_SEL and GPIO0_DS0_SEL bits for the associated GPIO pin. Refer to the GPIO Drive Strength section, above, for the selection options on these I/O pins.Refer to the symbols V _{OL_GPIO} and V _{OH_GPIO} in the MAX32660 Data Sheet Electrical 	
9:8	-	R/W	0	alternate function only support two drive0: Low output drive strength selected.1: High output drive strength selected.	50 Data Sheet Electrical Characteristics table

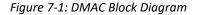
GPIO D	GPIO Drive Strength 0 Select Register			GPIO0_DS0_SEL	[0x00B0]
Bits	Name	Access	Reset	Description	
7:4	-	R/W	0		<i>PIOO_DSO_SEL</i> bits for the associated GPIO ion, <i>above</i> , for the selection options on these in the MAX32660 Data Sheet Electrical
3:2	-	R/W	0	GPIO Drive Strength Select Selection of high drive strength or low drive strength for the I/O pin. Pins with I ² C as an alternate function only support two drive strength options. 0: Low output drive strength selected. 1: High output drive strength selected. Refer to V _{ol_12C} and V _{OH_12C} in the MAX32660 Data Sheet Electrical Characteristics table for details of the drive strengths for these I/O pins.	
1:0	-	R/W	0		<i>GPIOO_DSO_SEL</i> bits for the associated GPIO ion, <i>above</i> , for the selection options on these in the MAX32660 Data Sheet Electrical

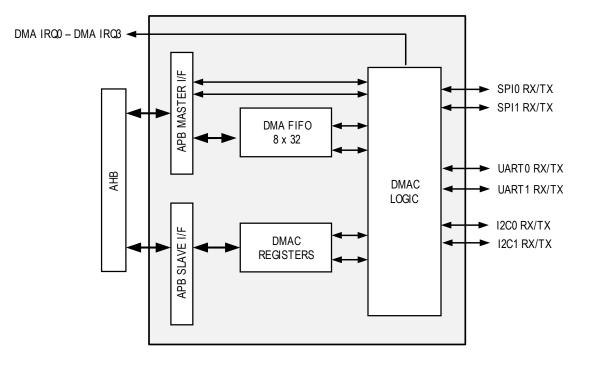
Table 6-24: GPIO Drive Strength 1 Select Register

GPIO Drive Strength 1 Select Register				GPIO0_DS1_SEL	[0x00B4]
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:10	-	R/W	0	GPIO Drive Strength 1 Select The output drive strength supports four m combination of the GPIO0_DS1_SEL and G pin. Refer to the GPIO Drive Strength section Refer to the symbols Vol_GPIO and VOH_GPIO Characteristics table for details of the drive	GPIO0_DS0_SEL bits for the associated GPIO ion, <i>above,</i> for details on the selection in the MAX32660 Data Sheet Electrical
9:8	-	R/W	0	Reserved for Future Use Do not modify this field.	
7:4	-	R/W	0		GPIOO_DSO_SEL bits for the associated GPIO ion, <i>above,</i> for the selection options on these in the MAX32660 Data Sheet Electrical
3:2	-	R/W	0	Reserved for Future Use Do not modify this field.	

GPIO D	GPIO Drive Strength 1 Select Register			GPIO0_DS1_SEL	[0x00B4]
Bits	Name	Access	Reset	Description	
1:0	-	R/W	0		PIOO_DSO_SEL bits for the associated GPIO on, <i>above</i> , for the selection options on these in the MAX32660 Data Sheet Electrical

Table 6-25: GPIO Pullup/Pulldown Select Register


GPIO Pullup/Pulldown Select Register			GPIO_PULL_SEL [0x00B8]		
Bits	Name	Access	Reset	Description	
31:14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:10	-	R/W	0	Pullup/Pulldown Resistor Select Selects either a weak pull-up or weak pull-dow 0: Pull-down resistor selected 1: Pull-up resistor selected Refer to the MAX32660 Data Sheet Electrical Co pull-up/pull-down resistors for the respective I/	haracteristics table for details of the
9:8	-	R/W	0	Pulldown Resistor Select This bit should always be set to 0. The I/O pins weak pull-down resistor. 0: Pull-down resistor selected 1: Invalid	with I ² C as an alternate function only a
				Refer to the MAX32660 Data Sheet Electrical Co pull-up/pull-down resistors for the respective I/	
7:4	-	R/W	0	Pullup/Pulldown Resistor Select Selects either a weak pull-up or weak pull-dow 0: Pull-down resistor selected 1: Pull-up resistor selected Refer to the MAX32660 Data Sheet Electrical Co	
				pull-up/pull-down resistors for the respective I/ Pulldown Resistor Select This bit should always be set to 0. The I/O pins	'O pins.
3:2	-	R/W	0	weak pull-down resistor. 0: Pull-down resistor selected 1: Invalid	
				Refer to the MAX32660 Data Sheet Electrical Co pull-up/pull-down resistors for the respective I/	
1:0	-	R/W	0	Pullup/Pulldown Resistor Select Selects either a weak pull-up or weak pull-dow 0: Pull-down resistor selected 1: Pull-up resistor selected	
				Refer to the MAX32660 Data Sheet Electrical Cu pull-up/pull-down resistors for the respective I/	



7 DMA Controller

The Direct Memory Access controller (DMAC) is a hardware feature that moves data blocks from peripheral to memory, memory to peripheral, and memory to memory. This data movement reduces the processor load significantly.

Figure 7-1 provides a high-level overview of the major DMA Controller components.

All direct memory access (DMA) transactions consist of an advanced high-performance bus (AHB) burst read from the source into the DMA FIFO followed by an AHB burst write from the DMA FIFO to the destination.

7.1 DMA channel operation

The DMA Controller has 4 channels. Each channel is governed by the registers shown in *Table 7-1*.

Register	Description
DMAn_DST	Destination register
DMAn_CFG	Configuration register
DMAn_STAT	Status register
DMAn_SRC	Source register
DMAn_CNT	Count register

In addition, each channel has a set of reload registers, shown in *Table 7-2*, that are used to chain DMA buffers when a count-to-zero (CTZ) condition occurs.

Table 7-2: Channel Reload Registers

Register	Description
DMAn_DST_RLD	Destination reload register
DMAn_SRC_RLD	Source reload register
DMAn_CNT_RLD	Count reload register

Using these eight registers provides each channel with the following features:

- Full 32-bit source and destination addresses with 24-bit (16 Mbytes) address increment capability
- Up to 16 Mbytes for each DMA buffer
- Programmable burst size
- Programmable priority
- Interrupt upon CTZ
- Abort on error

7.2 DMA Channel Arbitration and DMA Bursts

DMAC contains an internal arbiter that allows enabled channels to access the AHB and move data. A DMA channel is enabled using the *DMAn_CFG.chen* bit.

When disabling a channel, poll the *DMAn_STAT.ch_st* bit to determine if the channel is truly disabled. In general, *DMAn_STAT.ch_st* follows the setting of the *DMAn_CFG.chen* bit. However, the *DMAn_STAT.ch_st* bit is automatically cleared under the following conditions:

- Bus error (cleared immediately)
- CTZ when the *DMAn_CFG.rlden* = 0 (cleared at the end of the AHB R/W burst)
- DMAn_STAT.chen bit transitions to 0 (cleared at the end of the AHB R/W burst)

Whenever the *DMAn_STAT.ch_st* bit transitions from 1 to 0, the corresponding *DMAn_CFG.chen* bit is also cleared. During an AHB read/write burst, attempting to disable an active channel is delayed until burst completion.

Once a channel is programmed and enabled, it generates a request to the arbiter immediately (for memory-to-memory DMA) or whenever its associated peripheral requests DMA (for memory-to-peripheral or peripheral-to-memory DMA).

The arbiter grants requests to a single channel at a time. Granting is done based on priority—a higher priority request is always granted. Within a given priority level, requests are granted on a round-robin basis.

When a channel's request is granted, it runs a DMA transfer. Once the DMA transfer completes, the channel relinquishes its grant.

Only an error condition can interrupt an ongoing data transfer.

DMAn_CFG.reqsel determines which request is used to initiate a DMA burst. In the case of a memory-to-memory transfer, the channel is treated as always requesting DMA access. The *DMAn_CFG.priority* field determines the DMA channel priority.

7.3 DMA Source and Destination Addressing

For memory addresses, the *DMAn_SRC* and *DMAn_DST* registers are used to program the addresses of the source and destination. For peripherals, however, the address is fixed based on the *DMAn_CFG.reqsel* value set.

Table 7-3 shows how the source address, destination address and the address increment controls are constructed based on the *DMAn_CFG.reqsel* bit. The first column, "Request Select", of *Table 7-3* shows the values for the *DMAn_CFG.reqsel* bit.

"Programmable" in the SRCINC or DSTINC columns indicates that the bits are programmable and set according to the *DMAn_CFG.srcinc* and the *DMAn_CFG.dstinc* bits, respectively. If there is a 0 in the column, then the bit is forced to 0. For peripherals, a value of 0 for the *DMAn_CFG.srcinc* or *DMAn_CFG.dstinc* generally indicates the source or destination address is fixed to the peripheral's transmit or receive FIFO. For example, if *DMAn_CFG.reqsel = 0x2*, then the transfer is an SPI1 RX (receive). In this case, the *DMAn_CFG.srcinc* is fixed to 0 because the source for the SPI1 RX is the SPI1 receive FIFO address. However, the destination address is programmable, allowing the data from the SPI1 receive FIFO to be written to a programmable address in memory. The destination starting address is set using the *DMAn_DST* register and is incremented automatically if *DMAn_CFG.dstinc* is set to 1.

DMAn_CFG reqsel	Transfer	Source Address Register	DMAn_CFG srcinc	Destination Address Register	DMAn_CFG dstinc
0x0	Mem-to-Mem	DMAn_SRC	Programmable	DMAn_DST	Programmable
0x1	SPIO RX	DMAn_SRC	0	DMAn_DST	Programmable
0x2	SPI1 RX	DMAn_SRC	0	DMAn_DST	Programmable
0x4	UARTO RX	DMAn_SRC	0	DMAn_DST	Programmable
0x5	UART1 RX	DMAn_SRC	0	DMAn_DST	Programmable
0x7	12C0 RX	DMAn_SRC	0	DMAn_DST	Programmable
0x8	I2C1 RX	DMAn_SRC	0	DMAn_DST	Programmable
0x21	SPIO TX	DMAn_SRC	Programmable	DMAn_DST	0
0x22	SPI1 TX	DMAn_SRC	Programmable	DMAn_DST	0
0x24	UARTO TX	DMAn_SRC	Programmable	DMAn_DST	0
0x25	UART1 TX	DMAn_SRC	Programmable	DMAn_DST	0
0x27	12C0 TX	DMAn_SRC	Programmable	DMAn_DST	0
0x28	I2C1 TX	DMAn_SRC	Programmable	DMAn_DST	0

Table 7-3: Source and Destination Address Definition

7.4 Data Movement from Source to DMA FIFO

Table 7-4 shows the register and bit fields used to control the movement of data into DMA FIFO. The source is a peripheral or memory.

Register/Bit Field	Description	Comments
DMAn_SRC	Source address	If the increment enable is set, this increments on every read cycle of the burst.
DMAn_CNT	Number of bytes to transfer before a CTZ condition occurs	This register is decremented on each read of the burst.
DMAn_CFG.brst	Burst size (1-32)	This determines the maximum number of bytes moved during the burst read.

Table 7-4: Data movement from source to DMA FIFO

Register/Bit Field	Description	Comments
DMAn_CFG.srcwd	Source width	This determines the maximum data width used during each read of the AHB burst (byte, two bytes, or four bytes). The actual AHB width might be less if <i>DMAn_CNT</i> is not great enough to supply all of the needed bytes.
DMAn_CFG.srcinc	Source increment enable	Increment the DMAn_SRC.

7.5 Data Movement from the DMA FIFO to Destination

Table 7-5 shows the registers and bit fields used to control the burst movement of data out of the DMA FIFO. The destination is a peripheral or memory.

Table 7-5: Data movement from the DMA FIFO to destination

Register	Field	Description	Details
DMAn_DST	src	Destination address	If the increment enable is set, this increments on every write cycle of the burst.
brst	brst	Burst size (1-32)	This determines the maximum number of bytes moved during a single AHB read/write burst.
DMAn_CFG	dstwd	Destination width	This determines the maximum data width used during each write of the AHB burst (one byte, two bytes, or four bytes).
dstinc		Destination increment enable	Increments DMAn_DST.

7.6 Count-To-Zero (CTZ) Condition

When an AHB channel burst completes, the DMAC checks whether *DMAn_CNT* is decremented to 0. If it is, then a CTZ condition is triggered.

At this point, there are two possible responses depending on the value of the DMAn_CFG.rlden bit.

If *DMAn_CFG.rlden* = 1, then automatic reload occurs as follows:

- The DMAn_SRC, DMAn_DST, and DMAn_CNT registers are loaded from the reload registers.
- The channel remains active and continues operating.
 - The channel uses the previously programmed configuration values and the reloaded source, destination and count values.

If *DMAn_CFG.rlden* = 0, then the CTZ condition indicates the operation is complete and the following occurs:

- The channel is disabled, DMAn_CFG.chen = 0
- The channel status is set to disabled, *DMAn_STAT.ch_st* = 0.

7.7 Chaining Buffers

Use reload registers to chain buffers. Chaining buffers reduces the DMA ISR response time and allows DMA to service requests without intermediate processing from the CPU.

To configure a channel for buffer chaining, initialize the following registers:

- DMAn_CFG
- DMAn_SRC
- DMAn_DST
- DMAn CNT
- DMAn SRC RLD
- DMAn DST RLD
- DMAn_CNT_RLD

When the *DMAn_CNT_RLD* register is written, the *DMAn_CNT_RLD.rlden* bit must not be set. In addition, any writes to the *DMAn_CFG* register prior to initialization must not set the *DMAn_CFG.chen* and *DMAn_CFG.rlden* bits. After all registers are initialized, the last operation involves writing to the *DMAn_CFG.chen* and *DMAn_CFG.rlden* bits. This starts the DMA.

Set the *DMAn_CFG.ctzien* bit in the register to receive an interrupt after each buffer is accessed. In addition, set the *DMAn_CFG.chdien* bit to provide an interrupt in case of a bus error.

Caution: Setting the DMAn_CFG.chen and the DMAn_CFG.rlden bits separately risks a race condition. The condition occurs between a DMA completion interrupt service routine initializing the reload registers for the third buffer before the software initialization of these registers for the second buffer.

When the first DMA transfer completes (based on the *DMAn_CNT.cnt* bit value), a CTZ interrupt occurs, and the *DMAn_SRC*, *DMAn_DST*, and *DMAn_CNT* registers are reloaded from the corresponding reload registers.

The *DMAn_STAT* register indicates that the reload and CTZ events occurred. In this case, *DMAn_STAT.ch_st* = 1 indicating that the DMA is now busy with the second DMA transfer defined in the reload registers. If *DMAn_STAT.ch_st* = 0, then the initial and second DMA transfers have completed. If there are additional buffers to chain, the interrupt service routine initializes the *DMAn_SRC_RLD*, *DMAn_DST_RLD*, and *DMAn_CNT_RLD* registers and sets the *DMAn_CNT_RLD.rlden* bit. The interrupt service routine does not write to the *DMAn_CFG*, *DMAn_SRC*, *DMAn_DST*, and *DMAn_CNT* registers, just the reload registers.

To prevent improper operation, program the address bits before setting the *DMAn_CFG.chen* and *DMAn_CNT_RLD.rlden* bits.

7.8 DMA Interrupts

Enable interrupts for each channel by setting *DMA_INT_EN.chien*. When an interrupt is pending, the corresponding *DMA_INT_FL.ipend* = 1. The *DMA_INT_FL.ipend* field is read-only, to clear the interrupt use the *DMAn_STAT* register and write a 1 to the field that indicates the cause of the interrupt.

A channel interrupt (*DMAn_STAT.ipend* = 1) is caused by:

- 1. *DMAn_CFG.ctzien* = 1
 - a. If enabled, all CTZ occurrences set the DMAn_STAT.ipend bit.
- 2. DMAn_CFG.chdien = 1
 - a. If enabled, any clearing of the *DMAn_STAT.ch_st* bit sets the *DMAn_STAT.ipend* bit. Examine the *DMAn_STAT* register to determine which reason caused the disable. The *DMAn_CFG.chdien* bit also enables the *DMAn_STAT.to_st* bit. The *DMAn_STAT.to_st* bit does not clear the *DMAn_STAT.ch_st* bit.

To clear the channel interrupt, write 1 to the cause of the interrupt (the DMAn_STAT.ctz_st, DMAn_STAT.rld_st, DMAn_STAT.bus_err, or DMAn_STAT.to_st bits).

When running in normal mode without buffer chaining (*DMAn_CFG.rlden* = 0), set the *DMAn_CFG.chdien* bit only. An interrupt is generated upon DMA completion or an error condition (bus error or time-out error).

When running in buffer chaining mode (*DMAn_CFG.rlden* = 1), set both the *DMAn_CFG.chdien* and *DMAn_CFG.ctzien* bits. The CTZ interrupts occur on completion of each DMA (count reaches zero and reload occurs). The setting of *DMAn_CFG.chdien* ensures that an error condition generates an interrupt. If *DMAn_CFG.ctzien* = 0, then the only interrupt occurs when the DMA completes and *DMAn_CFG.rlden* = 0 (final DMA).

7.9 Channel Time-outs

Each channel can optionally generate an interrupt when its associated request line is inactive for a given period of time. An example use of this feature is to determine an idle UART receive channel. Each channel has a dedicated 10-bit timer allowing use of a different timeout value.

7.10 10-bit Timer

Use the settings in the *DMAn_CFG* register to control each channel's 10-bit timer. Scale the input clock for the timer using the *DMAn_CFG.pssel* field. The options available are:

- <u>f_{HCLK</u></u>}
- 256 f_{HCLK}
- <u>-IICLI</u> 64K
- <u>fhclk</u>
 16M

Note: HCLK is the AHB interface clock that enables the memory system to run at a different frequency than the system clock, the cache controller, and the event monitor.

The *DMAn_CFG.tosel* field sets the time the 10-bit timer counts until generating an interrupt.

The 10-bit timer resets whenever any of the following conditions occur:

- The DMA request line programmed for the channel is activated.
- The channel is disabled for any reason (*DMAn_STAT.ch_st* = 0).

To disable the 10-bit timer, set the DMAn_CFG.pssel field to 0.

Normally, the 10-bit timer starts when the channel is enabled and the *DMAn_CFG.pssel* field is non-zero. However, if *DMAn_CFG.reqwait* = 1, then the timer starts counting only after the first DMA request is received from the peripheral.

To calculate the time-out period, use *Equation 7-1*, *below*.

Equation 7-1: Timeout Equation for Standard DMA

 $T_{timeout} = T_{HCLK} \times N_{pssel} \times N_{tosel}$

For example, if $T_{HCLK} = \frac{1}{90MHz}$, $N_{pssel} = 0x2$ (65,536 timer prescaler), and $N_{tosel} = 0x3$ (32 clocks), then the time-out calculation is:

$$T_{\text{timeout}} = \left(\frac{1}{90,000,000}\right) \times 65,536 \times 32 = 23.3 \text{ms}$$

7.11 Channel and Register Access Restrictions

Writing to any register while a channel is disabled is supported, but there are certain restrictions when a channel is enabled. The *DMAn_STAT.ch_st* bit indicates whether the channel is enabled or not.

Because an active channel might be in the middle of an AHB read/write burst, do not write to the *DMAn_SRC*, *DMAn_DST*, or *DMAn_CNT* registers while a channel is active (*DMAn_STAT.ch_st* = 1).

To disable any DMA channel, clear the *DMAn_CFG.chen* bit. Then, poll the *DMAn_STAT.ch_st* bit to verify that the channel is disabled.

7.12 Memory-to-Memory DMA

Memory-to-memory transfers are completed as if the request is always active. This means that the DMA channel generates an almost constant request for the bus until its transfer is complete. For this reason, assign a lower priority to channels executing memory-to-memory transfers to prevent starvation of other DMA channels.

7.13 Standard DMA Control Registers

The DMA base peripheral address is 0x4002 8000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Table 7-6: Standard DMA Control Registers	, Offsets, Access and Descriptions
---	------------------------------------

Offset	Register	Access	Description
[0x0000]	DMA_INT_EN	R/W	DMA Control register
[0x0004]	DMA_INT_FL	RO	DMA Interrupt Status register

7.13.1 Standard DMA Control Register Details

DMA Inter	DMA Interrupt Enable Register			DMA_INT_EN	[0x0000]
Bits	Name	Access	Reset	Description	
31:4	-	RO	0	Reserved for Future Use Do not modify this field.	
3:0	chien	R/W	0	Channel Interrupt Enable Each bit in this field enables the corresponding channel interrupt. 0: Channel interrupt disabled 1: Channel interrupt enabled	

Table 7-8: DMA Interrupt Flag Register

DMA Int	DMA Interrupt Flag Register			DMA_INT_FL [0x0004]	
Bits	Name	Access	Reset	Description	
31:4	-	RO	0	Reserved for Future Use Do not modify this field.	

DMA Interrupt Flag Register		DMA_INT_FL		[0x0004]	
Bits	Name	Access	Reset	Reset Description	
30	ipend	RO	0	interrupt, clear the corresponding activ	rupt for the corresponding channel. To clear an e interrupt bit in the <i>DMAn_STAT</i> register. An e corresponding channel interrupt enable field

7.14 Standard DMA Channel 0 to 3 Register Base Addresses

Each DMA channel has a set of associated Configuration Registers as shown in *Table 7-10*. Access to a channel's configuration registers requires adding the channel base address from *Table 7-9* and the offset of the desired configuration register from *Table 7-10*. For example, the address for DMA Channel 3's DMA3_DST_RLD register is DMA Channel 3 Base Address, 0x4002 0160, plus the offset of the *DMAn_DST_RLD* register, [0x0018] which gives the address 0x4002 0178 for DMA3_DST_RLD.

Channel Base Address	DMA Channel	Access	Description
0x4002 8100	0	R/W	DMA Channel 0
0x4002 0120	1	R/W	DMA Channel 1
0x4002 0140	2	R/W	DMA Channel 2
0x4002 0160	3	R/W	DMA Channel 3

7.15 Standard DMA Channel Configuration Register Offsets

Address	Register	Access	Description
[0x0000]	DMAn_CFG	R/W	DMA Channel Configuration Register
[0x0004]	DMAn_STAT	R/W	DMA Channel Status Register
[0x0008]	DMAn_SRC	R/W	DMA Channel Source Register
[0x000C]	DMAn_DST	R/W	DMA Channel Destination Register
[0x0010]	DMAn_CNT	R/W	DMA Channel Count Register
[0x0014]	DMAn_SRC_RLD	R/W	DMA Channel Source Reload Register
[0x0018]	DMAn_DST_RLD	R/W	DMA Channel Destination Reload Register
[0x001C]	DMAn_CNT_RLD	R/W	DMA Channel Count Reload Register

Table 7-10: DMAn Channel Registers, Offsets, Access and Descriptions

7.15.1 Standard DMA Channel Configuration Register Details

Table 7-11: DMA Configuration Register

DMA Configuration Register			DMAn_CFG [0x0100]		
Bits	Name	Access	Reset	Description	
31	ctzien	R/W	0	CTZ Interrupt Enable When enabled, the DMA_INT_FL. 0: Interrupt disabled 1: Interrupt enabled	<i>ipend</i> bit is set to 1 whenever a CTZ event occurs.
30	chdien	R/W	0	Channel Disable Interrupt Enable	<i>ipend</i> bit is set to 1 whenever the <i>DMAn_STAT.ch_st</i>
29	-	RO	0	Reserved for Future Use Do not modify this field.	
28:24	brst	R/W	0	Burst Size The number of bytes transferred into and out of the DMA FIFO in a single burst. 0b00000: 1 byte 0b00001: 2 bytes 0b00010: 3 bytes 0b11111: 32 bytes	
23	-	RO	0	Reserved for Future Use Do not modify this field.	
22	distinc	R/W	0	Destination Increment Enable This bit enables the automatic increment of the DMAn_DST register upon every AHB transaction. This bit is forced to 0 for a DMA transmit to peripherals. 0: Increment disabled 1: Increment enabled	
21:20	dstwd	R/W	0	Destination Width Indicates the width of each AHB transaction to the destination peripheral or memory (the actual width might be less than this if there are insufficient bytes in the DMA FIFO for the full width). 0b00: Byte 0b01: Two bytes 0b10: Four bytes 0b11: Reserved (Byte width if set)	
19	-	RO	0	Reserved for Future Use Do not modify this field.	
18	srinc	R/W	0	Source Increment Enable This bit enables the automatic increment of the DMAn_SRC register upon every AHB transaction. This bit is forced to 0 for a DMA receive from peripherals. 0: Increment disabled 1: Increment enabled	

DMA Co	nfiguration Reg	gister		DMAn_CFG	[0x0100]
Bits	Name	Access	Reset	Description	
17:16	srcwd	R/W	0	Source Width Indicates the width of each AHB transaction from the source peripheral or memory. The actual width might be less than this if the <i>DMAn_CNT</i> register indicates a smaller value. 00: Byte 01: Two bytes 10: Four bytes 11: Reserved (byte width if set)	
15:14	pssel	R/W	0	$\label{eq:pre-Scale Select} \begin{array}{l} \mbox{Pre-Scale Select} \\ \mbox{Selects the divider for the channel's 10-bit timer.} \\ \mbox{O0: Disable timer} \\ \mbox{O1: } f_{hclk} / 256 \\ \mbox{10: } f_{hclk} / 64K \\ \mbox{11: } f_{hclk} / 16M \end{array}$	
13:11	tosel	R/W	0	Time-Out SelectSelects the number of prescaler clocks seen by the channel timer before a time-out condition is generated for this channel.000: 3-4001: 7-8010: 15-16011: 31-32100: 63-64101: 127-128110: 255-256111: 511-512	
10	reqwait	R/W	0	Request Wait Enable When enabled, delay the timeout occurs. 0: Start timer normally 1: Delay timer start	timer start until after the first DMA transaction
9:4	reqsel	R/W	0	Request Select Select DMA request line for this c channel operates as if the request	hannel. If memory to memory is selected, then the t is always active.
3:2	pri	R/W	0	DMA priority 00: Highest priority 11: Lowest priority	
1	rlden	R/W	0	Reload Enable Setting this bit to 1 allows reloading the DMAn_SRC, DMAn_DST, and DMAn_CNT registers with their corresponding reload registers upon CTZ. Note: This bit is also writeable in the DMAn_CNT_RLD register.	
0	chen	R/W	0	Channel Enable This bit is automatically cleared when DMAn_STAT.ch_st changes from 1 to 0. 0: Disable this channel 1: Enable this channel	

Table 7-12: DMA Status Register

DMA Sta	itus Register			DMAn_STAT	[0x0104]
Bits	Name	Access	Reset	Description	
31:7	-	RO	0	Reserved for Future Use Do not modify this field.	
6	to_st	R/W1C	0	Time-Out Status A time-out occurred if this field reads 1. Write 1 to clear. 0: No time out 1: A time out has occurred	
5	-	RO	0	Reserved for Future Use Do not modify this field.	
4	bus_err	R/W1C	0	Bus Error If this bit reads 1, an AHB abort occurred and the channel was disabled by hardware. Reading this bit indicates the following: 0: No error found 1: An AHB bus error occurred	
3	rld_st	R/W1C	0	Reload Status This bit is set by hardware when reload is enabled and a reload occurred. Write 1 to clear. 0: Reload event has not occurred. 1: Reload event occurred.	
2	ctz_st	R/W1C	0	CTZ Status This bit is set by hardware when a Count-to-zero (CTZ) has occurred, if enabled. Write 1 to clear. 0: CTZ has not occurred	
1	ipend	RO	0	1: CTZ has occurred Channel Interrupt This field is set when any enabled channel interrupt occurs. When this field is set, examine the other fields in this register, DMAn_STAT, to determine the cause of the Channel Interrupt. Clearing the status bits in this register clears this field. This field is read-only. O: No channel interrupt pending. 1: Channel Interrupt pending.	
0	ch_st	RO	0	 Channel Interrupt pending. Channel Status This bit is used to indicate when it is safe to change the configuration, addres: count registers for the channel. This field is read-only. Hardware clears this bit automatically when the channel is not active. When clears this bit, hardware also clears the DMAn_CFG.chen bit. 0: Channel configuration can be changed. 1: Channel not safe to change configuration. 	

Table 7-13: DMA Source Register

DMA Sou	DMA Source Register			DMAn_SRC	[0x0108]
Bits	Name	Access	Reset	Description	
31:0	src	R/W	0	Source Device Address For peripheral transfers, the actual address field is either ignored or forced to zero because peripherals only have one location to read/write data based on the request select chosen.	
				 If DMAn_CFG.srcinc = 1: This register is incremented on each depending on the data width. 	ch AHB transfer cycle by one, two, or four bytes
				If DMAn_CFG.srcinc = 0: • This register remains constant.	
				If a CTZ condition occurs while DMAn with the contents of the DMAn_SRC_RU	<i>CFG.rlden</i> = 1, then this register is reloaded <i>D</i> register.

Table 7-14: DMA Destination Register

DMA Destination Register				DMAn_DST	[0x010C]
Bits	Name	Access	Reset	Description	
31:0	dst	R/W	0	Destination Device Address For peripheral transfers, the actual address because peripherals only have one location select chosen.	-
				If <i>DMAn_CFG.dstinc</i> = 1, then this register is by one, two, or four bytes depending on the	
				If a CTZ condition occurs while <i>DMAn_CFC</i> with the contents of the <i>DMAn_DST_RLD</i> re	

Table 7-15: DMA Count Register

DMA Co	DMA Count Register			DMAn_CNT	[0x0110]
Bits	Name	Access	Reset	Description	
31:24	-	RO	0	Reserved for Future Use Do not modify this field.	
23:0	cnt	R/W	0	0 DMA Counter Load this register with the number of bytes to transfer.	
				This counter decreases on every AHB access to or four bytes depending on the data width.	o DMA FIFO. The decrement is one, two,
				When the counter reaches 0, a CTZ condition	is triggered.
				If a CTZ condition occurs while <i>DMAn_CFG.rld</i> the contents of the <i>DMAn_CNT_RLD</i> register.	en = 1, then this register is reloaded with
				0x000000: 0 Byte 0x000001: 1 Byte 0x000002: 2 Bytes	
				 0xFFFFFF:16,777,215 Bytes	

Table 7-16: DMA Source Reload Register

DMA Source Reload Register				DMAn_SRC_RLD	[0x0114]
Bits	Name	Access	Reset	Description	
31	-	RO	0	Reserved for Future Use Do not modify this field.	
30:0	src_rld	R/W	0	Source Address Reload Value If <i>DMAn_CFG.rlden</i> = 1, then the value of this register is loaded into <i>DMAn_SRC</i> upon CTZ condition.	

Table 7-17: DMA Destination Reload Register

DMA De	DMA Destination Reload Register			DMAn_DST_RLD	[0x0118]
Bits	Name	Access	Reset	Description	
31	-	RO	0	Reserved for Future Use Do not modify this field.	
30:0	dst_rld	R/W	0	Destination Address Reload Value If <i>DMAn_CFG.rlden</i> = 1, then the value of the CTZ condition.	his register is loaded into <i>DMAn_DST</i> upon a

Table 7-18: DMA Count Reload Register

DMA Co	DMA Count Reload Register			DMAn_CNT_RLD	[0x011C]
Bits	Name	Access	Reset	Description	
31	riden	R/W	0	Reload Enable.Enables automatic loading of the DMAn_SIwhen a CTZ event occurs.Set this bit after the address reload registerThis bit is automatically cleared to 0 when0: Reload disabled1: Reload enabledNote: This bit is also seen in the DMAn_CFO	reload occurs.
30:24	-	RO	0	Reserved for Future Use Do not modify this field.	
23:0	cnt_rld	R/W	0	Count Reload Value. If DMAn_CNT_RLD.rlden = 1, then the valu upon a CTZ condition.	e of this register is loaded into DMAn_CNT

8 UART

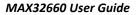
The MAX32660 microcontroller provides up to two industry-standard UART ports which can communicate with external devices using standard serial communications protocols. The UARTs are full-duplex Universal Asynchronous Receiver/Transmitter (UART) serial ports. Both UARTs, UARTO and UART1, support identical functionality and registers unless specifically noted otherwise. For simplicity, the UARTs are referenced in the documentation as UARTn where n = 0 or 1. The registers for each UART are documented showing an offset address, which is identical for each UART instance. To access a specific UART's control register, the UART's control register offset is added to the specific UART's base peripheral address.

8.1.1 Features:

- Flexible baud rate generation up to 4Mbps
- Programmable character size, 5, 6, 7, or 8-bits
- Stop bit settings of 1, 1.5, or 2-bits
- Parity settings of even, odd, mark (always 1), space (always 0), and no parity
- Automatic parity error detection with selectable parity bias
- Automatic framing error detection
- Separate 32-byte deep transmit and receive FIFOs
- Flexible interrupt conditions
- Hardware flow control for RTS and CTS
- Null modem support
- Break generation and detection
- Wakeup from DEEPSLEEP on UART edge with no character loss
- RX Timeout detection

8.2 UART Frame Characters

Character sizes of 5 to 8 bits are supported. The field UARTn_CTRL0.charsize is used to select the character size.


Stop bit support includes 1, 1.5, and 2 stop bits selected with the register field UARTn_CTRLO.

Parity support includes even, odd, mark, space or none. For no parity, set field *UARTn_CTRL0.parity_en* to 0. For all other parity options, select one of the four parity options using the *UARTn_CTRL0.parity_mode* field and enable parity (*UARTn_CTRL0.parity_en=1*). Parity can be based on the number of 1 bits or 0 bits in the receive characters as set in the register bit *UARTn_CTRL0.parity_lvl*.

Break frames are transmitted by setting the field UARTn_CTRL0.break to 1. A break sets all bits in the frame to 0.

When a break frame is received, two interrupts are available, *UARTn_INT_FL.break* is set to 1 when the first received break character is received and *UARTn_INT_FL.last_break* is set when the last break character is received. This prevents the system from being overloaded with multiple interrupts that could occur after the first break character and up to the Nth break character received.

Note: A break character does not set the frame error flag because breaks are not valid UART characters.

8.3 UART Interrupts

Interrupts can be generated for the following conditions:

- The Transmit FIFO level is equal or less than the set transmit threshold.
- The Receive FIFO level is equal or greater than the set receive threshold.
- The Receive FIFO is overrun, which means the Receive FIFO is full but is still receiving data
- Any CTS state change. During Hardware Flow Control, this interrupt is generated either because:
 - CTS is deasserted, which tells the UART to pause transmitting data
 - CTS is asserted, which tells the UART to resume transmitting data
- A Receive Parity Error occurred
- A Receive Frame Error occurred, which means START or STOP bits were not detected
- A Receive Timeout condition occurred, which means the RX FIFO has not received a character for a set time
- First and Last BREAK characters

8.4 UART Bit Rate Calculation

The UART peripheral clock, f_{PCLK} , is used as the input clock to the UART bit rate generator. The following fields are used to set the target bit rate for the UART.

- UARTn_BAUD0.clk_div selects the bit rate clock divisor.
- UARTn_BAUD0.ibaud sets the integer portion of the bit rate divisor.
- UARTn_BAUD1.dbaud sets the decimal portion of the bit rate divisor.

Equation 8-1, Equation 8-2, and *Equation 8-3* are used to determine the values for each of the bit rate fields required to achieve a target bit rate for the UART.

Equation 8-1: UART Bit Rate Divisor Equation

 $DIV = \frac{f_{UART_BIT_RATE_CLK}}{(Clock \ Divider \times Target \ Bit \ Rate)}$

Note: UARTn_BAUD0.clkdiv should be set to the highest value that results in $[DIV] \ge 1$ to achieve the highest accuracy for the target bit rate.

Equation 8-2: Bit Rate Integer Calculation

 $UARTn_BAUD0.ibaud = [DIV]$

Equation 8-3: Bit Rate Remainder Calculation

 $UARTn_BAUD1. dbaud = (DIV - UARTn_BAUD0. ibaud) \times 128$

8.4.1 **Example Baud Rate Calculation:**

Target Bit Rate = 1,843,200 *bits per second* (1.8 *Mbps*)

 $f_{BIT_RATE_CLK} = f_{PCLK} = 48 MHz$

 $DIV = \frac{48,000,000}{(Clock \ Divider \ \times \ 1,843,200)}, where \ Clock \ Divider = 2^{(7-clkdiv)}$

Table 8-1: Example Baud Rate Calculation Results, Target Bit Rate = 1.8Mbps, fpclk=48MHz

UARTn_BAUD0 clkdiv	Clock Divider	DIV
4	8	3.256
3	16	1.628
2	32	0.814
1	64	0.407
0	128	0.203

Table 8-1, above, shows the DIV result for each of the *UARTn_BAUD0.clkdiv* field settings. With the Clock Divider set to 8 or 16, the resulting DIV value is greater than 1. Setting the clock divider to 16 will generate the most accurate target bit rate because it is the largest value that results in DIV \ge 1. Using 16 for Clock Divider, *UARTn_BAUD0.clkdiv* = 3), *UARTn_BAUD0.ibaud* is 1, which is the integer portion of the 1.628 DIV calculation. The *UARTn_BAUD1.dbaud* field calculation based on *UARTn_BAUD0.clkdiv* = 3, *UARTn_BAUD0.ibaud* = 1 and DIV = 1.628 is:

Equation 8-4: UART dbaud Example Calculation

 $UARTn_BAUD1.dbaud = (1.628 - 1) \times 128 \rightarrow 80.384$

The resulting field settings for the example 1,843,200 bps rate are:

UARTn_BAUD0.cLkdiv = 3
UARTn_BAUD0.ibaud = 1
UARTn_BAUD1.dbaud = 80

8.5 UART DMA Using the TX and RX FIFOs

Each UART has a 32-byte TX FIFO with a dedicated DMA channel and a 32-byte RX FIFO with a dedicated DMA channel. The DMA channels are configured using the DMA Configuration Register, *UARTn_DMA*. The RX FIFO DMA channel and TX FIFO DMA channels operate independently, and each can be enabled or disabled individually. Enable the RX FIFO DMA channel by setting *UARTn_DMA.rxdma_en* to 1 and enable the TX FIFO DMA channel by setting the *UARTn_DMA.txdma_en* to 1. DMA transfers are automatically triggered based on the number of bytes in the RX or TX FIFO as described in the following two sections.

8.5.1 RX FIFO DMA Operation

UARTn_DMA.rxdma_lvl configures the number of entries in the RX FIFO that triggers a DMA transfer from the RX FIFO to system RAM. If the number of entries in the RX FIFO is more than the configured value, a DMA transfer is triggered from the RX FIFO to system RAM. If *UARTn_DMA.rxdma_lvl*=0 then a transfer is triggered when there is one byte in the FIFO.

Note: The RX DMA level must be set to a value less than 32 to avoid an RX FIFO overrun condition that results in loss of received data.

8.5.2 TX FIFO DMA Operation

UARTn_DMA.txdma_lvl sets the number of entries (level) in the TX FIFO that will trigger a DMA transfer from system RAM to the TX FIFO. If the number of entries (level) in the TX FIFO falls below this value a TX DMA transfer is automatically triggered from System RAM to the TX FIFO.

Note: The TX DMA level must be set to a value greater than 1 to avoid stalling the UART transfer.

8.6 Flushing the UART FIFOs

The FIFOs can be flushed independently by setting *UARTn_CTRL0.rxflush* to 1 for the RX FIFO and *UARTn_CTRL0.txflush*. to 1 for the TX FIFO. The TX FIFO and RX FIFO are automatically flushed if the UART is disabled by clearing the *UARTn_CTRL0.enable* field (*UARTn_CTRL0.enable* = 0).

8.7 Hardware Flow Control

When hardware flow control is enabled, the CTS (Clear-to-send) and RTS (Request-to-Send) external signals are directly managed by hardware without CPU intervention. RTS and CTS are active when flow control is enabled by setting the register bit UARTn_CTRL0.flowctl=1. The polarity of the CTS/RTS signals are configured with register bit UARTn_CTRL0.flowpol and can be active low or active high.

In operation, the host UART that wants to transmit data asserts the RTS output pin and waits for the CTS input pin to be asserted. If CTS is asserted, then the host UART begins transmitting data to the slave UART. If during the transmission the host UART notices CTS is deasserted, the host UART finishes transmitting the current character and then pauses to wait for CTS to return to an asserted level before transmitting more data.

If this UART is receiving data, and the RX FIFO reaches the level set in the 6-bit register field UARTn_CTRL1.rts_fifo_lvl, then the RTS signal of this UART is deasserted, informing the transmitting UART to stop sending data to this UART to prevent data overflow. Transmission resumes when the level of the RX FIFO drops below UARTn_CTRL1.rts_fifo_lvl, which automatically asserts RTS.

8.8 UART Registers

The UARTO base peripheral address is 0x4004 2000 and the UART1 base peripheral address is 0x4004 3000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Offset	Register Name	Access	Description
[0x0000]	UARTn_CTRL0	R/W	UARTn Control 0 Register
[0x0004]	UARTn_CTRL1	R/W	UARTn Control 1 Register
[0x0008]	UARTn_STAT	RO	UARTn Status Register
[0x000C]	UARTn_INT_EN	R/W	UARTn Interrupt Enable Register
[0x0010]	UARTn_INT_FL	R/1	UARTn Interrupt Flag Register
[0x0014]	UARTn_BAUD0	R/W	UARTn Baud Rate Integer Register
[0x0018]	UARTn_BAUD1	R/W	UARTn Baud Rate Decimal Register
[0x001C]	UARTn_FIFO	R/W	UARTn FIFO Read/Write Register
[0x0020]	UARTn_DMA	R/W	UARTn DMA Configuration Register
[0x0024]	UARTn_TXFIFO	RO	UARTn TX FIFO Register

Table 8-2: UART Registers, Offset Addresses and Descriptions

8.8.1 UART Register Details

Table 8-3: UART Control 0 Register

UART Con	trol 0 Register			UARTn_CTRL0	[0x0000]
Bits	Name	Access	Reset	Description	
31:24	-	R/W	0	Reserved for Future Use Do not modify this field.	

UART Con	trol 0 Register		UARTn_CTRL0 [0x0000]		[0x0000]	
Bits	Name	Access	Reset	Description		
23:16	to_cnt	R/W	0	RX Timeout Frame Count Set this field to the number of frames before a Receive Timeout occurs. If the RX FIFO contains data, a RX Timeout condition occurs if the time for the number of frames in this register passes without the FIFO receiving any new data. If a timeout occurs, the hardware sets the receive timeout flag to 1 (<i>UARTn_INT_FL.rxto</i> = 1). 0: 256 1: 1 2: 2 3: 3 254: 254 255: 255		
15	clk_sel	R/W	0	Bit Rate Clock Source Select Selects the bit rate clock, $f_{UART_BIT_RAT}$ 0: Peripheral Clock, $f_{UART_BIT_RATE_CI}$ 1: Reserved for Future Use		
14	break	R/W	0	Transmit BREAK Frame Set this field to 1 to send a BREAK frame. A BREAK frame transmits a character with all bits set to 0. 0: Normal UART operation. 1: Transmit BREAK frame.		
13	nullmod	R/W	0	Null Modem Support 0: Normal operation for RTS/CTS and TXD/RXD 1: Null Modem Mode: RTS/CTS swapped, TXD/RXD swapped		
12	flowpol	R/W	0	RTS/CTS Polarity 0: RTS/CTS asserted is 0 1: RTS/CTS asserted is 1		
11	flow	R/W	0	Hardware Flow Control Enable 0: Hardware flow control disabled. 1: Hardware RTS/CTS flow control ena	ibled.	
10	stop	R/W	0	STOP Bit Mode Select 0: 1 STOP bit. 1: 1.5 STOP bits for 5-bit character size	e or 2 STOP bits for all other character sizes	
9:8	size	R/W	0	Character Size Set the number of data bits per frame. 0: 5 data bits 1: 6 data bits 2: 7 data bits 3: 8 data bits		
7	bitacc	R/W	0	Frame or Bit Accuracy Select This field selects between either Frame Accuracy or Bit Accuracy for transmitting data. Frame Accuracy: Individual frame bit durations may be varied by hardware to meet the target frame period. Bit accuracy: Bit width is fixed by hardware. The frame accuracy of data transmitted may be reduced if bit accuracy is prioritized. 0: Frame accuracy. 1: Bit accuracy. Note: A frame includes the start, stop, all data bits, and parity bit/bits for the character being transmitted.		

UART Cor	UART Control 0 Register			UARTn_CTRL0	[0x0000]	
Bits	Name	Access	Reset	Description		
6	rxflush	R/W10	0	Receive FIFO Flush Write 1 to flush the receive FIFO Cleared to 0 by hardware when flush is completed		
5	txflush	R/W10	0	Transmit FIFO Flush Write 1 to flush the Transmit FIFO Cleared to 0 by hardware when flush is completed		
4	parity_lvl	R/W	0	Parity Level Select 0: Parity is based on number of 0 bits in the character. 1: Parity is based on number of 1 bits in the character.		
3:2	parity_mode	R/W	0	Parity Mode Select 0: Even parity 1: Odd Parity 2: Mark parity 3: Space parity		
1	parity_en	R/W	0	Parity Enable 0: No parity 1: Parity enabled as charsize+1 bit		
0	enable	R/W	0	UART Enable O: UART disabled. FIFOs are flushed, bit rate generator is off. 1: UART Enabled, bit rate generator is active.		

Table 8-4: UART Control 1 Register

UART Conti	UART Control 1 Register			UARTn_CTRL1	[0x0004]		
Bits	Name	Access	Reset	t Description			
31:22	0	R/W	0	Reserved for Future Use Do not modify this field.			
21:16	rts_fifo_lvl	R/W	0	RTS RX FIFO Threshold Level When the RX FIFO level is equal to or greater than this level, assert RTS output signal to inform the transmitting UART to stop sending data to this UART. Valid values are from 0 to 32.			
15:14	-	R/W	0	Reserved for Future Use Do not modify this field.			
13:8	tx_fifo_lvl	R/W	0	TX FIFO Threshold Level When the TX FIFO level is less than or equal interrupt flag is set. Valid values are from 0 to 32.	to this level the <i>UARTn_INT_FL.tx_fifo_lvl</i>		
7:6	-	R/W	0	Reserved for Future Use Do not modify this field.			
5:0	rx_fifo_lvl	R/W	0	RX FIFO Threshold Level When the RX FIFO reaches this level or higher the <i>UARTn_INT_FL.rx_fifo_lvl</i> interrupt flag is set. Valid values are from 0 to 32.			

Table 8-5: UART Status Register

UART State	us Register			UARTn_STAT	[0x0008]	
Bits	Name	Access	Reset	Description		
31:25	-	RO	0	Reserved for Future Use Do not modify this field.		
24	rx_to	RO	0	RX Timeout This field is set to 1 when a receive timeout occurs. This field is set by hardware when the condition occurs and is automatically cleared when the condition is no longer valid.		
23:22	-	RO	0	Reserved for Future Use Do not modify this field.		
21:16	tx_num	RO	0	Number of Bytes in the TX FIFO Read this field to determine the number of t	pytes in the transmit FIFO.	
15:14	-	RO	0	Reserved for Future Use Do not modify this field.		
13:8	rx_num	RO	0	Number of Byes in RX FIFO Read this field to determine the number of t	pytes in the receive FIFO.	
7	tx_full	RO	0	TX FIFO Full Status Flag This field reads 1 when the TX FIFO is full. This field is set by hardware when the condition occurs and is automatically cleared when the condition is no longer valid. 0: TX FIFO is not full. 1: TX FIFO is full.		
6	tx_empty	RO	1	TX FIFO Empty Flag This field reads 1 when the TX FIFO is empty. This field is set by hardware when the condition occurs and is automatically cleared when the condition is no longer valid. 0: TX FIFO is not empty, UARTn_STAT.tx_num > 0. 1: TX FIFO is empty.		
5	rx_full	RO	0	RX FIFO Full Flag This field reads 1 when then RX FIFO is full. 1 condition occurs and is automatically cleared 0: RX FIFO is not full. 1: RX FIFO is full.		
4	rx_empty	RO	1	RX FIFO Empty Flag This flag reads 1 when the RX FIFO is empty.		
3	break	RO	0	Break Flag This field is set when a break condition occurs. 0: BREAK not received. 1: BREAK condition received.		
2	parity	RO	0	Parity Bit StateThis field returns the state of the parity bit.0: Parity bit is 0.1: Parity bit is 1.		
1	rx_busy	RO	0	RX Busy This field reads 1 when the UART is receiving data. 0: UART is not actively receiving data. 1: UART is actively receiving data.		

UART Status Register				UARTn_STAT	[0x0008]	
Bits	Name	Access	Reset	t Description		
0	tx_busy	RO	0	TX Busy This field reads 1 when the UART is transmit 0: UART is not actively transmitting data. 1: UART is transmitting data.	ting data.	

Table 8-6: UART Interrupt Enable Register

UART Interrupt Enable Register				UARTn_INT_EN [0x000C]		
Bits	Name	Access	Reset	Description		
31:10	-	R/W	0	Reserved for Future Use Do not modify this field.		
9	last_break	R/W	0	Last Break Interrupt Enable When the UART receives a series of BREAK frames, this enables an interrupt when the last BREAK frame is received. 0: Interrupt disabled.		
8	rx_to	R/W	0	1: Interrupt enabled. RX Timeout Interrupt Enable Enable the receive timeout interrupt. 0: Interrupt disabled. 1: Interrupt enabled.		
7	break	R/W	0	Received BREAK Interrupt Enable Enables the BREAK interrupt for the first BREAK received on the UART. 0: Interrupt disabled. 1: Interrupt enabled.		
6	tx_fifo_lvl	R/W	0	TX FIFO Threshold Level Interrupt Enable Set this field to 1 to enable an interrupt when the number of entries in the transmit FIFO is less than or equal to the UARTn_CTRL1.tx_fifo_lvl field. 0: Interrupt disabled. 1: Interrupt enabled.		
5	tx_fifo_ae	R/W	0	TX FIFO Almost Empty Interrupt Enable Enables an interrupt indicating the transmit FIFO is almost empty, one byte remaining. 0: Interrupt disabled.		
4	rx_fifo_lvl	R/W	0	1: Interrupt enabled. RX FIFO Threshold Level Interrupt Enable Set this field to 1 to enable an interrupt when the number of entries in the receive FIFO is greater than or equal to the UARTn_CTRL1.rx_fifo_lvl field. 0: Interrupt disabled. 1: Interrupt enabled.		
3	rx_overrun	R/W	0	RX FIFO Overrun Interrupt Enable Enables an interrupt when a write is made to a full RX FIFO 0: Interrupt disabled. 1: Interrupt enabled.		
2	cts	R/W	0	CTS State Change Interrupt Enable Enable the CTS level change interrupt event. 0: Interrupt disabled. 1: Interrupt enabled.		

UART Interrupt Enable Register				UARTn_INT_EN	[0x000C]	
Bits	Name	Access	Reset	t Description		
1	rx_parity_error	R/W	0	RX Parity Error Interrupt EnableEnables an interrupt when a receive parity error is detected.0: Interrupt disabled.1: Interrupt enabled.		
0	rx_frame_error	R/W	0	RX Frame Error Interrupt Enable Enables an interrupt when a receive frame error is detected. 0: Interrupt disabled. 1: Interrupt enabled.		

Table 8-7: UART Interrupt Flags Register

UART Int	terrupt Flags Regis	ster		UARTn_INT_FL	[0x0010]		
Bits	Name	Access	Reset	Description			
31:10	-	RO	0	Reserved for Future Use Do not modify this field.			
9	last_break	R/W1C	0	Last Break Interrupt Flag When the UART receives a series of BREAK frames, this flag is set when the last BREAK frame is received. Write 1 to clear this field. 0: Last BREAK condition has not occurred. 1: Last BREAK condition has occurred.			
8	rx_to	R/W1C	0	I. Last BREAK condition has occurred. Receive Frame Timeout Interrupt Flag This field is set when a receive frame timeout occurs. Write 1 to clear this field. 0: Receive frame timeout has not occurred. 1: A receive frame timeout was detected by the UART.			
7	break	R/W1C	0	Received Break Interrupt Flag When the UART receives a series of BREAK frames, this flag is set when the first BREAK frame is received. Write 1 to clear this field.			
6	tx_fifo_lvl	R/W1C	0	Transmit FIFO Threshold Interrupt Flag This interrupt flag is set when number of entries in in the Transmit FIFO is less than or equal to the Transmit FIFO level set in UARTn_CTRL1.tx_fifo_lvl. Write 1 to clear. 0: TX FIFO level is greater than the UARTn_CTRL1.tx_fifo_lvl. 1: TX FIFO level is equal to or less than the UARTn_CTRL1.tx_fifo_lvl. Note: This flag is set immediately by hardware when the condition exists. To prevent additional interrupts from occurring after clearing this flag, write data to the TX FIFO or decrease the TX FIFO threshold level.			
5	tx_fifo_ae	R/W1C	0	Transmit FIFO Almost Empty Interrupt Flag This field is set when there is one byte remaining in the Transmit FIFO. Write 1 to clear.			
4	rx_fifo_lvl	R/W1C	0	 RX FIFO Threshold Interrupt Flag Set when number of entries in the RX FIFO is equal to or greater than the RX FIFO threshold level as set in the <i>UARTn_CTRL1.rx_fifo_lvl</i> field. Data must be read from the RX FIFO to reduce the level below the threshold to guarantee this interrupt does not occur again after clearing the flag. Write 1 to clear this field. 0: The number of bytes in the RX FIFO is below the threshold level. 1: The number of bytes in the RX FIFO is equal to or greater than the threshold level. 			

UART Int	UART Interrupt Flags Register			UARTn_INT_FL [0x0010]		
Bits	Name	Access	Reset	set Description		
This field is set if a FIFO overrun c			0	RX FIFO Overrun Interrupt Flag This field is set if the receive FIFO is full and ar a FIFO overrun condition. If this field is set at I been lost. Write 1 to clear.		
				0: RX FIFO overrun has not occurred. 1: RX FIFO overrun occurred.		
2	cts	R/W1C	0	CTS Interrupt Flag CTS, also referred to as Modem Status Interrupt, flag. Write 1 to clear.		
1	parity	R/W1C	0	 Receive Parity Error Status Flag Set if a parity error is detected. This flag applies to data received only. Write 1 to clear. 0: Parity error has not been detected. 1: Parity error detected. 		
0	frame	R/W1C	0	Frame Error Status Flag Set if a frame error occurs while receiving data. Write 1 to clear.		

Table 8-8: UART Rate Integer Register

UART Bau	UART Baud Rate Integer Register			UA	RTn_BAUD0	[0x0014]
Bits	Name	Access	Reset	Description		
31:17	-	R/W	0	Reserved for Fu Do not modify t		
					d to divide the bit rate clock here and the section for a section for	by the selected Clock Divider value. Refer details of determining this field's value for
				clkdiv	Clock Divider Value	
18:16	clkdiv	R/W	0	0	128	
10.10	CIRCIN			1	64	
				2	32	
				3	16	
				4	8	
				5 - 7	Reserved for Future Use	
15:12	-	R/W	0	Reserved for Future Use Do not modify this field.		
11:0	ibaud	R/W	0	Integer Portion of Baud Rate Divisor This field contains the integer value of the bit rate divisor. Refer to the UART Bit Rate Calculation section for details of determining this field's value for a given UART bit rate.		

Table 8-9: UART Baud Rate Decimal Register

UART Baud Rate Decimal Register				UARTn_BAUD1	[0x0018]
Bits	Name	Access	Reset	Description	
31:12	-	R/W	0	Reserved for Future Use Do not modify this field.	

UART B	UART Baud Rate Decimal Register			UARTn_BAUD1 [0x0018]		
Bits	Name	Access	Reset	Description		
11:0	dbaud	R/W	0	Decimal Portion of Baud Rate Divisor This field contains the remainder portion of <i>Rate Calculation</i> section for details of detern bit rate.		

Table 8-10: UART FIFO Register

UART FIFO Register				UARTn_FIFO [0x001C]		
Bits	Name	Access	Reset	t Description		
31:8	-	R/W	0	Reserved for Future Use Do not modify this field.		
7:0	fifo	R/W	N/A	UART FIFO Register Reading this field reads data from the RX FIFO and writes to this field write to the TX FIFO.		

Table 8-11: UART DMA Configuration Register

UART DMA	UART DMA Configuration Register			UARTn_DMA	[0x0020]		
Bits	Name	Access	Reset	Description			
31:22	-	R/W	0	Reserved for Future Use Do not modify this field.			
21:16	rxdma_lvl	R/W	0	RX FIFO Level DMA Trigger If the RX FIFO level is greater than this value, the DMA channel transfers data from the RX FIFO into memory. DMA transfers continue until the RX FIFO is empty. To avoid an RX FIFO overrun, do not set this value to 32. Values above 32 are reserved for future use.			
15:14	-	R/W	0	Reserved for Future Use Do not modify this field.			
13:8	txdma_lvl	R/W	0	TX FIFO Level DMA Trigger If the TX FIFO level is less than this value, the DMA channel transfers data from memory into the TX FIFO. DMA transfers continue until the TX FIFO is full. To avoid stalling a UART transmission, do not set this value to 1 or 0. Values above 32 are reserved for future use.			
7:2	-	R/W	0	Reserved for Future Use Do not modify this field.			
1	rxdma_en	R/W	0	RX FIFO DMA Channel Enable 0: RX DMA is disabled 1: RX DMA is enabled			
0	txdma_en	R/W	0	TX FIFO DMA Channel Enable 0: TX DMA is disabled 1: TX DMA is enabled			

Table 8-12: UART TX FIFO Data Output Register

UART TX FI	UART TX FIFO Data Output Register			UARTn_TXFIFO		[0x0024]
Bits	Name	Access	R	eset	Description	
31:8	-	R/W		0	Reserved for Future Use Do not modify this field.	

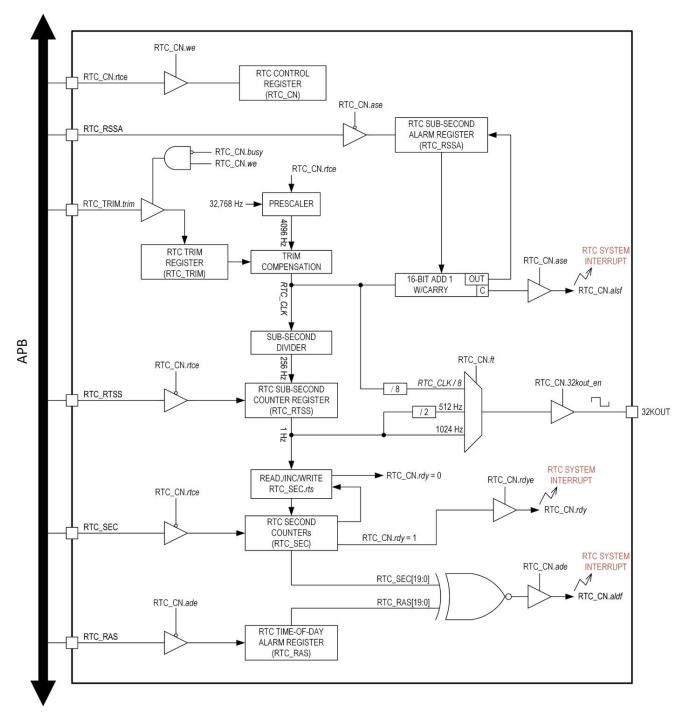
UART TX FIFO Data Output Register			er	UARTn_TXFIFO [0x0024]		[0x0024]	
Bits	Name	Access	Re	eset	Description		
7:0	data	RO		0	TX FIFO Data Output Peek Register Reads from this register return the next chan of the TX FIFO. If no data is available, 0x00 is Reads from this register do not affect the TX	returned.	

9 Real-Time Clock (RTC)

9.1 Overview

The Real-Time Clock (RTC) is a binary timer that keeps the time of day and provides time-of-day and sub-second alarm functionality in the form of RTC system interrupts. The RTC time base is created using a 32.768kHz crystal connected between the 32KIN and 32KOUT pins on the MAX32660. See the MAX32660 datasheet for detailed connection and pin information related to the 32KIN and 32KOUT pins.

In the RTC, two registers combine to create a 40-bit counter representing time with 1/256 second resolution. The *RTC_SSEC.rtss* field contains the least significant 8 bits and represents the sub-second count. The *RTC_SEC.rts* field contains the most significant 32 bits and represents the seconds count. The *RTC_SEC.rts* field increments on each rollover of the *RTC_SSEC.rtss* field. Together the 40 bits represent time in seconds up to approximately 136 years.


A programmable time-of-day alarm is usable with the 32-bit seconds counter to provide a single event/alarm timer. You must disable the RTC to write the counter registers. When the RTC counter is started, the RTC counts continuously unless it is disabled, and reads of the counter registers do not affect the count. Digital trim is available for applications requiring higher accuracy.

A separate 32-bit auto-reload sub-second alarm counter register (*RTC_RSSA*) generates interval alarms. Incremented at 256Hz, this counter has a granularity of 3.9 msec, with a maximum interval of approximately 16,777,216 seconds.

The RTC operates in the always-on domain. Once enabled, it continues counting as long as the RTC is enabled and the VRTC supply remains within the acceptable range given in the datasheet. The RTC increments the *RTC_TRIM.vrtc_tmr* field every 32 seconds when the RTC is enabled and operating.

Figure 9-1. RTC Block Diagram

9.2 RTC Alarm Functions

The RTC provides time-of-day and sub-second interval alarm functions. The time-of-day alarm is implemented by matching the count values in the counter register with the value stored in the alarm register. The sub-second interval alarm provides an auto-reload timer that is driven by the trimmed RTC clock source.

9.2.1 Time-of-Day Alarm

Program the RTC Time-of-Day Alarm register (*RTC_RAS*) to configure the time-of-day-alarm. The alarm triggers when the value stored in *RTC_RAS* matches the lower 20 bits of the *RTC_SEC.rts* seconds count register. This allows programming the time-of-day-alarm to any future value between 1 second and 12 days relative to the current time with a resolution of 1 second. You must disable the time-of-day alarm before changing the *RTC_RAS.tod* field.

When the alarm occurs, hardware sets the Time-of-Day Alarm Interrupt Flag (*RTC_CTRL.alarm_tod_fl*) to 1.

Setting the *RTC_CTRL.alarm_tod_fl* bit to 1 in software results in an interrupt request to the processor if the Alarm Time-of-Day Interrupt Enable (*RTC_CTRL.alarm_tod_en*) bit is set to 1, and the RTC's system interrupt enable is set.

9.2.2 Sub-Second Alarm

The *RTC_RSSA* and *RTC_CTRL.alarm_ss_en* field control the sub-second alarm. Writing RTC_RSSA sets the starting value for the sub-second alarm counter. Writing the Sub-Second Alarm Enable (*RTC_CTRL.alarm_ss_en*) bit to 1 enables the sub-second alarm. Once enabled, the sub-second alarm begins up-counting from the RTC_RSSA value. When the counter rolls over from 0xFFFF FFFF to 0x0000 0000, hardware sets the *RTC_CTRL.alarm_ss_fl* bit triggering the alarm. At the same time, hardware also reloads the counter with the value previously written to *RTC_RSSA.rssa*. A 256Hz clock drives the sub-second alarm allowing a maximum interval of 16,777,216 seconds with a resolution of approximately 3.9 msec.

You must disable the sub-second interval alarm, *RTC_CTRL.alarm_ss_en*, prior to changing the interval alarm value, *RTC_RSSA*.

The delay (uncertainty) associated with enabling the sub-second alarm is up to one period of the sub-second clock, approximately 3.9 msec based on 256Hz RTC clock input to the register. This uncertainty is propagated to the first interval alarm. Thereafter, if the interval alarm remains enabled, the alarm triggers after each sub-second interval as defined without the first alarm uncertainty because the sub-second alarm is an auto-reload timer. Enabling the sub-second alarm with with the sub-second alarm register set to 0 ($RTC_RSSA.rssa = 0$) results in the maximum sub-second alarm interval.

9.2.3 RTC Wakeup From DEEPSLEEP/BACKUP Power Modes

The RTC alarms are an optional wakeup source for the MAX32660 during *DEEPSLEEP/BACKUP* mode. Perform the following steps to use the RTC as a *DEEPSLEEP/BACKUP* wakeup source:

- 1. Configure the RTC Time-of-Day Alarm for the required number of seconds.
- 2. Create a RTC IRQ handler function and register the address of the RTC IRQ handler using the NVIC.
- 3. Enable the RTC time of day interrupt enable, (*RTC_CTRL.alarm_tod_en* = 1).
- 4. Enable the System wakeup for the RTC by setting the *GCR_PM.rtcwk_en* field to 1.
- 5. Enter the desired low power mode. Refer to section *Operating Modes* for details on entering *DEEPSLEEP* or *BACKUP* mode.

9.3 RTC Register Access

Restricted access to specific registers prevents software reading from or writing to the RTC registers while they are updated by the RTC hardware.

9.3.1 RTC Register Write Protection

The *RTC_CTRL.busy* bit is a read-only status bit controlled by hardware and set when any of the following conditions occur:

- System Reset.
- Software writes to the *RTC_SEC* register or RTC trim registers.
- Software modifies the RTC_CTRL.enable, RTC_CTRL.alarm_tod_en, or RTC_CTRL.alarm_ss_en bits.

When the *RTC_CTRL.busy* bit is set by hardware, writes to the above RTC control bits and count registers are blocked by hardware. The *RTC_CTRL.busy* bit remains active until the register or bit is synchronized by hardware. The synchronization by hardware occurs on the next rising edge of the 32kHz clock. The *RTC_CTRL.busy* bit is set for a maximum of one 4kHz clock, approximately 250µs. Therefore, a software write is not complete until hardware clears the *RTC_CTRL.busy* bit indicating that a 32kHz synchronized version of the registers and bit are in place.

Once the *RTC_CTRL.busy* bit is cleared to 0, additional writes are completed as permitted by individual count or alarm-enable bits.

9.3.2 RTC Register Read Protection

The Ready (*RTC_CTRL*.ready) bit indicates when the RTC count registers contain valid data. Hardware clears the *RTC_CTRL*.ready bit approximately one 4kHz clock before the ripple occurs through the RTC counter registers (*RTC_SEC* and *RTC_SSEC*) and is set once again immediately after the ripple occurs. The period of the *RTC_CTRL*.ready bit set/clear activity is approximately 3.9 msec, providing a large window during which the RTC count registers are readable. Software can clear the *RTC_CTRL*.ready bit at any time and the bit remains clear until set by hardware when the next ripple occurs. A separate Ready Enable (*RTC_CTRL*.ready_int_en) bit is provided to generate an interrupt when hardware sets the *RTC_CTRL*.ready bit. You can use this interrupt to signal the start of a new RTC read window.

9.3.3 RTC Count Register Access

The RTC count registers (*RTC_SEC* and *RTC_SSEC*) are readable when the *RTC_CTRL.ready* bit is set to 1. Data read from these registers when *RTC_CTRL.ready* is 0 is invalid. To write the RTC count registers, set the RTC Enable (*RTC_CTRL.*enable) bit to 0. Clearing the *RTC_CTRL.enable* bit is permitted only when the Write Enable (*RTC_CTRL.write_en*) bit is set to 1 and is governed by the *RTC_CTRL.busy* bit signaling process (that is, the *RTC_CTRL.busy* bit is 0). Writes to each RTC count register must occur only when the *RTC_CTRL.busy* bit reads 0.

9.3.4 RTC Alarm Register Access

The RTC alarm registers (*RTC_RAS* and *RTC_RSSA*) are readable at any time. To write to an alarm register, disable the corresponding alarm enable first (*RTC_CTRL.alarm_ss_en* = 0 or *RTC_CTRL.alarm_tod_en* = 0). Clearing these bits requires monitoring the *RTC_CTRL.busy* bit to assess completion of the write. Once the alarm is disabled, update the associated RTC alarm registers using software.

9.3.5 RTC Trim Register Access

The RTC Trim register (*RTC_TRIM*) is readable at any time. To write to this register, set the Write Enable (*RTC_CTRL*.write_en) bit to 1 and check the *RTC_CTRL*.busy bit until it reads 0 and then write the *RTC_TRIM* register.

9.3.6 RTC Oscillator Control Register Access

The RTC oscillator control register (*RTC_OSCCTRL*) is readable at any time. To write to this register, set the Write Enable (*RTC_CTRL*.write_en) bit to 1 and check the *RTC_CTRL*.busy bit until it reads 0 and then write to the *RTC_OSCCTRL* register.

9.4 RTC Output Pin

The RTC is capable of outputting the raw 4KHz signal or a trim compensated 1KHz or 512Hz signal to the 32KCAL alternate pin function. On both the 16 WLP package and the 20 TQFN package for the MAX32660 the 32KCAL is alternate function 2 on pin P0.2. P0.2 corresponds to GPIO0[2].

9.5 RTC Calibration

The uncompensated accuracy of the RTC is a function of the attached crystal. A digital trim facility allows the device to compensate for up to \pm 127ppm (parts per million) as designated by the *RTC_TRIM.trim* register field.

Complete the following steps to measure a square wave output on the 32KCAL alternate function pin and determine the accuracy of the RTC:

- 1. Enable the 32KCAL alternate function. Refer to the *RTC Output Pin* section for details.
- 2. Set the *RTC_CTRL.freq_sel* field to the desired output frequency.
- 3. Set *RTC_CTRL.32kout_en* to 1, enabling the square wave output on the 32KCAL alternate pin function.
- 4. Measure the square wave output and compare it to an accurate reference clock.
- 5. Set *RTC_CTRL.write_en* to 1 and adjust the *RTC_TRIM* register.
- 6. Repeat steps 1 through 5 as necessary until optimum accuracy is achieved.

9.6 **RTC Registers**

The RTC base peripheral address is 0x4000 6000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Offset	Register	Access	Description
[0x0000]	RTC_SEC	R/W	Seconds Counter Register
[0x0004]	RTC_SSEC	R/W	Sub-Seconds Counter Register
[0x0008]	RTC_RAS	R/W	Alarm Time-of-Day Register
[0x000C]	RTC_RSSA	R/W	Sub-Second Alarm Register
[0x0010]	RTC_CTRL	R/W	Control Register
[0x0014]	RTC_TRIM	R/W	Trim Register
[0x0018]	RTC_OSCCTRL	R/W	Oscillator Control Register

Table 9-1. RTC Registers, Offsets and Descriptions

9.6.1 RTC Register Details

Table 9-2: RTC Seconds	Counter Register
------------------------	------------------

RTC Seconds Counter Register				RTC_SEC [0x00]	
Bits	Name	Access	Reset	Description	
31:0	rts	R/W	-	Seconds Counter This register is the 32-bit count of seconds.	

Table 9-3: RTC Sub-Seconds Counter Register

RTC Sub-Seconds Counter Register				RTC_SSEC	[0x04]
Bits	Name	Access	Reset	Description	
31:8	-	R/W	0	Reserved for Future Use Do not modify this field.	
7:0	rtss	R/W	-	Sub-Seconds Counter This field represents sub-seconds and increments at 256Hz. When this field rolls from 0xFF to 0x00, the RTC_SEC.count increments.	

Table 9-4: RTC Sub-Seconds Counter Register

RTC Alarm Time-of-Day Register				RTC_RAS	[0x08]	
Bits	Name	Access	Reset	set Description		
31:20	-	R/W	0	Reserved for Future Use Do not modify this field.		
19:0	ras	R/W	0	Time-of-Day Alarm Sets the time-of-day alarm from 1 second up to 12-days. When this field matches RTC_SEC[19:0], an RTC system interrupt is generated.		

Table 9-5: RTC Sub-Second Alarm Register

RTC Sub-	RTC Sub-Second Alarm Register				RTC_RSSA	[0x0C]
Bits	Name	Access	Res	set	Description	
31:0	rssa	R/W	C	D	Sub-second Alarm Sets the starting value for the sub-second alarr at 256Hz providing an alarm interval of up to 1 3.9 msec. An alarm is generated when the cou 0000.	6,777,216 seconds in increments of

Table 9-6: RTC Control Register

RTC Control Register				RTC_CTRL	[0x10]	
Bits	Name	Access	Reset	Description		
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.		
15	write_en	R/W	0	Write Enable Set this field to 1 to write to the <i>RTC_TRIM</i> register, the RTC enable (<i>RTC_CTRL.enable</i>) bit, or both.		
				1: Writes to the <i>RTC_TRIM</i> register and the 0: Writes to the <i>RTC_TRIM</i> register and the	—	
14:13	-	R/W	0	Reserved for Future Use Do not modify this field.		

RTC Con	trol Register			RTC_CTRL	[0x10]	
Bits	Name	Access	Reset	Description		
12:11	x32k_mode	R/W	0	32kHz Oscillator Mode Select Selects the operating mode for the 32kHz oscillator.		
				 0: Operates in noise immunity mode 1: Operates in quiet mode. Oscillator warm-up is not required. 2: Operates in noise immunity mode when the processor is in active modes and switches to quiet mode when the processor enters <i>DEEPSLEEP</i>. The system waits for the 32kHz oscillator to warm-up prior to the processor exiting stop mode. 3: Operates in noise immunity mode when the processor is in active modes and switches to quiet mode when the processor enters stop mode. The system does not wait for the 32kHz oscillator to warm-up prior to the processor exiting stop mode and beginning code execution. 		
10:9	freq_sel	R/W	0	Frequency Output Select Selects the output frequency to output on the 32KCAL alternate function output pin if the <i>RTC_CTRL.32kout_en</i> bit is set to 1 and the GPIO is enabled for the alternate pin function 32KCAL; unused otherwise.		
				0b00: 1Hz (Compensated) 0b01: 512Hz (Compensated) 0b1x: 4kHz		
8	32kout_en	R/W	-	 Square Wave Output Enable O: Square wave output disabled. 1: Square wave is output on the 32KCAL al determined by the <i>RTC_CTRL.freq_sel</i> fin <i>Note: This bit is set to 0 on a POR and is not a</i> 	eld.	
7	alarm_ss_fl	R/W	0	Sub-second Alarm Interrupt Flag This interrupt flag is set when a sub-second a wake-up source for the processor.	alarm condition occurs. This flag is a	
				0: No sub-second alarm pending. 1: Sub-second interrupt pending.		
6	alarm_tod_fl	R/W	0	Time-of-Day Alarm Interrupt Flag This interrupt flag is set by hardware when a wake-up source for the processor.	time-of-day alarm occurs. This flag is a	
				0: No Time-of-Day alarm interrupt pending 1: Time-of-day interrupt pending.	<u>.</u>	
5	ready_int_en	R/W	0	RTC Ready Interrupt Enable This interrupt flag is set when the RTC ready	bit is set by hardware.	
				0: Interrupt disabled. 1: Interrupt enabled.		
4	ready	R/W0O	0	RTC Ready This bit is set to 1 by hardware when the <i>RTC</i> clear this bit at any time. Hardware automat the <i>RTC_SEC</i> register, indicating the RTC is be	ically clears this bit just prior to updating	
				0: <i>RTC_SEC</i> register not updated. 1: <i>RTC_SEC</i> register updated.		
3	busy	RO	0	RTC Busy Flag This bit is set by hardware when changes to bit is automatically cleared by hardware when Software should poll this field for 0 after chan is complete prior to making any other RTC results of the prior to making any other RTC results.	en the synchronization is complete. nging RTC registers to ensure the change	
				0: RTC not busy. 1: RTC busy.		

RTC Control Register				RTC_CTRL	[0x10]
Bits	Name	Access	Reset	Description	
2	alarm_ss_en	R/W	0	Sub-Second Alarm Interrupt Enable Set this bit to 1 to enable the RTC sub-second alarm interrupt. Check the RTC_CTRL.busy flag after writing this bit to determine when the RTC synchronization is complete.	
				0: Alarm sub-second interrupt disabled. 1: Enable alarm sub-second interrupt.	
1	alarm_tod_en	R/W	0	Time-of-Day Alarm Interrupt Enable Set this bit to 1 to enable the RTC time-of-day alarm interrupt. Check the <i>RTC_CTRL.busy</i> flag after writing to this bit to determine when the RTC synchronization is complete.	
				0: Time-of-day alarm interrupt is disabled. 1: Enable the time-of-day alarm interrupt.	
0	enable	R/W	0	Real-Time Clock Enable Enables and disables the RTC. The RTC write set before changing this field. RTC Busy (<i>RTC</i>) to this bit (<i>RTC_CTRL.write_en</i>). After writing for 0 to determine when the RTC synchroniza	<i>CTRL.busy</i>) must read 0 before writing to this bit, check the <i>RTC_CTRL.busy</i> flag
				0: RTC disabled. 1: RTC enabled.	

Table 9-7: RTC Trim Register

RTC Trim Register				RTC_TRIM [0x14]		[0x14]	
Bits	Name	Access	Re	set	et Description		
31:8	vrtc_tmr	R/W	(D	VRTC Time Counter This field is used to show the number of secon enabled. Hardware increments this field every Note: This field is reset on a Power On Reset (i	y 32 seconds.	
7:0	trim	R/W	(D	RTC Trim This field specifies the 2s complement value of decrement of the field adds or subtracts 1ppr maximum correction of ± 127ppm.		

RTC Oscillator Control Register				RTC_OSCCTRL		[0x18]
Bits	Name	Access	Re	set	Description	
31:16	-	R/W	(0	Reserved for Future Use Do not modify this field.	
5	32kout	R/W	(0	 RTC Square Wave Output 0: 32kHz signal is not output to port pin (POR default). 1: Outputs the raw 32kHz clock to the 32KCAL alternate function if the alternate function is enabled. Note: This field is only reset on POR and not effected by other forms of reset. 	

RTC Oscillator Control Register				RTC_OSCCTRL [0x18]		
Bits	Name	Access	Reset	Description		
4	bypass	R/W	0	RTC Crystal Bypass Bypass the crystal oscillator to allow a digital square wave to be driven on the 32KIN pin. 0: Disable bypass (POR default) 1: Enable bypass Note: This field is only reset on POR and not effected by other forms of reset.		
3	ibias_en	R/W	1	RTC Oscillator Bias Current Enable Enables 4× or 2× bias current selected by <i>RTC_OSCCTRL.ibias_sel</i> in noise immunity mode 0: Disable 1: Enable (POR default) Note: This field is only reset on POR and not effected by other forms of reset.		
2	hyst_en	R/W	0	RTC Oscillator Hysteresis Buffer Enable Enables the RTC hysteresis buffer in noise immunity mode. This increases DC current consumption by ~144nA. 0: Disable (POR default) 1: Enable Note: This field is only reset on POR and not effected by other forms of reset.		
1	ibias_sel	R/W	0	RTC Oscillator 4× Bias Current Select 0: selects 2× bias current for RTC oscillator (POR default). 1: selects 4× bias current for RTC oscillator. Note: This field is only reset on POR and not effected by other forms of reset.		
0	filter_en	R/W	1	RTC Oscillator Filter Enable 0: Disable RTC oscillator filter 1: Enable RTC oscillator filter (POR default) Note: This field is only reset on POR and not e	ffected by other forms of reset.	

10 Timers

The MAX32660 contains three 32-bit, reloadable timers. Each timer provides multiple operating modes. Timer modes supported include:

- One-Shot: Timer counts up to terminal value then halts.
- Continuous: Timer counts up to terminal value then repeats.
- Counter: Timer counts input edges received on timer input pin (Timer 0 only).
- Capture: Captures a snapshot of the current timer count when timer input edge transitions (Timer 0 only).
- Compare: Timer pin toggles when timer exceeds terminal count (Timer 0 only).
- Gated: Timer increments only when timer input pin is asserted (Timer 0).
- Capture/Compare: Timer counts when timer input is asserted, captures timer count when input is deasserted (Timer 0 only).

10.1 Features

- 32-bit reload counter
- Programmable prescaler with values from 1 to 4096
- Independent interrupt
 - Timer 0 supports a Timer I/O alternate function pin for:
 - Capture, compare, and capture/compare capability
 - Timer pin available as alternate function
 - Configurable Input pin for event triggering, clock gating, or capture signal
 - Configurable output pin for event output and PWM signal generation

10.2 Basic Operation

The timer modes operate by incrementing the *TMRn_CNT* register, driven by either the timer clock, an external stimulus on the timer pin, or a combination of both. The *TMRn_CNT* register is always readable, even while the timer is enabled and counting.

Each timer mode has a user-configurable timer period, which terminates on the timer clock cycle following the end of timer period condition. Each timer mode has a different response at the end of a timer period, which can include changing the state of the timer pin, capturing a timer value, reloading *TMRn_CNT* with a new starting value, or disabling the counter. The end of a timer period will always set the corresponding interrupt bit and can generate an interrupt, if enabled.

In most modes the timer peripheral automatically sets *TMRn_CNT* to 0x0000 0001 at the end of a timer period, but *TMRn_CNT* is set to 0x0000 0000 following a system reset. This means the first timer period following a system reset will be one timer clock longer than subsequent timer periods if *TMRn_CNT* is not initialized to 0x0000 0001 during the timer configuration step.

Clocking of timer functions is driven by the timer clock frequency, $f_{CNT_{CLK}}$. The timer clock frequency is a user-configurable, division of the system peripheral clock, PCLK. Each timer has an independent prescaler, allowing timers to operate at different frequencies. The prescaler can be set from 1 to 4096 using the *TMRn_CN.pres3:TMRn_CN.pres* fields. Unless otherwise mentioned, the timer clock is generated as follows:

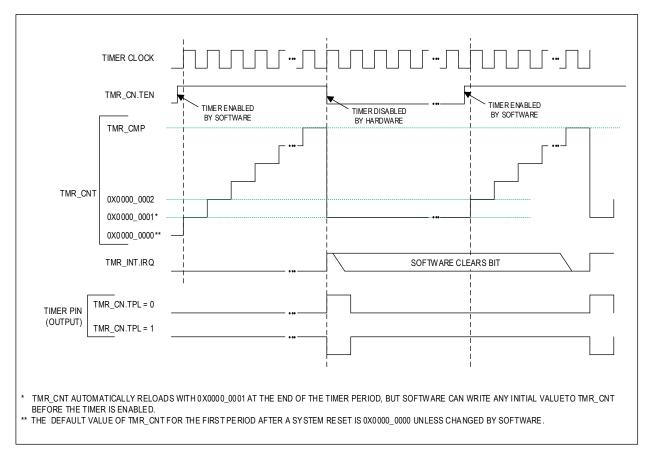
Equation 10-1: Timer Clock Frequency Calculation

$$f_{CNT_CLK} = \frac{f_{PCLK}}{prescaler}$$

Application firmware writes to the timer registers and external events on timer pins will be asynchronous events to the slower timer clock frequency. These events are latched on the next rising edge of the timer clock. Since it is not possible to observe the timer clock directly, input events may have up to 0.5 timer clock delay before being recognized.

10.3 Timer Pin Functionality

On the MAX32660, only Timer 0 supports a Timer Pin. The timer pin functionality is mapped as an alternate function that is shared with a GPIO. Timer pin assignments are detailed in the data sheet for the specific device.


When the timer pin alternate function is enabled, the timer pin will have the same electrical characteristics, such as pullup/pulldown strength, drive strength, etc. as the GPIO mode settings for that pin. When configured as an output, the corresponding bit in the GPIO_OUT register should be configured to match the inactive state of the timer pin for that mode. The pin characteristics must be configured before enabling the timer. Consult the GPIO section for details on how to configure the electrical characteristics for the pin.

Each timer has a dedicated interrupt flag, *TMRn_INT.irq*, which is set at the end of a timer period. If enabled, an interrupt will be generated. The interrupt flag can be cleared by writing any value to *TMRn_INT.irq*.

10.4 One-Shot Mode (000b)

In One-shot mode the timer peripheral increments *TMRn_CNT* until it matches *TMRn_CMP* and then stops incrementing and disables the timer. The timer can optionally output a pulse on the timer pin at the end of the timer period. In this mode, the timer must be re-enabled to start another one-shot mode event.

Figure 10-1: One-Shot Mode Diagram

10.4.1 Timer Period

The timer period ends on the timer clock following *TMRn_CNT* = *TMRn_CMP*.

The timer peripheral automatically performs the following actions at the end of the timer period:

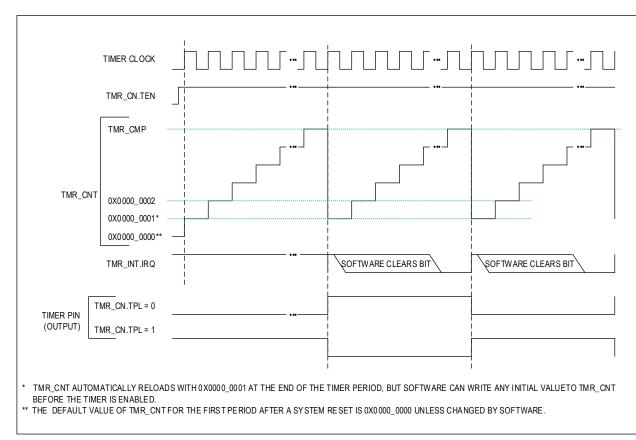
- 1. TMRn_CNT is reset to 0x0000 0001.
- 2. The timer is disabled by setting *TMRn_CN.ten* = 0.
- 3. If the timer output is enabled, the timer pin is driven to its active state for one timer clock. It then returns to its inactive state.
- 4. The timer interrupt bit *TMRn_INT.irq* will be set. An interrupt will be generated if enabled.

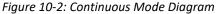
10.4.2 Configuration

Configure the timer for One-Shot mode by doing the following:

- 1. Set *TMRn_CN.ten* = 0 to disable the timer
- 2. Set *TMRn_CN.tmode* to 000b to select One-shot mode.
- 3. Set *TMRn_CN.pres3*:*TMRn_CN.pres* to set the prescaler that determines the timer frequency.
- 4. If using the timer pin:
 - a. Configure the pin as a timer output and configure the electrical characteristics as needed.
 - b. Set *TMRn_CN.tpol* to match the desired (inactive) state.
- 5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
- 6. Write an initial value to *TMRn_CNT*, if desired. This effects only the first period; subsequent timer periods always reset *TMRn_CNT* = 0x0000 0001.
- 7. Write the compare value to *TMRn_CMP*.
- 8. Set *TMRn_CN.ten* = 1 to enable the timer.

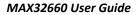
The timer period is calculated using the following equation:


Equation 10-2: One-shot Mode Timer Period


 $One-shot mode timer period in seconds = \frac{TMR_CMP - TMR_CNT_{INITIAL_VALUE} + 1}{f_{CNT_CLK} (Hz)}$

10.5 Continuous Mode (001b)

In Continuous mode, the timer peripheral increments *TMRn_CNT* until it matches *TMRn_CMP*, resets *TMRn_CNT* to 0x0000 0001, and continues incrementing. The timer peripheral can optionally toggle the state of the timer pin at the end of the timer period.



10.5.1 Timer Period

The timer period ends on the timer clock following *TMRn_CNT* = *TMRn_CMP*.

The timer peripheral automatically performs the following actions at the end of the timer period:

- 1. TMRn_CNT is reset to 0x0000 0001. The timer remains enabled and continues incrementing.
- 2. If the timer output is enabled, the timer pin toggles state (low to high or high to low).
- 3. The timer interrupt bit *TMRn_INT.irq* will be set. An interrupt will be generated if enabled.

10.5.2 Configuration

Configure the timer for Continuous mode by performing the following steps:

- 1. Set *TMRn_CN.ten* = 0 to disable the timer.
- 2. Set *TMRn_CN.tmode* to 001b to select Continuous mode.
- 3. Set *TMRn_CN.pres3*:*TMRn_CN.pres* to set the prescaler that determines the timer frequency.
- 4. If using the timer pin:
 - a. Configure the pin as a timer output and configure the electrical characteristics as needed.
 - b. Set *TMRn_CN.tpol* to match the desired (inactive) state.
- 5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
- 6. Write an initial value to *TMRn_CNT*, if desired. This effects only the first period; subsequent timer periods always reset *TMRn_CNT* = 0x0000 0001.
- 7. Write the compare value to *TMRn_CMP*.
- 8. Set *TMRn_CN.ten* = 1 to enable the timer.

The timer period is calculated using the following equation.

Equation 10-3: Continuous Mode Timer Period

 $Continuous mode timer period in seconds = \frac{TMR_CMP - TMR_CNT_{INITIAL_VALUE} + 1}{f_{CNT_CLK} (Hz)}$

10.6 Counter Mode (010b)

In Counter mode, the timer peripheral increments *TMRn_CNT* when a transition occurs on the timer pin. When *TMRn_CNT* = TMR.CMP, the interrupt bit is set, *TMRn_CNT* is set to 0x0000 0001, and continues incrementing. The timer can be configured to increment on either the rising edge or the falling edge, but not both.

The timer prescaler setting has no effect in this mode. The frequency of the timer's input signal ($f_{CNT_{CLK}}$) must not exceed 25 percent of the PCLK frequency as shown in the following equation:

Equation 10-4: Counter Mode Maximum Clock Frequency

$$f_{CNT_CLK} \le \frac{PCLK (Hz)}{4}$$

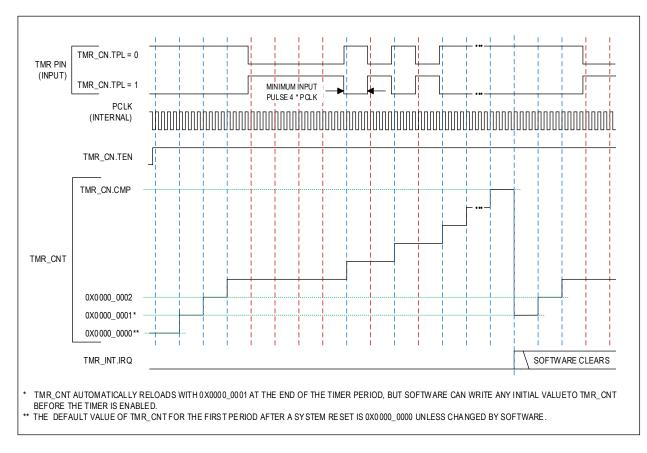


Figure 10-3: Counter Mode Diagram

10.6.1 Timer Period

The timer period ends on the rising edge of PCLK following *TMRn_CNT* = *TMRn_CMP*.

The timer peripheral automatically performs the following actions at the end of the timer period:

- 1. *TMRn_CNT* is reset to 0x0000 0001. The timer remains enabled and continues incrementing on selected transitions of the timer pin.
- 2. The timer interrupt bit *TMRn_INT.irq* will be set. An interrupt will be generated if enabled.

10.6.2 Configuration

Configure the timer for Counter mode by doing the following:

- 1. Set *TMRn_CN.ten* = 0 to disable the timer.
- 2. Set *TMRn_CN.tmode* to 010b to select Counter mode.
- 3. Configure the timer pin:
 - a. Configure the pin as a timer input and configure the electrical characteristics as needed.
 - b. Set *TMRn_CN.tpol* to match the desired initial (inactive) state.
- 4. If using the timer interrupt, enable the interrupt and set the interrupt priority.
- 5. Write an initial value to *TMRn_CNT*, if desired. This effects only the first period; subsequent timer periods always reset *TMRn_CNT* = 0x0000 0001.
- 6. Write the compare value to *TMRn_CMP*.
- 7. Set *TMRn_CN.ten* = 1 to enable the timer.

In Counter mode, the number of timer input transitions since timer start is calculated using the following equation:

Equation 10-5: Counter Mode Timer Input Transitions

Counter mode timer input transitions = $TMR_CNT_{CURRENT_COUNT_VALUE}$ - $TMR_CNT_{START_VALUE}$

10.7 PWM Mode (011b)

In PWM mode, the timer sends a Pulse-Width Modulated (PWM) output using the timer's output signal. The timer first counts up to the match value stored in the *TMRn_PWM* register. At the end of the cycle where the *TMRn_CNT* value matches the *TMRn_PWM* value, the timer's output toggles state. The timer continues counting until it reaches the *TMRn_CMP* value.

10.7.1 Timer Period

The timer period ends on the rising edge of PCLK following *TMRn_CNT* = *TMRn_CMP*.

The timer peripheral automatically performs the following actions at the end of the timer period:

- 1. The *TMRn_CNT* is reset to 0x0000 0001, and the timer resumes counting.
- 2. The timer output signal is toggled.
- 3. The timer interrupt bit *TMRn_INT.irq* will be set. An interrupt will be generated if enabled.

When *TMRn_CN.tpol* = 0, the timer output signal starts low and then transitions to high when the *TMRn_CNT* value matches the *TMRn_PWM* value. The timer output signal remains high until the *TMRn_CNT* value reaches the *TMRn_CMP* value, resulting in the timer output signal transitioning low, and the *TMRn_CNT* value resetting to 0x0000 0001.

When *TMRn_CN.tpol* = 1, the Timer output signal starts high and transitions low when the *TMRn_CNT* value matches the *TMRn_PWM* value. The timer output signal remains low until the *TMRn_CNT* value reaches the *TMRn_CMP* value, resulting in the timer output signal transitioning high, and the *TMRn_CNT* value resetting to 0x0000 0001.

10.7.2 PWM Mode Configuration

Complete the following steps to configure a timer for PWM mode and initiate the PWM operation:

- 1. Set *TMRn_CN.ten* = 0 to disable the timer.
- 2. Set *TMRn_CN.tmode* to 011b to select PWM mode.
- 3. Set *TMRn_CN.pres*3:*TMRn_CN.pres* to set the prescaler that determines the timer frequency.
- 4. Configure the timer pin:
- 5. Configure the pin as a timer input and configure the electrical characteristics as needed.
- 6. Set *TMRn_CN.tpol* to match the desired initial (inactive) state.
 - a. Set *TMRn_CN.tpol* to select the initial logic level (high or low) and PWM transition state for the timer's output.
 - b. Set *TMRn_CNT* to the starting count, typically 0x0000 0001. The initial *TMRn_CNT* value only effects the initial period in PWM mode with subsequent periods always setting *TMRn_CNT* to 0x0000 0001.
 - c. Set the *TMRn_PWM* value to the transition period count.
- 7. Set the *TMRn_CMP* value for the PWM second transition period. Note: *TMRn_CMP* must be greater than the *TMRn_PWM* value.
- 8. Optionally enable the timer's interrupt in the Interrupt Controller and set the timer's interrupt priority.
- 9. Set *TMRn_CN.ten* to 1 to enable the timer and start the PWM.

The PWM period is calculated using the following equation:

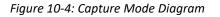
Equation 10-6: Timer PWM Period

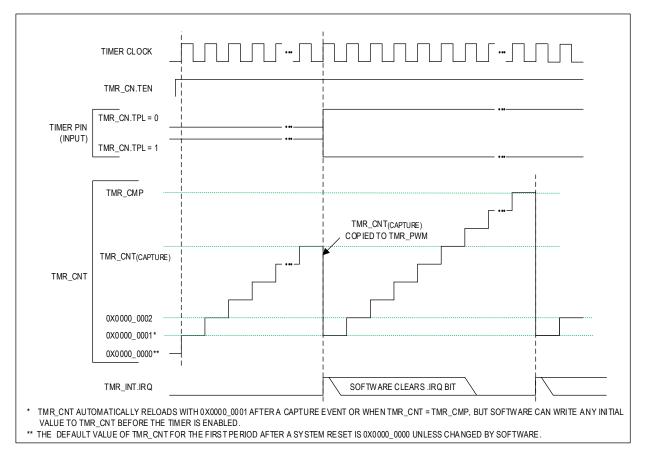
 $PWM \ period \ in \ seconds = \frac{TMR_CMP}{f_{CNT_CLK} \ (Hz)}$

If an initial starting value other than 0x0000 0001 is loaded into the *TMRn_CNT* register, use the One-Shot mode equation to determine the initial PWM period.

If *TMRn_CN.tpol* is 0, the ratio of the PWM output high time to the total period is calculated using the following equation:

PWM output high time ratio (%) =
$$\frac{(TMR_CMP - TMR_PWM)}{TMR_CMP} \times 100$$


If *TMRn_CN.tpol* is set to 1, the ratio of the PWM output high time to the total period is calculated using the following equation:


PWM output high time ratio (%) =
$$\frac{TMR_PWM}{TMR_CMP} \times 100$$

10.8 Capture Mode (100b)

Capture mode most often used to measure the time between events. The timer increments from an initial value until an edge transition occurs on the timer pin. This triggers the 'capture' event which copies $TMRn_CNT$ to the $TMRn_PWM.pwm$ register, resets $TMRn_CNT$ = 0x0000 0001, and continues incrementing. Also, if the timer pin does not go active before $TMRn_CNT$ = $TMRn_CMP$, the timer will reset $TMRn_CNT$ = 0x0000 0001, and continue incrementing. Either event will set the timer interrupt bit.

10.8.1 Timer Period

Two timer period events are possible in Capture Mode:

The Capture event occurs on the timer clock following the selected transition on the timer pin. The timer peripheral automatically performs the following actions:

- 1. The value in *TMRn_CNT* is copied to *TMRn_PWM*
- 2. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will be generated if enabled.
- 3. The timer remains enabled and continues incrementing.
- 4. The timer period ends on the timer clock following *TMRn_CNT* = *TMRn_CMP*.

The timer period event occurs on the timer clock *TMRn_CNT* = *TMRn_CMP*. The timer peripheral automatically performs the following actions when an end of timer period event occurs:

- 1. The value in *TMRn_CNT* is reset to 0x0000 00001. The timer remains enabled and continues incrementing.
- 2. The timer interrupt bit *TMRn_INT.irq* will be set. An interrupt is generated if the IRQ is enabled.

10.8.2 Configuration

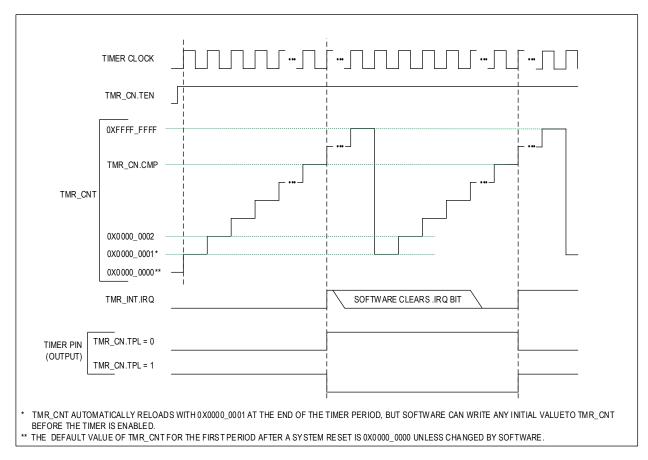
Configure the timer for Capture mode by doing the following:

- 1. Disable the timer by setting *TMRn_CN.ten* to 0.
- 2. Select Counter mode by setting *TMRn_CN.tmode* to 010b.
- 3. Set *TMRn_CN.pres3*:*TMRn_CN.pres* to set the prescaler that determines the timer frequency.
- 4. If using the timer pin:
 - a. Configure the pin as a timer output and configure the electrical characteristics as needed.
 - b. Set *TMRn_CN.tpol* to match the desired (inactive) state.
- 5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
- 6. Write the initial value to *TMRn_CNT*. This effects only the first period; subsequent periods always begin with 0x0000 0001.
- 7. Write the compare value to *TMRn_CMP*.
- 8. Set *TMRn_CN.ten* = 1 to enable the timer.

The timer period is calculated using the following equation:

Equation 10-7: Capture Mode Elapsed Time

Capture elapsed time in seconds = $\frac{TMR_PWM - TMR_CNT_{INITIAL_COUNT_VALUE}}{f_{CNT_CLK}}$


Note: The capture elapsed time calculation is only valid after the capture event occurs, and the timer stores the captured count in the TMRn_PWM register.

10.9 Compare Mode (101b)

In Compare mode the timer peripheral increments continually, allowing the timer to be a programmable 32-bit programmable period timer. The end of timer period event occurs when the timer value matches the compare value, but the timer continues to increment until the count reaches 0xFFFF FFFF. The timer counter then rolls over and continues counting from 0x0000 0000.

10.9.1 Timer Period

The timer period ends on the timer clock following *TMRn_CNT* = *TMRn_CMP*.

The timer peripheral automatically performs the following actions at the end of the timer period:

- 1. The timer remains enabled and continues incrementing. Unlike other modes, *TMRn_CNT* is not reset to 0x0000 0001 at the end of the timer period.
- 2. If the timer output is enabled, then the timer pin toggles state (low to high or high to low).
- 3. The timer interrupt bit *TMRn_INT.irq* will be set. An interrupt will be generated if enabled.

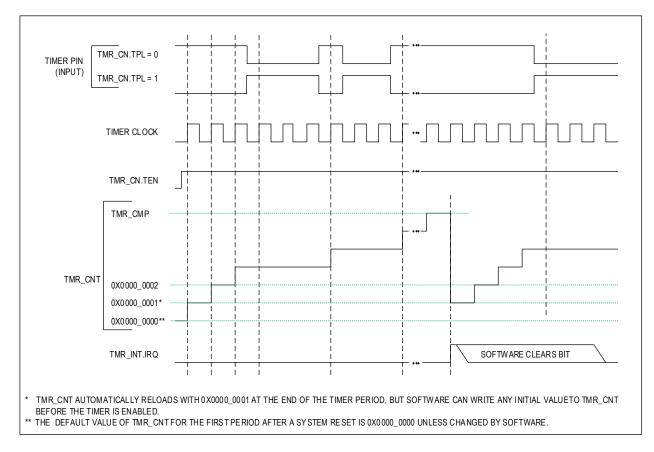
10.9.2 Configuration

Configure the timer for Compare mode by doing the following:

- 1. Set *TMRn_CN.ten* = 0 to disable the timer.
- 2. Set *TMRn_CN.tmode* to 011b to select Compare mode.
- 3. Set *TMRn_CN.pres3*:*TMRn_CN.pres* to set the prescaler that determines the timer frequency.
- 4. If using the timer pin:
 - a. Configure the pin as a timer output and configure the electrical characteristics as needed.
 - b. Set *TMRn_CN.tpol* to match the desired (inactive) state.
- 5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
- 6. Write the initial value to *TMRn_CNT*. This effects only the first period as the counter increments continuously, rolling over to 0x0000 0000 and continuing.
- 7. Write the compare value to *TMRn_CMP*.
- 8. Set *TMRn_CN.ten* = 1 to enable the timer.

The timer period is calculated using the following equation:

Equation 10-8: Compare Mode Timer Period


 $Compare mode timer period in seconds = \frac{TMR_CMP - TMR_CNT_{INITIAL_COUNT_VALUE} + 1}{f_{CNT_CLK} (Hz)}$

10.10 Gated Mode (110b)

Gated mode is like continuous mode, except that *TMRn_CNT* only increments when the timer pin is in its active state.

Figure 10-6: Gated Mode Diagram

10.10.1 Timer Period

The timer period ends when *TMRn_CNT* = *TMRn_CMP*.

The timer peripheral automatically performs the following actions at the end of the timer period:

- 1. TMRn_CNT is reset to 0x0000 0001. The timer remains enabled and continues incrementing.
- 2. The timer interrupt bit *TMRn_INT.irq* will be set. An interrupt will be generated if enabled.

10.10.2 Configuration

Configure the timer for Gated mode by doing the following:

- 1. Set *TMRn_CN.ten* = 0 to disable the timer.
- 2. Set *TMRn_CN.tmode* to 110b to select Gated mode.
- 3. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
- 4. Configure the timer pin:
 - a. Configure the pin as a timer input and configure the electrical characteristics as needed.
 - b. Set *TMRn_CN.tpol* to match the desired initial (inactive) state.
- 5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
- 6. Write an initial value to *TMRn_CNT*, if desired. This effects only the first period; subsequent timer periods always reset *TMRn_CNT* = 0x0000 0001.
- 7. Write the compare value to *TMRn_CMP*.
- 8. Set *TMRn_CN.ten* = 1 to enable the timer.

10.11 Capture/Compare Mode (111b)

In Capture/Compare mode, the timer starts counting after the first external timer input transition occurs. The transition, a rising edge or falling edge on the timer's input signal, is set using the *TMRn_CN.tpol* bit.

Each subsequent transition, after the first transition of the timer input signal, captures the *TMRn_CNT* value, writing it to the *TMRn_PWM* register (capture event). When a capture event occurs, a timer interrupt is generated, the *TMRn_CNT* value is reset to 0x0000 0001, and the timer resumes counting.

If no capture event occurs, the timer counts up to the *TMRn_CMP* value. At the end of the cycle where the *TMRn_CNT* equals the *TMRn_CMP* value, a timer interrupt is generated, the *TMRn_CNT* value is reset to 0x0000 0001, and the timer resumes counting.

10.11.1 Timer Period

The timer period ends when the selected transition occurs on the timer pin, or on the clock cycle following *TMRn_CNT* = *TMRn_CMP*.

The timer peripheral automatically performs the following actions at the end of the timer period:

If the end of the timer period was caused by a transition on the timer pin:

- 1. The value in *TMRn_CNT* is copied to *TMRn_PWM*.
- 2. TMRn_CNT is reset to 0x0000 0001. The timer remains enabled and continues incrementing.
- 3. The timer interrupt bit, TMRn_INT.irq, is set. A Timer IRQ is generated, if enabled.
- 4. If the end of the timer period was caused by a transition on the timer pin:
 - a. TMRn_CNT is reset to 0x0000 0001.
- b. The timer remains enabled and continues incrementing.
- 5. The timer interrupt bit *TMRn_INT.irq* will be set. An interrupt is generated, if enabled.

10.11.2 Configuration

Configure the timer for Capture/Compare mode by doing the following:

- 1. Set *TMRn_CN.ten* = 0 to disable the timer.
- 2. Set *TMRn_CN.tmode* to 111b to select Capture/Compare mode.
- 3. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
- 4. Configure the timer pin:
 - a. Configure the pin as a timer input and configure the electrical characteristics as needed.
 - b. Set *TMRn_CN.tpol* to select the positive edge (*TMRn_CN.tpol* = 0) or negative edge (*TMRn_CN.tpol* = 0) transition causes the capture event.
- 5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
- 6. Write an initial value to *TMRn_CNT*, if desired. This effects only the first period; subsequent timer periods always reset *TMRn_CNT* = 0x0000 0001.
- 7. Set *TMRn_CN.ten* to 1 to enable the timer. Counting starts after the first transition of the timer's input signal. No interrupt is generated by the first transition of the input signal.

In Capture/Compare mode, the elapsed time from the timer start to the capture event is calculated using the following equation:

Equation 10-9: Capture Mode Elapsed Time

 $Capture \ elapsed \ time \ in \ seconds = \frac{TMR_PWM - TMR_CNT_{INITIAL_CNT_VALUE}}{f_{CNT_CLK} \ (Hz)}$

10.12 Timer Registers

Each timer is controlled by a block of registers assigned to that specific timer. All timers contain an identical set of registers.

Register names for a specific instance are defined by appending the instance number to the peripheral name. For example, the Timer Count Register for Timer 0 is TMR0_CNT while the Timer Count Register for Timer 1 is TMR1_CNT, and so on. The MAX32660 includes three timer instances, TMR0, TMR1 and TMR2.

The base address for TMR0, TMR1 and TMR2 are as follows:

- TMR0: 0x4001 0000
- TMR1: 0x4001 1000
- TMR2: 0x4001 2000

Refer to Table 3-1: APB Peripheral Base Address Map for the addresses of all APB mapped peripherals.

Offset	Register Name	Access	Description
[0x0000]	TMRn_CNT	R/W	Timer Counter Register
[0x0004]	TMRn_CMP	R/W	Timer Compare Register
[0x0008]	TMRn_PWM	R/W	Timer PWM Register
[0x000C]	TMRn_INT	R/W	Timer Interrupt Register
[0x0010]	TMRn_CN	R/W	Timer Control Register

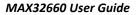

10.12.1 *Timer Register Details*

Table 10-2: Timer Count Registers

Timer Co	ount Register				TMRn_CNT	[0x0000]
Bits	Name	Access	Res	eset Description		
31:0	count	R/W	0			er. This field increments as the timer counts. lid. In general, disable the timer by clearing bit <i>TMRn_CNT</i> field.

Table 10-3: Timer Compare Registers

Timer Co	ompare Register				TMRn_CMP	[0x0004]
Bits	Name	Access	Re	eset	Description	
31:0	compare	R/W		0	The compare field meaning is deter	the compare value for the timer's count value. mined by the specific mode of the timer. Refer to section for compare usage and meaning.

Table 10-4: Timer PWM Registers

Timer PV	VM Register			TMRn_PWM	[0x0008]
Bits	Name	Access	Reset	Description	
31:0	pwm	R/W	0	cycle. At the end of the cycle where transitions to the second period of	bunt value for the first transition period of the PWM e TMRn_CNT equals TMRn_CMP, the PWM output the PWM cycle. The second PWM period count is The value set for TMRn_PWM.pwm must be less
					e: Compare modes, this field is used to store the Compare, or Capture/Compare event occurs.

Table 10-5: Timer Interrupt Registers

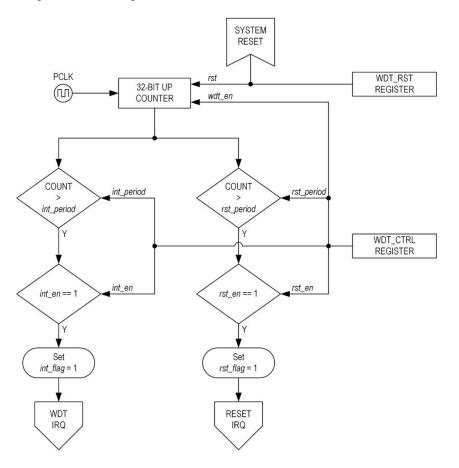
Timer In	terrupt Register			TMRn_INT	[0x000C]
Bits	Name	Access	Reset	Description	
31:1	-	R	0	Reserved for Future Use Do not modify this field.	
0	irq	RW	0	Timer Interrupt Writing any value to this bit clears	the timer's interrupt.

Table 10-6: Timer Control Registers

Timer Co	ontrol Register			TMRn_CN	[0x0010]
Bits	Name	Access	Reset	Description	
	-	R	0	0 Reserved for Future Use Do not modify this field.	
12	pwmckbd	R/W	1	PWM Output $\phi_{A'}$ Disable 1: Disable PWM Output $\phi_{A'}$ 0: Enable PWM Output $\phi_{A'}$	
11	nollpol	R/W	0	0 PWM Output $\phi_{A'}$ Polarity Bit 1: Output $\phi_{A'}$ inverted 0: Output $\phi_{A'}$ non-inverted	
10	nolhpol	R/W	0	PWM Output ϕ_A Polarity Bit 1: Output ϕ_A inverted 0: Output ϕ_A non-inverted	
9	pwmsync	R/W	0	PWM Synchronization Mode 1: PWM synchronization mode enabled 0: PWM synchronization mode disabled	
8	pres3	R/W	0	Timer Prescale Select MSB See TMRn_CN.pres for details about this bit.	
7	ten	R/W	0	Timer Enable 1: Timer enabled 0: Timer disabled	

Timer Co	ontrol Register			TMR	n_CN		[0x0010]		
Bits	Name	Access	Reset	Description					
6	tpol	R/W	0	the GPIO Por alternate fur	olarity of the tin rt Pin for the tim action in GPIO. T	er's input, output, he tpol field meani	put signal. This settin or both is not configuing ing is determined by t guration section for t	red for the timer he specific mode	
5:3	pres	R/W	0	sets the time The timer's p	er's prescaler valer's count clock, f_{CN} prescaler setting hree least signifi	$T_{-CLK} = \frac{PCLK}{PCLK}$ (Hz) is a 4-bit value wit	divides the PCLK input ^{z)} / _{Prescaler} h pres3 as the most s e below shows the pre	ignificant bit and	
				pres3	pres	Prescaler	fcnt_clk		
				0	0b000	0	$f_{PCLK}(Hz)/1$		
				0	0b001	1	$f_{PCLK} (Hz)/2$		
				0	0b010	2	$f_{PCLK} (Hz)/4$		
				0	0b011	3	$f_{PCLK}(Hz)/_{\Theta}$		
				0	0b100	4	$f_{PCLK}(Hz)/16$		
				0	0b101	5	$f_{PCLK}(Hz)/_{32}$		
				0	0b110	6	$f_{PCLK}(Hz)/_{64}$		
				0	0b111	7	$f_{PCLK}(Hz)/_{128}$		
				1	0b000	8	$f_{PCLK}(Hz)/256$		
				1	0b001	9	$f_{PCLK}(Hz)/_{512}$		
				1	0b010	10	$f_{PCLK}(Hz)/1024$		
				1	0b011	11	$f_{PCLK}(Hz)/_{2048}$		
				1	0b100	12	$\frac{f_{PCLK}(Hz)}{f_{4096}}$		
				1	0b101	13	$f_{PCLK}(Hz)/_{8192}$		
				1	0b110	Reserved	Reserved		
				1	0b111	Reserved	Reserved		

Timer Co	ntrol Register			τN	1Rn_CN	[0x0010]																													
Bits	Name	Access	Reset	Descriptio	n																														
2:0	tmode	R/W	0	Timer Moo Sets the tir	de Select mer's operating mode.																														
				tmode	Selected Timer Mode																														
								000b	One-Shot																										
				001b	Continuous																														
					010b	Counter																													
				011b	PWM																														
				100b	Capture																														
																																	101b	Compare	
						110b	Gated																												
				111b	Capture/Compare																														



11 Watchdog Timer (WDT)

The watchdog timer protects against corrupt or unreliable software, power faults, and other system-level problems, which may place the microcontroller into an improper operating state. When the application is executing properly, application software periodically resets the watchdog counter. If the watchdog timer interrupt is enabled and the software does not reset the counter within the interrupt time period (*WDT0_CTRL.int_period*), the watchdog timer generates a watchdog timer interrupt. If the watchdog timer reset is enabled and the software does not reset the counter within the reset is enabled and the software does not reset the counter within the reset is enabled and the software does not reset the counter within the reset time period (*WDT0_CTRL.rst_period*), the watchdog timer generates a system reset.

Figure 11-1 shows the block diagram of the watchdog timers.

Figure 11-1: Watchdog Timer Block Diagram

11.1 Features

- Sixteen programmable time periods for the watchdog interrupt
 2¹⁶ through 2³¹ PCLK cycles
- Sixteen programmable time periods for the watchdog reset
 - 2¹⁶ through 2³¹ PCLK cycles
- The watchdog timer counter is reset on all forms of reset

11.2 Usage

Utilizing the watchdog timer in the application software is straightforward. As early as possible in the application software, enable the watchdog timer interrupt and watchdog timer reset. Periodically the application software must write to the *WDTO_RST* register to reset the watchdog counter. If program execution becomes lost, the watchdog timer interrupt will occur, giving the system a "last chance" to recover from whatever circumstance caused the improper code execution. The interrupt routine may either attempt to repair the situation or allow the watchdog timer reset to occur. In the event of a system software failure, the interrupt will not be executed, and the watchdog system reset will recover operation.

As soon as possible after a reset, the application software should interrogate the *WDTO_CTRL.rst_flag* to determine if the reset event resulted from a watchdog timer reset. If so, application software should assume that there was a program execution error and take whatever steps necessary to guard against a software corruption issue.

11.3 Interrupt and Reset Period Timeout Configuration

Each watchdog timer supports two independent timeout periods, the interrupt period timeout and reset period timeout.

Interrupt Period Timeout (WDT_CTRL0.int_period) - Sets the number of PCLK cycles until a watchdog timer interrupt is generated. This period must be less than the Reset Period Timeout for the watchdog timer interrupt to occur.

Reset Period Timeout (WDT_CTRL0.rst_period) – Sets the number of PCLK cycles until a system reset event occurs.

The interrupt and reset period timeouts are calculated using *Equation 11-1* and *Equation 11-2* respectively, where $f_{PCLK} = \frac{f_{SYSCLK}}{2}$. Table 11-1 shows example interrupt period timeout calculations for several *WDTO_CTRL.int_period* settings with the System Clock set as the 96MHz High-Frequency Internal Oscillator.

Equation 11-1: Watchdog Timer Interrupt Period

$$T_{INT_PERIOD} = \left(\frac{1}{f_{PCLK}}\right) \times 2^{(31 - WDT0_CTRL.int_period)}$$

Equation 11-2. Watchdog Timer Reset Period

$$T_{RST_PERIOD} = \left(\frac{1}{f_{PCLK}}\right) \times 2^{(31 - WDT0_CTRL.rst_period)}$$

WDT0_CTRL int_period	T _{INT_PERIOD} (seconds)
15	0.001
14	0.002
13	0.004
12	0.009
11	0.018
10	0.035
9	0.070
8	0.140

WDT0_CTRL int_period	T _{INT_PERIOD} (seconds)
7	0.280
6	0.560
5	1.12
4	2.24
3	4.47
2	8.95
1	17.9
0	Disabled

11.4 Enabling the Watchdog Timer

The watchdog timers are free running and require a protected sequence of writes to enable the watchdog timers to prevent an unintended reset during the enable process.

11.4.1 Enable sequence

- 1. Write WDT0_RST.wdt_rst: 0x000000A5
- 2. Write WDT0_RST.wdt_rst: 0x0000005A
- 3. Set WDT0_CTRL.wdt_en to 1

11.5 Disabling the Watchdog Timer

The watchdog timers can be disabled by the application code manually or by the microcontroller automatically as shown below.

11.5.1 Manual Disable

Setting WDT0_CTRL.wdt_en to 0 disables the watchdog timer.

11.5.2 Automatic Disable

A power-on-reset (POR) event automatically disables the watchdog timers by setting WDT0_CTRL.wdt_en to 0.

Note: The watchdog timer remains enabled during all other types of reset.

11.6 Resetting the Watchdog Timer

To prevent a watchdog interrupt or a watchdog reset or both, application software must write the reset sequence, shown below, to the *WDTO_RST* register prior to an interrupt or reset timeout occurring.

11.6.1 Reset Sequence

- 1. Write *WDT0_RST*: 0x0000 00A5
- 2. Write WDT0_RST 0x0000 005A

11.7 Detection of a Watchdog Reset Event

During system start-up, system software should check the *WDTO_CTRL.rst_flag* to determine if the reset was the result of a watchdog reset. Application software is responsible for taking appropriate actions if a watchdog reset occurred.

11.8 Watchdog Timer Registers

The WDT0 base peripheral address is 0x4000 3000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Table 11-2: Watchdog Timer Registers

Address	Register Name	Access	Description	
[0x0000]	WDT0_CTRL	R/W	Watchdog Timer 0 Control Register	
[0x0004]	WDT0_RST	R/W	Watchdog Timer 0 Reset Register	

1.1.1 Watchdog Timer Register Details

Table 11-3: Watchdog Timer Control Register

Watchdog Timer 0 Control Register				WDT0_CTRL	0x0000 [0x00]
Bits	Name	Access	Reset	Description	
31	rst_flag	R/W	See description	Reset Flag If set a watchdog system reset oc 0: Watchdog did not cause rese 1: Watchdog reset occurred.	
30:12	-	RO	0	Reserved for Future Use Do not modify this field.	
11	rst_en	R/W	0	Reset Enable Enable/Disable system reset if the power on reset. 0: Disabled 1: Enabled	e WDT0_CTRL.rst_period expires. Only reset by
10	int_en	R/W	0	Interrupt Enable Enable or Disable the watchdog in 0: Disabled 1: Enabled	nterrupt.
9	int_flag	R/W1C	0	Interrupt Flag If set, the watchdog interrupt per 0: IRQ not pending 1: Interrupt period expired. Ger	iod has occurred. nerates a WDT IRQ if <i>WDT0_CTRL.int_en</i> = 1.
8	wdt_en	R/W	See Description	the watchdog timer, the following 1) Write WDTO_RST: 0x0000 00 2) Write WDTO_RST: 0x0000 00 3) Write WDTO_RST.wdt_en: 0x 0: Disabled 1: Watchdog Timer Enabled. To above.	05A

Watchdog Timer 0 Control Register				WDT0_CTRL 0x0000 [0x00]			
Bits	Name	Access	Res	set Description			
7:4	rst_period	R/W	0		Reset PeriodSets the number of PCLK cycles until a system reset occurs if the watchdog timer isnot reset. $0xF: 2^{16} \times t_{PCLK}$ $0xE: 2^{17} \times t_{PCLK}$ $0xD: 2^{18} \times t_{PCLK}$ $0xC: 2^{19} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{23} \times t_{PCLK}$ $0xA: 2^{23} \times t_{PCLK}$ $0xS: 2^{24} \times t_{PCLK}$ $0xS: 2^{25} \times t_{PCLK}$ $0xS: 2^{26} \times t_{PCLK}$ $0xA: 2^{27} \times t_{PCLK}$ $0xA: 2^{27} \times t_{PCLK}$ $0xA: 2^{29} \times t_{PCLK}$ $0xA: 2^{29} \times t_{PCLK}$ $0xA: 2^{20} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{22} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$		
3:0	int_period	R/W	0		OKO: $2 \times t_{PCLK}$ Interrupt PeriodSets the number of PCLK cycles until a watchdog timer interrupt is generated. $0xF: 2^{16} \times t_{PCLK}$ $0xE: 2^{17} \times t_{PCLK}$ $0xD: 2^{18} \times t_{PCLK}$ $0xC: 2^{19} \times t_{PCLK}$ $0xK: 2^{20} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xS: 2^{22} \times t_{PCLK}$ $0xS: 2^{23} \times t_{PCLK}$ $0xS: 2^{23} \times t_{PCLK}$ $0xS: 2^{24} \times t_{PCLK}$ $0xS: 2^{26} \times t_{PCLK}$ $0xS: 2^{26} \times t_{PCLK}$ $0xA: 2^{27} \times t_{PCLK}$ $0xA: 2^{27} \times t_{PCLK}$ $0xA: 2^{29} \times t_{PCLK}$ $0xA: 2^{29} \times t_{PCLK}$ $0xA: 2^{20} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$ $0xA: 2^{22} \times t_{PCLK}$ $0xA: 2^{23} \times t_{PCLK}$ $0xA: 2^{21} \times t_{PCLK}$		

Watchdo	Watchdog Timer 0 Reset Register		WDT0_RST		0x0004 [0x04]
Bits	Name	Access	Reset	Reset Description	
31:8	-	RO	0	Reserved for Future Use Do not modify this field.	
7:0	wdt_rst	R/W	0	watchdog counter. The followin	

12 I²C Master/Slave Serial Controller

The MAX32660 integrates two I²C peripherals, designated I2C0 and I2C1. The register interfaces for I2C0 and I2C1 are identical with the same offset addresses for each register. For simplicity, I2Cn is used throughout this section to refer to both I²C ports (where n = [0,1]). The I2Cn peripheral supports High-speed mode (Hs-mode), Fast-mode and Standard mode communication speeds. Each I2Cn peripheral can operate as a master or a slave device.

The I²C bus is a standardized two-wire, bidirectional serial bus. It uses only two bus lines, a Serial Data Access (SDA) line for data, and a Serial Clock line (SCL) for the clock. SDA and SCL idle high with external pullup resistors. They are pulled low by open-drain drivers in the peripherals. Internal pullup circuits in the GPIO pins are capable of holding the SDA line and SCL line at a logic high state when all devices are idle, but external pullup resistors are highly recommended for all but the simplest, lowest-capacitance systems.

An I²C master owns the I²C bus for the duration of a transfer, driving the clock (SCL) and generating START and STOP signals. In slave mode, the I²C Controller relies on an external master to generate the clock on SCL. An I²C slave responds to data and commands only when an I²C master device addresses it.

For detailed information on I²C bus operation refer to Maxim Application Note 4024: SPI/I²C Bus Lines Control Multiple Peripherals.

12.1.1 Related Documentation

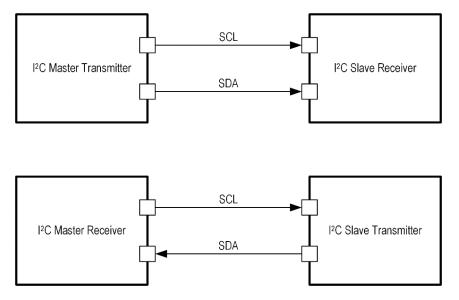
For details of the l^2 C-bus, please refer to the l^2 C-bus specification and user manual, Rev. 6 - 4 April 2014.

12.1.2 I²C Bus Terminology

Table 12-1, below, contains terms and definitions used in this chapter for the I²C Bus Terminology.

Term	Definition	
Transmitter	The device that sends data to the bus.	
Receiver	The device that receives data from the bus.	
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.	
Slave	The device addressed by a master.	
Multi-master More than one master can attempt to control the bus at the same time without corruption message.		
Arbitration	Procedure to ensure that, if more than one master simultaneously tries to control the bus, only can do so and the resulting message is not corrupted.	
Synchronization	Procedure to synchronize the clock signals of two or more devices.	
Clock Stretching	When a slave device holds SCL low to pause a transfer until it is ready. This feature is optional according to the I ² C Specification; thus, a master does not have to support slave clock stretching if none of the slaves in the system are capable of clock stretching.	

Table 12-1: I²C Bus Terminology


A device attached to the I²C-bus assumes one of the following roles and can change between each transaction.

- Master-Transmitter
- Master-Receiver
- Slave-Transmitter
- Slave-Receiver

For all of the above roles, the Master is responsible for initiating the transfer and generating the clock signal on the SCL line. *Figure 12-1, below,* shows the four roles and the direction of the communication on the SCL and SDA lines.

Figure 12-1: The Roles of I^2C Devices and the Direction the I^2C Signals

12.2 I²C Master/Slave Features

Each I²C Master/Slave is compliant with the I²C Bus Specification and include the following features

- Compliant with I²C bus specification revision 06 (2014)
- Information transferred via a serial data bus (SDA) and a serial clock line (SCL)
- Operates as either a master or slave device as a transmitter or receiver
- Supports I²C Standard Mode, Fast Mode, Fast Mode Plus and High Speed (Hs) mode
- Data transfer rates up to:
 - 100 kbps in Standard Mode
 - 400 kbps in Fast Mode
 - 1 Mbps in Fast Mode Plus
 - 3.4 Mbps in Hs Mode
- Multi-master capable, including support for arbitration and clock synchronization for Standard, Fast and Fast Plus modes
- Supports the maximum bus capacitance as defined by the I²C bus specification
- Supports 7- and 10-bit addressing
- Supports RESTART condition
- Supports clock stretching
- Support for 7- and 10-bit device addressing
- Transfer status interrupts and flags
- DMA data transfer support
- I²C timing parameters fully controllable via firmware
- Glitch filter and Schmitt trigger hysteresis on SDA and SCL
- Control, status, and interrupt events are available for maximum flexibility
- Independent 8-byte RX FIFO and 8-byte TX FIFO
- TX FIFO preloading
- Programmable interrupt threshold levels for the TX and RX FIFO

12.3 I²C Overview

12.3.1 *I*²*C Bus Speeds*

The I²C peripherals support standard mode, fast mode, fast-plus mode and high-speed mode for I²C communications. All modes are downward compatible and operate at a lower bus speed as necessary.

12.3.2 I²C Transfer Protocol Operation

The I²C protocol operates over a two-wire bus: a clock circuit (SCL) and a data circuit (SDA). I²C is a half-duplex protocol: only one device is permitted to transmit on the bus at a time. The data rate is not fixed and can dynamically operate up to 100kHz in Standard Mode and up to 400kHz in Fast Mode.

Each transfer is initiated when the bus master sends a START or repeated START condition followed by the address of the slave peripheral. Information is sent most significant bit (MSB) first. Following the slave address, the master exchanges data with the addressed slave. The master can transmit data to the slave (a 'write' operation) or receive data from the slave (a 'read' operation). An acknowledge bit is sent by the receiving device after each byte is transferred. When all necessary data bytes have been transferred, a STOP or RESTART condition is sent by the bus master to indicate the end of the transaction. After the STOP condition has been sent, the bus is idle and ready for the next transaction. After a RESTART condition is sent, the same master begins a new transmission. The number of bytes that can be transmitted per transfer is unrestricted.

12.3.3 START and STOP Conditions

A START condition occurs when a bus master pulls SDA from high to low while SCL is high, and a STOP condition occurs when a bus master allows SDA to be pulled from low to high while SCL is high. Because these are unique conditions that cannot occur during normal data transfer, they are used to denote the beginning and end of the data transfer.

12.3.4 Master and Slave Overview

 $I^{2}C$ transmit and receive data transfer operations are initiated by first loading the data to be sent in the $I^{2}C$ FIFO by writing data to the *I2Cn_FIFO* register. Once the transaction has completed, the data received can be read from the FIFO by reading data from the *I2Cn_FIFO* register. If a slave sends a NACK in response to a write operation, the $I^{2}C$ master generates an interrupt to the core. The $I^{2}C$ controller can be configured to issue a STOP condition to free the bus.

The receive FIFO contains the received data. If the receive FIFO is full or the transmit FIFO is empty, the I²C master stretches the clock to allow time to read bytes from the receive FIFO or load bytes into the transmit FIFO.

12.3.5 Slave Addressing

The first byte transmitted after a START condition is the slave address byte. If seven-bit addressing is used, the address byte consists of seven address bits and one R/W bit.

The I²C peripheral in the MAX32660 supports both 7-bit and 10-bit addressing. However, some slave addresses are reserved for special purposes by the I²C specification, including, but not limited to the following:

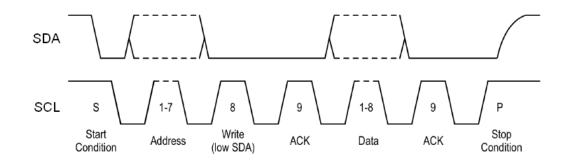
- Address 0b0000 0000 is a General Call Address and all slave devices recognize this address.
- Address 0b0000 0001 is used as a START condition for older devices.
- Address 0b1111 1x₁x₂1 is a request for a slave device's device ID.
- Address 0b1111 0x₃x₂x₁ indicates that the l²C master is initiating 10-bit addressing mode. The 3 most significant bits of the 10-bit address are x₃x₂x₁.

- Address 0b0000 x₄x₃x₂x₁ is reserved by the I²C specification for special purposes and should not be used for a slave address.
- Address 0b1111 1 x₃x₂x₁ is reserved by the I²C specification for special purposes and should not be used for a slave address.

12.3.6 Acknowledge and Not Acknowledge

An acknowledge bit (ACK) is generated by the receiver, whether I²C master or slave, after every byte received. The ACK bit is how the receiver tells the transmitter that the byte was successfully received, and another byte might be sent.

A Not Acknowledge (NACK) occurs if the receiver does not generate an ACK when the transmitter releases SDA. A NACK allows SDA to float high during the acknowledge time slot. The I²C master can then either generate a STOP condition to abort the transfer, or it can generate a repeated START condition (that is, send a START condition without an intervening STOP condition) to start a new transfer.


A receiver can generate a NACK after a byte transfer if any of the following conditions occur:

- No receiver is present on the bus with the transmitted address. In that case, no device will respond with an acknowledge signal.
- The receiver is unable to receive or transmit because it is busy and is not ready to start communication with the master.
- During the transfer, the receiver receives data or commands it does not understand.
- During the transfer, the receiver is unable to receive any more data.
- If an I²C master has requested data from a slave, it signals the slave to stop transmitting by sending a NACK following the last byte it requires.

12.3.7 Bit Transfer Process

Both SDA and SCL circuits are open-drain, bidirectional circuits. Each has an external pullup resistor that ensures each circuit is high when idle. The I²C specification states that during data transfer, the SDA line can change state only when SCL is low, and that SDA is stable and able to be read when SCL is high as shown in *Figure 12-2, below*.

Figure 12-2: I²C Write Data Transfer

The process for an I²C data transfer is as follows:

- 1. A bus master indicates a data transfer to a slave with a START condition.
- 2. The master then transmits one byte with a 7-bit slave address and a single read-write bit: a zero for a write or a one for a read.
- 3. During the next SCL clock following the read-write bit, the master releases SDA. During this clock period, the addressed slave responds with an ACK by pulling SDA low.
- 4. The master senses the ACK condition and begins transferring data. If reading from the slave, it floats SDA and allows the slave to drive SDA to send data. After each byte, the master drives SDA low to acknowledge the byte. If writing to the slave, the master drives data on the SDA circuit for each of the eight bits of the byte, and then floats SDA during the ninth bit to allow the slave to reply with the ACK indication.
- 5. After the last byte is transferred, the master indicates the transfer is complete by generating a STOP condition. A STOP condition is generated when the master pulls SDA from a low to high while SCL is high.

12.3.8 SCL and SDA Bus Drivers

The I²C bus expects SCL and SDA to be open-drain signals. In the MAX32660, once the I²C peripheral is enabled and the proper GPIO alternate function is selected, the corresponding pad circuits are automatically configured as open-drain outputs. However, SCL can also be optionally configured as a push-pull driver to conserve power and avoid the need for any pull-up resistor. This should only be used in systems where no I²C slave device can hold the SCL line low. Push-pull operation is enabled by setting *I2Cn_CTRL0.sclppm* to 1. (SDA always operates in open-drain mode.)

12.3.9 I²C Interrupt Sources

The I²C Controller has a very flexible interrupt generator that generates an interrupt signal to the Interrupt Controller on any of several events. On recognizing the I²C interrupt, firmware determines the cause of the interrupt by reading the I²C Interrupt Flags registers *I2Cn_INTFL0* and *I2Cn_INTFL1*. Interrupts can be generated for the following events:

- Transaction Complete (Master/Slave)
- Address NACK received from slave (Master)
- Data NACK received from slave (Master)
- Lost arbitration (Master)
- Transaction timeout (Master/Slave)
- FIFO is empty, not empty, full to configurable threshold level (Master/Slave)
- TX FIFO locked (Master/Slave)
- Out of sequence START and STOP conditions (Master/Slave)
- Sent a NACK to an external master because the TX or RX FIFO was not ready (Slave)
- Address ACK or NACK received (Master)
- Incoming address match (Slave)
- TX Underflow or RX Overflow (Slave)

Interrupts for each event can be enabled or disabled by setting or clearing the corresponding bit in the *I2Cn_INTEN0* or *I2Cn_INTEN1* interrupt enable register.

Note: Disabling the interrupt does not prevent the corresponding flag from being set by hardware but does prevent an IRQ when the interrupt flag is set.

Note: Prior to enabling an interrupt, the status of the corresponding interrupt flag should be checked and, if necessary, serviced or cleared. This prevents a previous interrupt event from interfering with a new I²C communications session.

12.3.10 SCL Clock Configurations

The SCL frequency is dependent upon the values of I²C peripheral clock and the values of the external resistor and capacitor on the SCL clock line.

Note: An external RC load on the SCL line will affect the target SCL frequency calculation.

Deremeter	Standar	rd Mode	Fast Mode		
Parameter	Min	Max	Min	Max	
SCL Clock Freq.	0	100 kHz	0	400 kHz	
I ² C Hold Time	4.0 µs	-	0.6 µs	-	
SCL High	4.0 µs	-	0.6 µs	-	
SCL Low	4.7 μs	-	1.3 µs	-	
t _{RC} Rise Time	-	1000 ns	20 ns	300 ns	

Figure 12-3: I²C Specification Minimum and Maximum Clock Parameters for Standard and Fast Mode

12.3.11 Clock Synchronization

The I²C specification allows for more than one bus master. When more than one master is on the same bus, clock synchronization between different master's clocks is necessary. The I²C Master mode supports automatic clock synchronization and is compliant with the clock synchronization requirements of the I²C Specification. Clock synchronization is automatically handled in the I²C controller.

12.3.12 Transmit and Receive FIFOs

Each I²C master/slave has one 8-byte deep transmit FIFO (TX FIFO) and one 8-byte deep receive FIFO (RX FIFO) that reduces processor overhead. To further speed transfers, the DMA can read and write to each FIFO. When the DMA is used to read and write to the FIFOs, no additional I²C configuration is required and interrupts are still sent to the core. See the DMA section for more details.

When the receive FIFO is enabled, received bytes are automatically written to it. If the receive FIFO is full, no more data is written and any newly received bytes are lost.

When the transmit FIFO is enabled, either user firmware or the DMA can provide data to be transmitted. The oldest byte in the FIFO is sent out over SDA only when an ACK signal is received from an addressed slave.

Interrupts can be generated for the following FIFO status:

- TX FIFO level less than or equal to threshold
- RX FIFO level greater than or equal to threshold
- TX FIFO underflow
- RX FIFO overflow
- TX FIFO locked for writing

12.4 Clock Stretching

If a slave cannot receive or transmit a complete byte of data, it can force the master into a wait state by clock stretching. Clock stretching is when a slave holds SCL low after an ACK is on the bus. When the slave is ready, it releases the SCL line from low and then resumes the data transfer.

The I²C controller can hold SCL low in both master and slave modes after an ACK bit transmission. However, the term 'clock stretching' as defined in the I²C Bus Specification only applies if performed by a slave device. When an I²C master holds the SCL line low, the master is technically varying the clock speed. The master can vary the clock speed from DC (0Hz) up to the maximum f_{SCL} . For simplicity, this section describes situations where either an external slave or external master holds the SCL line low.

For clock stretching, SCL is held low after an ACK bit and before the first data bit. This is often done when a receiver cannot receive more data (usually from a full RX FIFO), or a transmitter needs to send more data but is not ready (usually from an empty TX FIFO).

However, during Interactive Receive Mode (IRXM), the receiver begins clock stretching before the ACK bit, allowing firmware time to decide whether to send an ACK or NACK. If operating in IRXM (*I2Cn_CTRL0.irxm*=1) as a slave with clock stretching disabled (*I2Cn_CTRL0.sclstrd*=1), SCL is not held low. Thus, the burden is on firmware to respond quickly enough to meet the data setup timing requirements as a late ACK could cause a transition on SDA while SCL is high, resulting in an unwanted STOP or RESTART. For these reasons, it is not recommended to use interactive receive mode with slave clock stretching disabled.

For a transmit operation as either master or slave, when the TX FIFO is empty after the last byte is shifted out, SCL is automatically held low until data is written to the TX FIFO. Master transmitters can stop clock stretching in this situation to end the transaction by sending a START or RESTART condition. When a slave transmitter sees an external master end the transaction by sending a NACK, it can then release SDA.

12.5 I²C Bus Timeout

The Timeout register, *I2Cn_TIMEOUT.to*, is used to detect bus errors. *Equation 12-1* and *Equation 12-2* show equations for calculating the maximum and minimum timeout values based on the value loaded into the *I2Cn_TIMEOUT.to* field.

Equation 12-1: I²C Timeout Maximum

$$t_{TIMEOUT} \leq \left(\frac{1}{f_{I2C_CLK}}\right) \times \left((I2Cn_TIMEOUT.to \times 8) + 3\right)$$

Due to clock synchronization, the timeout is guaranteed to meet the following minimum time calculation shown in *Equation 12-2*.

Equation 12-2: I²C Timeout Minimum

$$t_{TIMEOUT} \leq \left(\frac{1}{f_{12C_CLK}}\right) \times \left((I2Cn_TIMEOUT.to \times 8) + 2\right)$$

The timeout feature is disabled when $I2Cn_TIMEOUT.to = 0$ and is enabled for any non-zero value. When the timeout is enabled, the timeout timer starts counting when the I²C peripheral hardware drives SCL low and is reset by the I²C peripheral hardware when the SCL line is released.

The timeout counter only monitors if the I²C peripheral hardware is driving the SCL line low. It does not monitor if an external I²C device is actively holding the SCL line low. The I²C peripheral does not monitor the status of the SDA line.

If the timeout timer expires, a bus error condition has occurred. When a timeout error occurs, the I^2C peripheral hardware release the SCL and SDA lines and sets the timeout error interrupt flag to 1 ($I_2Cn_INTFL0.toeri = 1$).

For applications where an external device may hold the SCL line low longer than the maximum timeout supported, the timeout can be disabled by setting the timeout field to 0 ($I2Cn_TIMEOUT.to = 0$).

12.6 I²C Addressing

After a START or RESTART condition, an address byte is transmitted where the first seven bits are the address, and the last bit indicates to the slave if the operation is a read or a write.

Table 12-2: I²C Address Byte Format X=Don't Care

Slave Ad	Slave Address Bits R/W Bit		Description	
0000	000	0	General Call Address	
0000	000	1	START Condition	
0000	001	х	CBUS Address	
0000	010	х	Reserved for different bus format	
0000	011	х	Reserved for future purposes	
0000	1XX	х	HS-mode master code	
1111	1XX	х	Reserved for future purposes	
1111	0XX	Х	10-bit slave addressing	

In 7-bit addressing mode, the master sends one address byte. To address a 7-bit address slave, first clear *I2Cn_MSTR_MODE.sea* = 0, then write the address to the TX FIFO formatted as follows:

Master write to Slave : 7-bit address : [A6A5A4A3A2A1A0 0] Master read from Slave : 7-bit address : [A6A5A4A3A2A1A0 1]

In 10-bit addressing mode (*I2Cn_MSTR_MODE.sea* = 1), the first byte the master sends is the 10-bit Slave Addressing byte which includes the first two bits of the 10-bit address, followed by a 0 for the R/W bit. The master then sends a second byte representing the remainder of the 10-bit address. If the operation is a write as indicated by the R/W bit in the second byte, the data is transmitted to the slave for the write. If the operation is a read, as indicated by the R/W bit in the second byte, the I²C master performs a REPEATED START and transmits the 10-bit slave address again with the R/W bit set to 1. The I²C peripheral hardware then begins receiving data from the slave device.

If the RX FIFO is not empty and an I²C write occurs, the I²C peripheral hardware automatically sends a NACK.

The setting of the Do Not Respond bit (*I2Cn_RXCTRL0.dnr*) controls when a NACK is sent as follows:

- *I2Cn_RXCTRL0.dnr* = 1
 - A NACK is sent on the first address byte received and the hardware sets the Do Not Respond Interrupt Flag (*I2Cn_INTFL0.dnreri = 1*)
- *I2Cn_RXCTRL0.dnr* = 0
 - Sends an ACK for each address byte, but NACKs subsequent data received.

If the TX FIFO is not ready ($I2Cn_TXCTRL1.txrdy = 0$) and the I²C controller receives a data read, the hardware automatically sends a NACK during the first address byte. The setting of the Do Not Respond field is ignored by the hardware for this condition because it is the only opportunity to send a NACK for an I²C read transaction.

12.7 I²C TX FIFO and RX FIFO Management

There are separate transmit and receive FIFOs, TX FIFO and RX FIFO. Both are accessed using the FIFO Data register *I2Cn_FIFO*. Writes to this register enqueue data into the TX FIFO. Writes to a full TX FIFO have no effect. Reads from *I2Cn_FIFO* dequeue data from the RX FIFO. Reads from an empty RX FIFO returns 0xFF.

The TX and RX FIFO will only read or write one byte at a time. Transactions larger than 8 bits can still be performed, however. A 16- or 32-bit write to the TX FIFO stores just the lowest 8 bits of the write data. A 16- or 32-bit read from the RX FIFO will have the valid data in the lowest 8 bits and 0's in the upper bits. In any case, the TX and RX FIFOs will only accept 8 bits for a read or a write.

Both the RX FIFO and TX FIFO are flushed when the I^2C port is disabled by clearing $I2Cn_CTRL0.i2cen = 0$.

The TX FIFO and RX FIFO can be flushed by setting the Transmit FIFO Flush bit (*I2Cn_TXCTRL0.txfsh* = 1) or the Receive FIFO Flush bit (*I2Cn_RXCTRL0.rxfsh* = 1), respectively.

12.7.1 Transmit Lockout

Under certain conditions the TX FIFO is automatically locked by hardware and flushed so stale data is not unintentionally transmitted. The TX FIFO is automatically flushed, and writes are locked out under the following conditions:

- General Call Address match and TX FIFO Preloading is disabled
- Slave Address match and TX FIFO Preloading is disabled
- Operating as a slave transmitter, and a NACK is received.
- Any of the following interrupts: Arbitration Error, Timeout Error, Master Mode Address NACK, Data NACK Error, Start Error, and STOP Condition Detected.

When the above conditions occur, the TX FIFO is flushed so stale data is not unintentionally transmitted. In addition, the Transmit Lockout Flag is set (*I2Cn_INTFLO.txloi* = 1) and writes to the TX FIFO are ignored until firmware acknowledges the external event by clearing *I2Cn_INTFL0.txloi*.

Flushing the TX FIFO on Slave Address Match or General Call Match can be disabled using the Transmit FIFO Preload bit (*I2Cn_TXCTRL0.txpreld*). Setting this bit allows applications to preload the Transmit FIFO prior to a Slave Address Match. This can be combined with Slave Clock Stretching disabled (*I2Cn_CTRL0.sclstrd* = 0) to maximize the chance of completing a transmit operation without a transmit underflow error.

12.8 Interactive Receive Mode (IRXM)

In some situations, this l^2C might want to inspect and respond to each byte of received data. In this case, Interactive Receive Mode can be used. Interactive Receive Mode is enabled by setting $l_2Cn_CTRL0.irxm = 1$. If Interactive Receive Mode is enabled, it must occur before any l^2C transfer is initiated.

When Interactive Receive Mode (IRXM) is enabled, after every data byte received the I^2C peripheral automatically holds SCL low before the ACK bit. Additionally, after the 8th SCL falling edge, the I^2C peripheral sets the IRXM Interrupt Status Flag ($I2Cn_INTFLO.irxmi = 1$). Application firmware must read the data and generate a response (ACK or NACK) by setting the IRXM Acknowledge ($I2Cn_CTRL0.ack$) bit accordingly. Send an ACK by clearing the $I2Cn_CTRL0.ack$ bit to 0. Send a NACK by setting the $I2Cn_CTRL0.ack$ bit to 1.

After setting the $I2Cn_CTRL0.ack$ bit, clear the IRXM interrupt flag. Write 1 to $I2Cn_INTFL0.irxmi$ to clear the interrupt flag. When the IRXM interrupt flag is cleared, the I²C peripheral hardware releases the SCL line and sends the $I2Cn_CTRL0.ack$ on the SDA line. For both master and slave operations, SCL is released only after the necessary SCL low time requirement is satisfied to conform with $t_{su;dat}$ timing.

While I²C peripheral is waiting for the application firmware to clear the *I2Cn_INTFL0.irxmi* flag, firmware can disable Interactive Receive Mode and, if operating as a master, load the remaining number of bytes to be received for the transaction. This allows firmware to examine the initial bytes of a transaction, which might be a command, and then disable Interactive Receive Mode to receive the remaining bytes in normal operation.

During IRXM, received data is not placed in the RX FIFO. Instead, the *I2Cn_FIFO* address is repurposed to directly read the receive shift register, bypassing the RX FIFO. Therefore, before disabling Interactive Receive Mode, firmware must first read the data byte from *I2Cn_FIFO.data*. If the IRXM byte is not read, the next read from the RX FIFO returns 0xFF.

Note: Interactive Receive Mode does not apply to address bytes, only to data bytes.

Note: Interactive Receive Mode does not apply to general call address responses or START byte responses.

12.9 I²C DMA Control

There are independent DMA channels for each TX FIFO and each RX FIFO. DMA activity is triggered by the TX FIFO (*I2Cn_TXCTRL0.txth*) and RX FIFO (*I2Cn_RXCTRL0.rxth*) threshold levels.

12.9.1 I²C Transmit DMA Burst Size

When the TX FIFO byte count (*I2Cn_TXCTRL1.txfifo*) is less than or equal to the TX FIFO Threshold Level *I2Cn_TXCTRL0.txth*, then the DMA transfers data into the TX FIFO according to the DMA configuration. To ensure the DMA does not overflow the TX FIFO, the DMA burst size should be set as follows:

Equation 12-3: DMA Burst Size Calculation for I²C Transmit

DMA Burst Size = TX FIFO Depth - $I2Cn_TXCTRL0.txth \equiv 8 - I2Cn_TXCTRL0.txth$

where $0 \le I2Cn_TXCTRL0 \le 7$

Applications trying to avoid transmit underflow and/or clock stretching should use a smaller burst size and higher *I2Cn_TXCTRL0.txth* setting. This fills up the FIFO more frequently but increases internal bus traffic.

12.9.2 I²C Receive DMA Burst Size

When the RX FIFO count (*I2Cn_RXCTRL1.rxfifo*) is greater than or equal to the RX FIFO Threshold Level *I2Cn_RXCTRL0.rxth*, the DMA transfers data out of the RX FIFO according to the DMA configuration. To ensure the DMA does not underflow the RX FIFO, the DMA burst size should be set as follows:

Equation 12-4: DMA Burst Size Calculation for I²C Receive

DMA Burst Size = I2Cn_RXCTRL0.rxth

where $1 \le I2Cn_RXCTRL0.rxth \le 8$

Applications trying to avoid receive overflow and/or clock stretching should use a smaller burst size and lower I2Cn_RXCTRL0.rxth. This results in reading from the Receive FIFO more frequently but increases internal bus traffic.

Note for receive operations, the length of the DMA transaction (in bytes) must be an integer multiple of I2Cn_RXCTRL0.rxth. Otherwise, the receive transaction will end with some data still in the RX FIFO, but not enough to trigger an interrupt to the DMA, leaving the DMA transaction incomplete. One easy way to ensure this for all transaction lengths is to set burst size to 1 (I2Cn_RXCTRL0.rxth = 1).

To enable DMA transfers, enable the TX DMA channel (*I2Cn_DMA.txen*) and/or the RX DMA channel (*I2Cn_DMA.rxen*). Refer to section *I2C DMA Control* for more information on configuring the DMA.

12.10 I²C Master Mode Transmit Operation

The peripheral operates in master mode when Master Mode Enable *l2Cn_CTRL0.mst* = 1. To initiate a transfer, the master generates a START condition by setting *l2Cn_MSTR_MODE.start*=1. If the bus is busy, it does not generate a START condition until the bus is available.

A master can communicate with two slave devices without relinquishing the bus. Instead of generating a STOP condition after communicating with the first slave, the master generates a Repeated START condition, or RESTART, by setting *I2Cn_MSTR_MODE.restart* = 1. If a transaction is in progress, the master finishes the transaction before generating a RESTART. The controller then transmits the slave address stored in the TX FIFO. The *I2Cn_MSTR_MODE.restart* bit is automatically cleared to 0 as soon as the master begins a RESTART condition. The reception of a STOP condition clears any pending RESTART.

I2Cn_MSTR_MODE.start is automatically cleared to 0 after the master has completed a transaction and sent a STOP condition.

The master can also generate a STOP condition by setting *I2Cn_MSTR_MODE.stop* = 1.

If both START and RESTART conditions are enabled at the same time, a START condition is generated first. Then, at the end of the first transaction, a RESTART condition is generated.

If both RESTART and STOP conditions are enabled at the same time, a STOP condition is not generated. Instead, a RESTART condition is generated. After the RESTART condition is generated, both bits are cleared.

If START, RESTART, and STOP are all enabled at the same time, a START condition is first generated. At the end of the first transaction, a RESTART condition is generated. The *I2Cn_MSTR_MODE.stop* bit is cleared and ignored.

A slave cannot generate START, RESTART, or STOP conditions. Therefore, when Master Mode is disabled, the *I2Cn_MSTR_MODE.start*, *I2Cn_MSTR_MODE.restart*, and *I2Cn_MSTR_MODE.stop* bits are all cleared to 0.

Note: After starting a transfer, I2Cn_MSTR_MODE.start = 1, changing the I²C configuration results in unpredictable behavior.

12.11 I²C Master Mode Transmit Bus Arbitration

The I²C protocol supports multiple masters on the same bus. When the bus is free, it is possible that two masters might try to initiate communication at the same time. This is a valid bus condition. If this occurs, only one master can remain in master mode and complete its transaction. The other master must back off transmission and wait until the bus is idle. This process is called bus arbitration.

To determine which master wins the arbitration, each master compares the data being transmitted on SDA to the value observed on SDA. If the master attempting to transmit a 1 on SDA (that is, the master wants SDA to float) senses a 0 instead, that master concludes that it has lost arbitration because another master is transmitting a 0 onto SDA. It then cedes the bus by switching off its SDA driver.

Note that this arbitration scheme works with any number of bus masters: if more than two masters begin transmitting simultaneously, the arbitration continues as each master cedes the bus until only one master remains transmitting. Data is not corrupted because as soon as each master realizes it has lost arbitration it stops transmitting, leaving the data on SDA intact.

Once a master has lost arbitration it stops generating SCL, sets *I2Cn_INTFL0.areri*, and clears *I2Cn_MSTR_MODE.start*, *I2Cn_MSTR_MODE.start*, and *I2Cn_MSTR_MODE.stop* to 0.

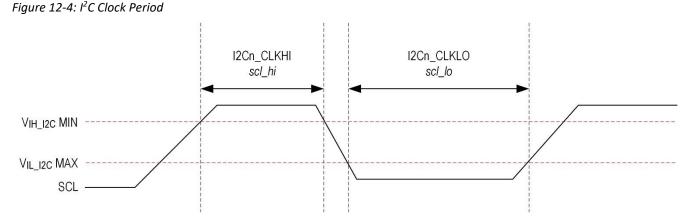
The I²C master peripheral is compliant with the bus arbitration requirements of the I²C specification. I²C bus arbitration is handled by the peripheral hardware and requires no additional configuration.

12.12 SCL Clock Generation for Standard, Fast and Fast-Plus Modes

The master generates the I^2C clock on the SCL line. Application code must configure the *I2Cn_CLKHI* and *I2Cn_CLKLO* registers for the desired I^2C operating frequency.

The I^2C peripheral clock is supplied directly by the system peripheral clock, f_{PCLK} .

The SCL high time is configured in the I²C Clock High Time register field *I2Cn_CLKHI.scl_hi*. The SCL low time is configured in the I²C Clock Low Time register field *I2Cn_CLKLO.scl_lo*. Each of these fields is 8-bits.


Equation 12-5: I²C Clock High Time Calculation

 $t_{SCL HI} = t_{I2C CLK} \times (I2Cn_CLKHI.scl_hi + 1)$

Equation 12-6: I²C Clock Low Time Calculation

 $t_{SCL \ LO} = t_{I2C \ CLK} \times (I2Cn_CLKLO. scl_lo + 1)$

Figure 12-4 shows the association between the SCL clock low and high times for Standard, Fast and Fast-Plus I²C frequencies.

During synchronization, external masters or external slaves may be driving SCL simultaneously. This affects the SCL duty cycle. By monitoring SCL, the controller can determine whether an external master or slave is holding SCL low. In either case, the controller waits until SCL is high before starting to count the number of SCL high cycles. Similarly, if an external master pulls SCL low before the controller has finished counting SCL high cycles, then the controller starts counting SCL low cycles and releases SCL once the time period, *I2Cn_CLKLO.scl_lo*, has expired.

Because the controller does not start counting the high/low time until the input buffer detects the new value, the actual clock behavior is based on many factors. These include bus loading, other devices on the bus holding SCL low, and the filter delay time of this device.

12.13 SCL Clock Generation for Hs-Mode

In Hs-Mode, the I²C-bus specification requires a SCL clock HIGH to LOW ratio of 1 to 2, $t_{SCL_LO} = 2 \times t_{SCL_HI}$. The I2Cn_HS_CLK register is used for configuring the Hs-Mode clock high and low times. Calculate the number of peripheral clocks for the Hs-Mode bit rate of 3.4 Mbps using Equation 12-7. Using the result, pclk_count, calculate the SCL high time using Equation 12-8, and the SCL low time using Equation 12-9.

Equation 12-7: I²C High Speed Mode Clock Count

 $pclk_count = \frac{f_{PCLK}}{3,400,000}$

Equation 12-8: Hs-Mode SCL High Time Calculation

$$I2Cn_HS_CLK.hs_clk_hi = \frac{pclk_count}{3} - 1$$

Equation 12-9: Hs-Mode SCL Low Time Calculation

$$I2Cn_HS_CLK.hs_clk_lo = \frac{(pclk_count \times 2)}{3} - 1$$

Compensate for rounding errors in the calculation by rounding up the *I2Cn_HS_CLK.hs_clk_hi* result if the least significant bit is set.

12.14 TX FIFO Preloading

There may be situations where, when operating as a slave, firmware wants to preload the TX FIFO prior to a transmission, such as when clock stretching is disabled. Firmware may also want to respond to an external master requesting data by sending a NACK until the requested data is ready to transmit, rather than sending an ACK and then holding the bus low while the data is prepared. By default, however, Address Match and General Call Match clear the TX FIFO preventing firmware from preloading data into the TX FIFO. Firmware can change this behavior by enabling TX FIFO Preloading.

When TX FIFO Preloading is enabled, the application firmware controls ACKs to the external master using the TX Ready (*I2Cn_TXCTRL1.txrdy*) bit. When *I2Cn_TXCTRL1.txrdy* is set to 0, hardware automatically NACKs all read transactions from the Master. Setting *I2Cn_TXCTRL1.txrdy* to 1 sends an ACK to the Master on the next read transaction and transmits the data in the TX FIFO. Preloading the TX FIFO must be complete prior to setting the *I2Cn_TXCTRL1.txrdy* field to 1.

The required steps for implementing TX FIFO Preloading in an application are as follow:

- 1. Set I2Cn_TXCTRL1.txrdy to 0
- 2. Enable TX FIFO Preloading by setting *I2Cn_TXCTRL1.txpreld* to 1.
- 3. If the TX FIFO Lockout Flag (I2Cn_INTFLO.txloi) is set to 1, write 1 to clear the flag and enable writes to the TX FIFO.
- 4. Enable DMA or Interrupts if required.
- 5. Load the TX FIFO with the data to send when the Master sends the next read request.
- 6. Set *I2Cn_TXCTRL1.txrdy* to 1 to automatically let the hardware send the preloaded FIFO on the next read from a Master.
- 7. *I2Cn_TXCTRL1.txrdy* is cleared by hardware when a read occurs, and data is transmitted from the TX FIFO.
 - a. Once cleared, the application firmware may repeat the Preloading process or disable TX FIFO Preloading.

Note: The TX FIFO Lockout flag is set if an error condition occurs while TX FIFO Preloading is enabled.

12.15 Master Mode Receiver Operation

When in Master Mode, initiating a Master Receiver operation begins with the following sequence:

- 1. Write the number of data bytes to receive to the I²C Receive Count field (*I2Cn_RXCTRL1.rxcnt*).
- 2. Write the Slave Address to the TX FIFO with the R/W bit set to 1
- 3. Send a START condition by setting *I2Cn_MSTR_MODE.start* = 1
- 4. The slave address is transmitted by the controller from the TX FIFO.
- 5. The I²C controller receives an ACK from the slave and the controller sets address ACK field (*I2Cn_INTFL0.adracki* = 1).
- 6. The I²C controller receives data from the slave and automatically ACKs each byte.
- 7. Once I2Cn_RXCTRL1.rxcnt data bytes have been received, the I²C controller sends a NACK to the slave and sets the Transfer Done Interrupt Status Flag (I2Cn_INTFL0.donei = 1).
- 8. If I2Cn_MSTR_MODE.restart or I2Cn_MSTR_MODE.stop is set, then the I²C controller sends a repeated START or STOP, respectively.

12.16 I²C Registers

The I2C0 base peripheral address is 0x4001 D000. The I2C1 base peripheral address is 0x4001 E000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Offset	Register Name	Access	Description
[0x0000]	I2Cn_CTRL0	R/W	I ² C Control 0 Register
[0x0004]	I2Cn_STATUS	RO	I ² C Status Register
[0x0008]	I2Cn_INTFL0	R/W1C	I ² C Interrupt Flags 0 Register
[0x000C]	I2Cn_INTEN0	R/W	I ² C Interrupt Enable 0 Register
[0x0010]	I2Cn_INTFL1	R/W1C	I ² C Interrupts Flags 1 Register
[0x0014]	I2Cn_INTEN1	R/W	I ² C Interrupts Enable 1 Register
[0x0018]	I2Cn_FIFOLEN	RO	I ² C FIFO Length Register
[0x001C]	I2Cn_RXCTRL0	R/W	I ² C Receive Control 0 Register
[0x0020]	I2Cn_RXCTRL1	R/W	I ² C Receive Control 1 Register 1
[0x0024]	I2Cn_TXCTRL0	R/W	I ² C Transmit Control 0 Register 0
[0x0028]	I2Cn_TXCTRL1	R/W	I ² C Transmit Control 1 Register 1
[0x002C]	I2Cn_FIFO	R/W	I ² C Transmit and Receive FIFO Register
[0x0030]	I2Cn_MSTR_MODE	R/W	I ² C Master Mode Register

Table 12-3: I²C Registers

Offset	Register Name	Access	Description
[0x0034]	I2Cn_CLKLO	R/W	I ² C Clock Low Time Register
[0x0038]	I2Cn_CLKHI	R/W	I ² C Clock High Time Register
[0x003C]	I2Cn_HS_CLK	R/W	I ² C Hs-Mode Clock Control Register
[0x0040]	I2Cn_TIMEOUT	R/W	I ² C Timeout Register
[0x0044]	I2Cn_SLADDR	R/W	I ² C Slave Address Register
[0x0048]	I2Cn_DMA	R/W	I ² C DMA Enable Register

1.1.2 I²C Register Details

Table 12-4: I²C Control Registers 0

Name			I2Cn_CTRL0 [0x0000]			
Hume	Access	Reset	Description			
-	R/W	0	Reserved for Future Use Do not modify this field.			
hsmode	R/W	0	High Speed Mode Set this field to 1 to enable High-speed mode (Hs-mode set to 0 for Standard, Fast or Fast-Plus operation. 0: Hs-mode not enabled. 1: Hs-mode enabled.) operation. This field must be		
-	R/W	0	Reserved for Future Use Do not modify this field.			
scl_ppm	R/W	0	SCL Push-Pull Mode Enable Setting this field enables push-pull mode for the SCL ha not be set unless any external slave device will never ac 0: SCL operates in standard I ² C open-drain mode	•		
			1: SCL operates in push-pull mode without the need for recommended when in Master mode and external			
scl_strd	R/W	0	SCL Clock Stretch Control 0: Enable Slave clock stretching 1: Disable Slave clock stretching			
read	R	0	Read/Write Bit Status Returns the logic level of the R/W bit on a received address match (<i>I2Cn_INTFL0.ami</i> = 1) or general call match (<i>I2Cn_INTFL0.gci</i> = 1). This bit is valid for three SCL clock cycles after the address match status flag is set.			
swoe	R/W	0	Software output Enabled When set, pins SDA and SCL are directly controlled by the set, pins SDA and SCL are directly controlled by the set of	this field to 1 enables software		
			1: SDA and SCL are controller by firmware using the <i>I</i> 2 <i>I2Cn_CTRL0.sclo</i> fields.			
sda	RO	-	SDA Status Returns the current logic level of the SDA pin. 0: SDA pin is logic low.			
	- scl_ppm scl_strd read swoe	hsmode R/W - R/W scl_ppm R/W read R swoe R/W	hsmode R/W 0 - R/W 0 scl_ppm R/W 0 scl_strd R/W 0 read R 0 swoe R/W 0	- R/W 0 Do not modify this field. hsmode R/W 0 Set this field to 1 to enable High-speed mode (Hs-mode set to 0 for Standard, Fast or Fast-Plus operation. - R/W 0 Set to 0 for Standard, Fast or Fast-Plus operation. - R/W 0 Reserved for Future Use Do not modify this field. - R/W 0 SCL Push-Pull Mode Enable scl_ppm R/W 0 SCL Push-Pull Mode Enable scl_strd R/W 0 SCL operates in standard I²C open-drain mode scl_strd R/W 0 SCL Clock Stretch Control read R 0 SCL Clock Stretching swoe R/W 0 Sct Clock Stretching swoe R/W 0 Software output Enabled swoe R/W 0 Software output Enabled when set, pins SDA and SCL are directly controller. Setting bit bang control of 1²C. 0: The 1²C controller manages the SDA and SCL pins ing 1: SDA and SCL are controller. Setting bit bang control of 1²C. swae R/W 0 Software output Enabled when set, pins SDA and SCL are controller. Setting bit bang control of 1²C. 0: The 1²C controller manages		

I ² C Contro	ol 0 Register			I2Cn_CTRL0 [0x0000]		
Bits	Name	Access	Reset	Description		
8	scl	RO	-	 SCL Status Returns the current logic level of the SCL hardware pin. 0: SCL pin is logic low. 1: SCL pin is logic high. 		
7	sdao	R/W	0	SDA Pin Control Set the state of the SDA hardware pin (actively pull low or float). 0: Pull SDA Low 1: Release SDA Note: Only valid when I2Cn_CTRL0.swoe = 1		
6	sclo	R/W	0	SCL Pin Control Set the state of the SCL hardware pin (actively pull low or float). 0: Pull SCL low 1: Release SCL Note: Only valid when I2Cn_CTRL0.swoe=1		
5	-	R/W	0	Reserved for Future Use Do not modify this field.		
4	ack	R/W	0	Interactive Receive Mode (IRXM) Acknowledge If IRM is enabled (<i>I2Cn_CTRL0.irxm</i> = 1), this field determines if the hardware sends an ACK or a NACK to an IRM transaction. 0: Respond to IRM with ACK 1: Respond to IRM with NACK		
3	irxm	R/W	0	1: Respond to IRM with NACK Interactive Receive Mode (IRXM) When receiving data, allows for an Interactive Receive Mode (IRM) interrupt event after each received byte of data. The I ² C peripheral hardware can be enabled to sen either an ACK or NACK for IRM. See Interactive Receive Mode section for detailed information. 0: Disable Interactive Receive Mode 1: Enable Interactive Receive Mode		
2	gcen	R/W	0	Note: Only set this field when the I ² C bus is inactive. General Call Address Enable Set this field to 1 to enable General Call Address Acknowledgement. 0: Ignore General Call Address		
1	mst	R/W	0	1: Acknowledge General Call Address Master Mode Enable Setting this field to 1 enables Master mode operation for the I ² C peripheral. Setting this field to 0 enables the I ² C peripheral for Slave mode operation. 0: Slave mode enabled 1: Master mode enabled		
0	i2cen	R/W	0	 I²C Enable Set this field to 1 to enable the I²C peripheral. 0: I²C peripheral disabled 1: I²C peripheral enabled 		

Table 12-5: I²C Status Registers

I ² C Status	Register			12	Cn_STATUS	[0x0004]		
Bits	Name	Access	Reset	Description				
31:12	-	R/W	-	Reserved for Future Use Do not modify this field.				
				I ² C Controller Statu This field indicates t	s he status of the I ² C controller.			
				stat	Controller Status			
				0	Idle			
				1	Master Transmit address			
				2	Master Receive address ACK			
				3	Master Transmit extended address	6		
				4	Master Receive extended address	ACK		
				5	Slave Receive address			
				6	Slave Transmit address ACK			
11:8	stat	RO	0	7	Slave Receive extended address			
				8	Slave transit extended address ACI	<		
				9	Transmit data (Master or Slave)			
				10	Receive data ACK (Master or Slave)		
				11	Receive data (Master or Slave)			
						12	Transmit data ACK (Master or Slave	e)
				13	NACK stage (Master or Slave)			
						14	Reserved for Future Use	
				15	Another master is addressing anot transaction is ongoing but the I ² C o actively part of the transaction.			
5	ckmd	RO	0	SCL line. 0: External device	f an external device is behaving as a not driving SCL is a Master actively driving the SCL			
4	txf	RO	0	TX FIFO Full When set, the TX FI	FO is full.			
4	ι χι	NO	0	0: TX FIFO is not f 1: TX FIFO full	ull			
3	txe	RO	1	TX FIFO Empty If set, the TX FIFO is	empty.			
3	the		-	0: TX FIFO is not empty 1: TX FIFO is empty				
2	rxf	RO	0	RX FIFO Full If set, the RX FIFO is full. 0: RX FIFO not full 1: RX FIFO Full				
1	rxe	RO	1	RX FIFO Empty If set, the RX FIFO is 0: RX FIFO is not e 1: RX FIFO is empt	empty			

I ² C Status Register				I2Cn_STATUS [0x0004]	
Bits	Name	Access	Reset	Description	
0	busy	RO	0	Bus Busy If set, the I ² C bus is active. O: Bus is idle 1: Bus is busy	

Table 12-6: I²C Interrupt Status Flags Registers 0

I ² C Interru	upt Status Flags	0 Register		I2Cn_INTFL0	[0x0008]		
Bits	Name	Access	Reset	Description			
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.			
15	txloi	R/W1C	0	TX FIFO Locked Interrupt Flag If set, the TX FIFO is locked and writes to the TX FIFO are ignored. This field is set to by hardware to prevent stale data from being transmitted from the TX FIFO. When set, the TX FIFO is automatically flushed. Writes to the TX FIFO are ignored until this flag is cleared. Write 1 to clear.			
				0: TX FIFO not locked. 1: TX FIFO is locked and all writes to the TX FI	FO are ignored.		
14	stoperi	R/W1C	0	Out of Sequence STOP Interrupt Flag This flag is set if a STOP condition occurs on the Write 1 to clear this field. Writing 0 has no effect			
				0: Error condition has not occurred. 1: Out of sequence STOP condition occurred.			
13	strteri	R/W1C	0	Out of Sequence START Interrupt Flag This flag is set if a START condition occurs on the I ² C Bus out of expected sec Write 1 to clear this field. Writing 0 has no effect.			
				0: Error condition has not occurred. 1: Out of sequence START condition occurred.			
12	dnreri	R/W1C	0	Slave Mode Do Not Respond Interrupt Flag This occurs if an address match is made, but the TX FIFO or RX FIFO is not Write 1 to clear this field. Writing 0 has no effect.			
				0: Error condition has not occurred. 1: I ² C address match has occurred and either the TX or RX FIFO is not configured.			
11	dateri	R/W1C	0	Master Mode: Data NACK from External Slave This flag is set by hardware if a NACK is received is only valid if the I2Cn peripheral is configured to clear. Write 0 has no effect.	d from a slave on the I ² C bus. This flag		
				0: Error condition has not occurred. 1: Data NACK received from a slave.			
10	adreri	R/W1C	0	Master Mode: Address NACK from Slave Error FlagThis flag is set by hardware if an Address NACK is received from a slave on the I ² C buThis flag is only valid if the I2Cn peripheral is configured for Master Mode operation.Write 1 to clear. Write 0 has no effect.0: Error condition has not occurred.			
9	toeri	R/ W1C	0	1: Address NACK received from a slave. Timeout Error Interrupt Flag This occurs when this device holds SCL low longer than the programmed timeout value. Applies to both Master and Slave Mode. Write 1 to clear. Write 0 has no effect 0: Timeout error has not occurred. 1: Timeout error occurred.			

I ² C Interr	upt Status Flags	0 Register		I2Cn_INTFL0	[0x0008]
Bits	Name	Access	Reset	Description	
8	arberi	R/ W1C	0	Master Mode Arbitration Lost Interrupt Flag Write 1 to clear. Write 0 has no effect.	
				0: Condition has not occurred. 1: Condition occurred.	
7	adracki	R/ W1C	0	Master Mode: Address ACK from External Slave This field is set when a slave address ACK is rece effect. 0: Condition has not occurred. 1: The slave device ACK for the address was re	eived. Write 1 to clear. Write 0 has no
6	stopi	R/W1C	0	Slave Mode: STOP Condition Interrupt Flag This flag is set by hardware when a STOP condit to clear. Write 0 has no effect.	
				0: Stop condition has not occurred 1: Stop condition occurred	
5	txthi	RO	1	TX FIFO Threshold Level Interrupt Flag This field is set by hardware if the number of bytes in the Transmit FIFO is less than or equal to the Transmit FIFO threshold level. Write 1 to clear. This field is automatically cleared by hardware when the TX FIFO contains fewer bytes than the TX threshold level.	
				0: TX FIFO contains more bytes than the TX threshold level. 1: TX FIFO contains TX threshold level or fewer bytes (Default).	
4	rxthi	RO	1	RX FIFO Threshold Level Interrupt Flag This field is set by hardware if the number of bytes in the Receive FIFO is greater that or equal top the Receive FIFO threshold level. This field is automatically cleared whet the RX FIFO contains fewer bytes than the RX threshold setting.	
				0: RX FIFO contains fewer bytes than the RX threshold level. 1: RX FIFO contains at least RX threshold level of bytes (Default).	
3	ami	R/W1C	0	Slave Mode: Address Match Status Interrupt Fl In Slave Mode operation, a slave mode address 1 to clear. Writing 0 has no effect.	-
				0: Slave address match has not occurred. 1: Slave address match occurred.	
				Slave Mode: General Call Address Match Recei In Slave Mode operation, a general call address	
2	gci	R/W1C	0	 Write 1 to clear. Writing 0 has no effect. 0: General call address match has not occurre 1: General call address match occurred. 	d.
1	irxmi	R/W1C	0	1: General call address match occurred. Interactive Receive Mode Interrupt Flag Write 1 to clear. Writing 0 is ignored.	
				0: Interrupt condition has not occurred. 1: Interrupt condition occurred.	
0	donei	R/W1C	0	Transfer Complete Interrupt Flag This flag is set for both Master and Slave mode for both transmit and receive operations on the SCL falling edge after an ACK is received or sent. Write 1 to clear. Writing 0 has no effect.	
				0: Transfer is not complete. 1: Transfer complete.	

Table 12-7: I²C Interrupt Enable 0 Registers

I ² C Interr	upt Enable 0 Re	gister		I2Cn_INTEN0	[0x000C]
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.	
15	txloie	R/W	0	 TX FIFO Locked Out Interrupt Enable Set this field to enable events for TX FIFO lock events. 0: Interrupt disabled. 1: Interrupt enabled. 	
14	stoperie	R/W	0	Out of Sequence STOP condition detected Interrupt En- Set this field to enable events for an out of sequence STO 0: Interrupt disabled. 1: Interrupt enabled.	
13	strterie	R/W	0	Out of Sequence START condition detected Interrupt En Set this field to enable events for an out of sequence STA 0: Interrupt disabled. 1: Interrupt enabled.	
12	dnrerie	R/W	0	Slave Mode Do Not Respond Interrupt Enable Set this field to enable events in Slave Mode when the Do Not Respond condition occurs. 0: Interrupt disabled. 1: Interrupt enabled.	
11	daterie	R/W	0	Master Mode Received Data NACK from Slave Interrupt Enable Set this field to enable events for Master Mode external device data NACK events. 0: Interrupt disabled. 1: Interrupt enabled.	
10	adrerie	R/W	0	Master Mode Received Address NACK from Slave Interrupt Enable Set this field to enable events for Master Mode slave device address NACK events. 0: Interrupt disabled. 1: Interrupt enabled.	
9	toerie	R/W	0	Timeout Error Interrupt Enable Set this field to enable events for a timeout error interru 0: Interrupt disabled. 1: Interrupt enabled.	upt event.
8	arberie	R/W	0	Master Mode Arbitration Lost Interrupt Enable Set this field to enable events in Master Mode for arbitra 0: Interrupt disabled. 1: Interrupt enabled.	ation lost events.
7	adrackie	R/W	0	1: Interrupt enabled. Received Address ACK from Slave Interrupt Enable Set this field to enable events for Master Mode slave device address ACK events. 0: Interrupt disabled. 1: Interrupt enabled.	
6	stopie	R/W	0	STOP Condition Detected Interrupt Enable Set this field to enable interrupt events for STOP conditions. 0: Interrupt disabled. 1: Interrupt enabled.	
5	txthie	R/W	0	1: Interrupt enabled. TX FIFO Threshold Level Interrupt Enable Set this field to enable interrupt events when a TX FIFO threshold event occurs. 0: Interrupt disabled. 1: Interrupt enabled.	

I ² C Interr	I ² C Interrupt Enable 0 Register			I2Cn_INTEN0 [0x000C]					
Bits	Name	Access	Reset	Description					
4	rxthie	R/W	0	RX FIFO Threshold Level Interrupt Enable Set this field to enable interrupt events when an RX FIFC) threshold event occurs.				
4	Txtille	r, vv	0	0: Interrupt disabled. 1: Interrupt enabled.					
3	amie	R/W	0	Slave Mode Incoming Address Match Interrupt Enable Set this field to enable the slave mode address match in:	terrupt event.				
5	ame	K/ VV	0	0: Interrupt disabled. 1: Interrupt enabled.					
2	gcie	R/W 0		R/W	0	Slave Mode General Call Address Match Received Inter Set this field to enable the slave mode general call addre event.	•		
				0: Interrupt disabled. 1: Interrupt enabled.					
	imunaia	D (M)	0	Interactive Receive Interrupt Enable Set this field to enable the interactive receive interrupt e	event.				
1	irxmie	K/ VV	W 0	(/W 0	R/W 0	R/W 0	V O	0: Interrupt disabled. 1: Interrupt enabled.	
0	doneie	D (M)	0	Transfer Complete Interrupt Enable Set this field to enable the transfer complete interrupt e	vent.				
0	aoneie	R/W	0	0: Interrupt disabled. 1: Interrupt enabled.					

Table 12-8: I²C Interrupt Status Flags 1 Registers

I ² C Interru	upt Status Flags 1	L Register		I2Cn_INTFL1	[0x0010]
Bits	Name	Access	Reset	Description	
31:2	-	R/W	-	Reserved for Future Use Do not modify this field.	
1	txufi	R/W1C	0	Slave Mode: TX FIFO Underflow Status Flag In Slave Mode operation, the hardware sets this flag automatically if the TX FIFO is empty and the master requests more data by sending an ACK after the previous byte transferred. 0: Slave mode TX FIFO underflow condition has not occurred.	
				1: Slave mode TX FIFO underflow condition nas not of 1: Slave mode TX FIFO underflow condition occurred.	
0	0 rxofi R/W1C 0		0	Slave Mode: RX FIFO Overflow Status Flag In Slave Mode operation, the hardware sets this flag automatically when an RX F overflow occurs. Write 1 to clear. Writing 0 has no effect.	
				0: Slave mode RX FIFO overflow event has not occurred 1: Slave mode RX FIFO overflow condition occurred (c	

Table 12-9: I²C Interrupt Enable Registers 1

I ² C Interrupt Enable 1 Register			I2Cn_INTEN1	[0x0014]		
Bits	Name	Access	Reset	set Description		
31:2	-	R/W	0	Reserved for Future Use Do not modify this field.		
1	txufie	R/W	0	Slave Mode TX FIFO Underflow Interrupt Enable In slave mode operation, set this field to enable the TX FIFO underflow interrupt. 0: Interrupt disabled. 1: Interrupt enabled.		

I ² C Interru	I ² C Interrupt Enable 1 Register			I2Cn_INTEN1	[0x0014]
Bits	Name	Access	Reset	Description	
0	rxofie	R/W	0	Slave Mode RX FIFO Overflow Interrupt Enable In slave mode operation, set this field to enable the 0: Interrupt disabled. 1: Interrupt enabled.	e RX FIFO overflow interrupt.

Table 12-10: I²C FIFO Length Registers

I ² C FIFO L	I ² C FIFO Length Register			I2Cn_FIFOLEN [0x0018]	
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.	
15:8	txlen	RO	8	TX FIFO Length Returns the length of the TX FIFO. 8: 8-byte TX FIFO.	
7:0	rxlen	RO	8	RX FIFO Length Returns the length of the RX FIFO. 8: 8-byte RX FIFO.	

Table 12-11: I²C Receive Control Registers 0

I ² C Receive Control Register 0				I2Cn_RXCTRL0	[0x001C]	
Bits	Name	Access	Reset	Description		
31:12	-	R/W	0	Reserved for Future Use Do not modify this field.		
			RX FIFO Threshold Level Set this field to the required number of bytes to trigg When the number of bytes in the RX FIFO is equal to hardware sets the <i>I2Cn_INTFLO.rxthi</i> bit indicating an	or greater than this field, the		
11:8	rxth	R/W	0	 0: 0 bytes or more in the RX FIFO causes a threshol 1: 1+ bytes in the RX FIFO triggers a receive thresho minimum value). 		
				8: RX FIFO threshold event only occurs when the RX	X FIFO is full.	
7	7 rxfsh R/V		0	Flush RX FIFO Write 1 to this field to initiate a RX FIFO flush, clearin field is automatically cleared by hardware when the I 0 has no effect.	5	
				0: RX FIFO flush complete or not active. 1: Flush the RX FIFO		
6:1	-	R/W	0	Reserved for Future Use Do not modify this field.		
				Do Not Respond Slave mode operation only.		
0 dnr	R/W	0	 0: If the RX FIFO contains data and an external mas transaction, respond to an address match with a data byte(s). (No additional data is written into t 1: If the RX FIFO contains data and a master reques respond to an address match and send a NACK in 	n ACK but NACK the subsequent the RX FIFO.) sts a WRITE transaction, do not		

Table 12-12: I²C Receive Control 1 Registers

I ² C Receive Control 1 Register				I2Cn_RXCTRL1 [0x0020]	
Bits	Name	Access	Rese	t Description	
31:12	-	R/W	0	Reserved for Future Use Do not modify this field.	
11:8	rxfifo	R	0	RX FIFO Byte Count Returns the number of bytes currently in the RX FIFO. 0: No data in the RX FIFO. 8: 8 bytes in the RX FIFO (max value).	
7:0	rxcnt	R/W	1	8: 8 bytes in the RX FIFO (max value). RX FIFO Transaction Byte Count When in Master Mode, write the number of bytes to be received in a transaction from 1 to 256. 0 represents 256. 0: 256 byte receive transaction. 1: 1 byte receive transaction. 2: 2 byte receive transaction. 255: 255 byte receive transaction.	

Table 12-13: I²C Transmit Control Registers 0

I ² C Transmit Control Register 0			I2Cn_TXCTRL0 [0x0024]			
Bits	Name	Access	Reset	Description		
31:12	-	R/W	-	Reserved for Future Use Do not modify this field.		
11:8 txth	5.644	0	TX FIFO Threshold Level Sets the level for a Transmit FIFO threshold ever remaining in the TX FIFO falls to this level or low <i>I2Cn_INTFL0.txthi</i> is set indicating a TX FIFO The O: O but os remaining in the TX FIFO triggers a	wer the interrupt flag reshold Event occurred.		
11.0		kth R/W	Ū	 0: 0 bytes remaining in the TX FIFO triggers a TX FIFO threshold event. 1: 1 byte or less remaining in the TX FIFO triggers a TX FIFO threshold event (recommended minimum value). 7: 7 or fewer bytes remaining in the TX FIFO triggers a TX FIFO threshold event 		
		R/W10		TX FIFO Flush Write this field to 1 to initiate a TX FIFO flush, c transmit FIFO.	learing all remaining data from the	
7	7 txfsh F		0	0: TX FIFO flush is complete or not active. 1: Flush the TX FIFO		
				Note: Hardware automatically clears this bit to flush is completed. Note: If I2Cn_INTFL0.txloi = 1, then I2Cn_TXCTR		
6:1	-	R/W	0	Reserved for Future Use Do not modify this field.		

I ² C Transr	I ² C Transmit Control Register 0			I2Cn_TXCTRL0	[0x0024]
Bits	Name	Access	Reset	Description	
0	txpreld	R/W	0	 TX FIFO Preload Mode Enable 0: Normal operation. An address match in Sla match, will flush and lock the TX FIFO so it <i>I2Cn_INTFL0.txloi</i>. 1: TX FIFO Preload Mode. An address match i address match, will not lock the TX FIFO ar allows firmware to preload data into the T. controllable at <i>I2Cn_TXCTRL1.txrdy</i>. 	cannot be written and set n Slave Mode, or a General Call nd will not set <i>I2Cn_INTFL0.txloi</i> . This

Table 12-14: I²C Transmit Control Registers 1

I ² C Transmit Control Register 1				I2Cn_TXCTRL1	[0x0028]	
Bits	Name	Access	Reset	Description		
31:12	-	R/W	0	Reserved for Future Use Do not modify this field.		
11:8	txfifo	RO	0	Transmit FIFO Byte Count Status Contains the number of bytes remaining in the	e TX FIFO	
7:6	-	R/W	0	Reserved for Future Use Do not modify this field.		
5	flsh_nack_dis	R/W	0	 TX FIFO Auto Flush Disable for NACK Setting this field to 1 disables the TX FIFO Automatic Flush when a NACK is received at the end of a slave transaction. 0: The TX FIFO is automatically flushed if a NACK is received at the end of a slave transaction. 1: The TX FIFO is <i>not flushed</i> when a NACK is received at the end of a slave transaction. Note: This field is valid for slave mode operation only and is ignored if the I²C mode is set to master. 		
4	flsh_sladdr_dis	R/W	0	 TX FIFO Auto Flush Disable for Slave Address Match Setting this field to 1 disables the TX FIFO Automatic Flush when a Slave Address Match occurs. 0: The TX FIFO is automatically flushed on a Slave Address Match. 1: The TX FIFO is <i>not flushed</i> on a Slave Address Match. Note: This field is valid for slave mode operation only and is ignored if the I²C mode is set to master. 		
3	-	R/W	0	Reserved for Future Use Do not modify this field.		
2	flsh_gcaddr_dis	R/W	0	 TX FIFO Auto Flush Disable on General Call Address Match Setting this field to 1 disables the TX FIFO Automatic Flush when a General Call Address Match occurs. 0: The TX FIFO is automatically flushed on a General Call Address Match. 1: The TX FIFO is <i>not flushed</i> on a General Call Address Match. Note: This field is valid for slave mode operation only and is ignored if the I²C mode is set to master. 		

I ² C Transmit Control Register 1				I2Cn_TXCTRL1	[0x0028]
Bits	Name	Access	Reset	Description	
				Slave Mode Transmit Last This bit decides what to do if the I ² C is in Slave Master, and the TX FIFO is empty.	e Mode, is transmitting data to a
1	1 txlast R/W1O	0	0: Hold SCL low. This pauses transmission until data is written to the TX FIFO. 1: End transaction by releasing SCL. Cleared on a STOP/RESTART condition, or if <i>I2Cn_INTFL0.txloi</i> =1 (transmit FIFO locked for writing).		
0	txrdy	R/W10	1	Transmit FIFO Preload Ready Status When TX FIFO Preload Mode is enabled, <i>I2Cn_TXCTRL0.txpreld</i> = 1, this bit is automatically cleared to 0. While this bit is 0, if the I ² C hardware receives a slave address match a NACK is sent. Once the I ² C hardware is ready (firmware has preloaded the TX FIFO, configured the DMA, etc.) application firmware must set this bit to 1 so the I ² C hardware will send an ACK on a slave address match. When TX FIFO Preload Mode is disabled, <i>I2Cn_TXCTRL0.txpreld</i> = 1, this bit is forced to 1 and the I ² C hardware behaves normally.	

Table 12-15: I²C Data Registers

I ² C Data Register				I2Cn_FIFO [0x002C]		
Bits	Name	Access	Reset	Description		
31:8	-	R/W	0	Reserved for Future Use Do not modify this field.		
7:0	data	R/W	0xFF	I ² C FIFO Data Register Reading from this register pops data from the RX FIFO and writes to this register pushes data onto the TX FIFO. If the RX FIFO is empty, reading this field returns 0xFF. Note: If the RX FIFO is empty, reads from this field return 0xFF. Note: If the TX FIFO is full, writes to this field are ignored.		

Table 12-16: I²C Master Mode Control Registers

I ² C Master Mode Control Register			I2Cn_MSTR_MODE [0x0030]		
Bits	Name	Access	Reset	Description	
31:8	-	R/W	0	Reserved for Future Use Do not modify this field.	
7	sea	R/W	0	Slave Extended Addressing 0: Send a 7-bit address to the slave 1: Send a 10-bit address to the slave	
6:3	-	R/W	0	Reserved for Future Use Do not modify this field.	
2	stop	R/W10	0	Send STOP Condition 0: Stop condition completed or inactive. 1: Send a STOP Condition Note: This bit is automatically cleared by hardware when the STOP condition begins.	

I ² C Master Mode Control Register			I2Cn_MSTR_MODE	[0x0030]	
Bits	Name	Access	Reset	Description	
1	restart	R/W1O	0	 Send Repeated START Condition After sending data to a slave, instead of sending a STOP condition the master may send another START to retain control of the bus. 0: Repeated start condition complete or inactive. 1: Send a Repeated START Note: This bit is automatically cleared by hardware when the repeated START condition begins. 	
0	start	R/W10	0	Start Master Mode Transfer 0: Master mode transfer inactive. 1: Start Master Mode Transfer Note: This bit is automatically cleared by hardware when the transfer is completed aborted.	

Table 12-17: I²C SCL Low Control Register

I ² C Clock	I ² C Clock Low Control			I2Cn_CLKLO [0x0034]	
Bits	Name	Access	Reset	Description	
31:9	-	R/W	0	Reserved for Future Use Do not modify this field.	
8:0	scl_lo	R/W	1	Clock Low Time In Master Mode, this configures the SCL low time. $t_{SCL_LOW} = f_{I2C_CLK} \times (scl_lo + 1)$ Note: 0 is not a valid setting for this field.	

I ² C Clock High Control Register				I2Cn_CLKHI	[0x0038]
Bits	Name	Access	Reset	Description	
31:9	-	R/W	0	Reserved for Future Use Do not modify this field.	
8:0	scl_hi	R/W	1	In both Master and Slave Mode, this a	$f_{I2C_CLK} \times (scl_hi + 1)$ lso configures the time SCL is held low after r after firmware clears irxmi during Interactive

Table 12-19: I²C Timeout Registers

I ² C Timeout Register				I2Cn_HS_CLK [0x003C]	
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.	

I ² C Timeout Register				I2Cn_HS_CLK	[0x003C]
Bits	Name	Access	Reset	Description	
15:8	hs clk hi	R/W	0	low after data is output on SDA. The fe	count. In Slave mode, this is the time SCL is held ollowing equation defined the clock low time. $ \times (hs_clk_hi + 1) $
					J:L for details on the requirements for the Hs-
7:0	hs_clk_lo	R/W	0	low after data is output on SDA. The fe	count. In Slave mode, this is the time SCL is held ollowing equation defined the clock low time. $\times (hs_clk_lo+1)$
				Note: Refer to section 12.13 SCL Clock requirements for the Hs-mode clock hi	Generation for Hs-Mode for details on the igh and low times.

Table 12-20: I²C Timeout Registers

I ² C Timeout Register				I2Cn_TIMEOUT [0x0040]	
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.	
				Bus Error SCL Timeout Period Set this value to the number of I ² C clo	ck cycles desired to cause a bus timeout error.
				peripheral releases the line, if the line	rts when it pulls SCL low. After the I2Cn is not pulled high prior to the timeout number on is set (<i>I2Cn_INTFLO.toeri</i> = 1) and the I2Cn nes
15:0	to	R/W	0	0: Timeout disabled. All other values result in a timeout of $t_{BUS_TIMEOUT} = \frac{1}{f_{I2C_CL}}$	
				Note: The timeout counter monitors th external I ² C master driving the SCL pin	ne I2Cn controller's driving of the SCL pin, not an

I ² C Slave Address Register				I2Cn_SLADDR [0x0044]			
Bits	Name	Access	Reset	Description			
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.			
15 ea		R/W	R/W	R/W	0	Slave Mode Extended Address Sele When this I ² C is operating in Slave I bit or 10-bit address.	e ct Mode, this bit selects whether sla contains a 7-
				0: 7-bit addressing 1: 10-bit addressing			
14:10	-	R/W	0	Reserved for Future Use Do not modify this field.			

I ² C Slave Address Register				I2Cn_SLADDR	[0x0044]		
Bits	Name	Access	Reset	Description			
9:0	sla	R/W	-	Slave Mode Slave Address When I ² C peripheral is operating in must be set as the desired slave ad	Slave Mode, <i>I2Cn_CTRL0.mst</i> = 0, this field dress for the peripheral.		

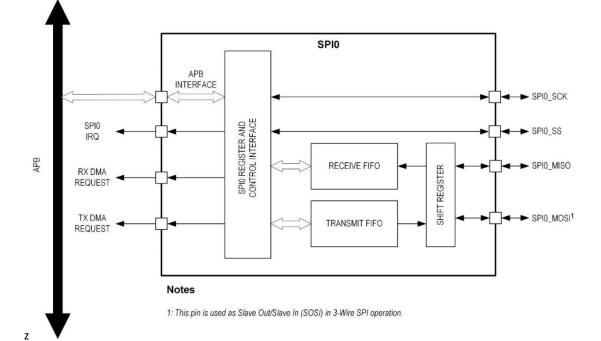
Table 12-22: I²C DMA Register

I ² C DMA Register				I2Cn_DMA	[0x0048]	
Bits	Name	Access	Reset	Description		
31:2	-	R/W	0	Reserved for Future Use Do not modify this field.		
1	rxen	R/W	0	RX DMA Channel Enable 0: Disable RX DMA channel 1: Enable RX DMA channel		
0	txen	R/W	0	TX DMA Channel Enable 0: Disable TX DMA channel 1: Enable TX DMA channel		

13 Serial Peripheral Interface 0 (SPI0)

The Serial Peripheral Interface 0 (SPIO) is a highly configurable, synchronous communications peripheral that interfaces to SPI devices and supports both Master and Slave modes.

13.1 SPI Port 0


Features:

Four-Wire, full-duplex communication

- Three-Wire, half-duplex communication supported
- Selectable number of bits per character
 - 1-bit to 16-bits
- Master and Slave mode support
- Wakeup from SLEEP based on configurable Transmit and Receive FIFO Levels
- Four SPI modes (mode 0, 1, 2, and 3)
- Programmable Serial Clock (SCK) frequency and duty cycle
- Master mode operation up to 60MHz
- Slave mode operation up to 48MHz
- Independent clock phase and clock polarity control enabling support for SPI Mode 0, 1, 2, and 3
- 32-byte Transmit FIFO, 32-byte Receive FIFO

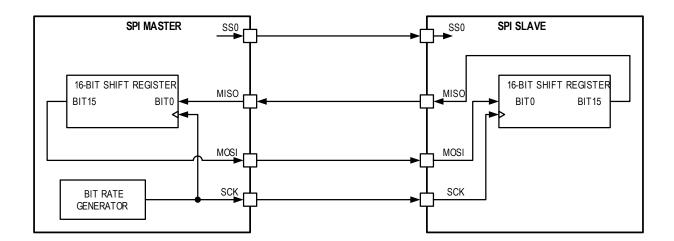
The SPIO Peripheral are independently configurable as for master or slave operation. A SPI network uses a single master with one or more slave devices for a given transaction. A high level block diagram of the SPIO peripheral is shown in *Figure 13-1*, *below*.

Figure 13-1: SPIO Block Diagram

13.2 Overview

13.2.1 Four-Wire SPI Signals

SPI devices operate as either a Master or Slave device. In four-wire SPI, four signals are required for communication as shown in *Table 13-1, below*.


Table 13-1: Four-Wire SPI Signals

Signal	Description	Direction
SCK	Serial Clock	The master generates the Serial Clock signal, which is an output from the master and an input to the slave.
MOSI	Master Output Slave Input	In master mode, this signal is used as an output for sending data to the Slave. In slave mode this is the input data from the Master.
MISO	Master Input Slave Output	In master mode, this signal is used as an input for receiving data from the Slave. In slave mode, this signal is an output for transmitting data to the Master.
SS	Slave Select	In master mode, this signal is an output used to select a slave device prior to communication. In slave mode, this signal is an input used to indicate the Master is going to start communication.

The MAX32660 supports a single slave select pin, SPI0_SSO, for SPI0.

A typical four-wire SPI network is shown in *Figure 13-2, below*. In a typical SPI network, the master device selects the slave device using the slave select output. The master starts the communication by selecting the slave device by asserting the slave select output. The master then starts the SPI clock via the SCK output pin. When a slave device's slave select pin is deasserted, the device is required to put the SPI pins in tri-state mode.

Figure 13-2: 4-Wire SPI Connection Diagram

13.2.2 Three-Wire SPI Signals

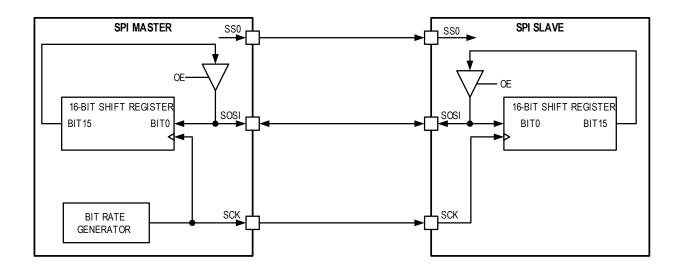

Three-wire SPI is supported by the **MAX32660** family of microcontrollers. In this variant the MOSI and MISO lines are combined and used as a bi-directional half-duplex communication pin. Three-wire also uses a serial clock generated by the master and a slave select pin controlled by the master. Table 13-1 describes each of the signals used in three-wire SPI communication.

Table 13-2: Three-Wire SPI Signals

Signal	Description	Direction
SCK	Serial Clock	The master generates the Serial Clock signal, which is an output from the master and an input to the slave.
SISO	Slave Input Slave Output	This is a half-duplex, bidirectional I/O pin used for communication between the SPI master and slave in a three-wire SPI communication network
SS	Slave Select	In master mode, this signal is an output used to select a slave device prior to communication. In slave mode, this signal is an input used to indicate an external SPI master is starting communication.

A three-wire SPI network is shown in *Figure 13-3, below*. The master device selects the slave device using the slave select output. The communication starts with the master asserting the slave select line and then starting the clock (SCK). In a 3-Wire SPI communication, the master and slave must both know the intended direction of the data. For a write, the master drives the data out the SISO pin. For a read, the master must release the SISO line and let the slave drive the SISO line. In the MAX32660 the direction of transmission is controlled using the FIFO enables. See *Three-Wire SPI Read and Write* for detailed information.

Figure 13-3: 3-Wire SPI Connection Diagram

13.3 SPI Configuration

Before configuring the SPI peripheral, first disable the SPI port by setting *SPI0_CTRL0.spi_en* to 0.

13.3.1 Pin Configuration

Pin selection and configuration is required to use the SPI port. *Table 13-3* shows the pin selection options for each of the SPI ports for each package available. The Alternate Function Name column maps the typical SPI Signal name to the Alternate Function name on the MAX32660 family of parts. The required pins for SPI0 are all mapped to Alternate Function 1 on GPI0 Port 0 and are available on the same pins in both the 16-WLP and the 20-TQFN as shown in *Table 13-3*.

		Alternate		GPIO		
SPI Port	SPI Signal	Function Name	Function Number	16-WLP	20-TQFN	
	SCK	SPI0_SCK	AF1	P0.6	P0.6	
SPIO	MOSI (SISO)	SPI0_MOSI	AF1	P0.5	P0.5	
5010	MISO	SPI0_MISO	AF1	P0.4	P0.4	
	SS	SPI0_SS0	AF1	P0.7	P0.7	

Four-wire SPI uses SCK, MISO, MOSI, and the SS pin, whereas three-wire SPI uses SCK, MOSI(SISO) and the SS pin. The following steps outline setting up the GPIOO pins for the SPI alternate function usage for SPIO.

- 1. Set the GPIO pin for alternate function operation.
 - a. SPI0_SCK: Set GPIO0_EN[6] to 0.
 - b. SPI0_MOSI (SISO): Set GPIO0_EN[5] to 0.
 - c. SPI0_MISO: Set GPIO0_EN[4] to 0.
 - i. If using three-wire SPI this step is not required.
 - d. SPI0_SS0: Set GPIO0_EN[7] to 0.
- 2. Select AF1 using the GPIO0_AF_SEL register.
 - a. SPI0_SCK: Set GPIO0_AF_SEL[6] to 0
 - b. SPI0_MOSI: Set GPIO0_AF_SEL[5] to 0.
 - c. SPI0_MISO: Set GPIO0_AF_SEL[4] to 0.
 - i. If using three-wire SPI this step is not required.
 - d. SPI0_SS0: Set GPIO0_AF_SEL[7] to 0.

13.3.2 Master Configuration

For SPI Master operation, set the master enable bit to 1 (*SPI0_CTRL0.mm_en* = 1).

In a single master network the slave select pin operates as an output only. Configure the slave select pin as an output by setting *SPIO_CTRL0.ss_io* to 1. Additionally, prior to starting a SPI Master mode transaction, set the Slave Select Enable bit to 1 (*SPIO_CTRL0.ss_sel* = 1) to use the SPIO_SSO pin as the slave select output.

13.3.3 Slave Configuration

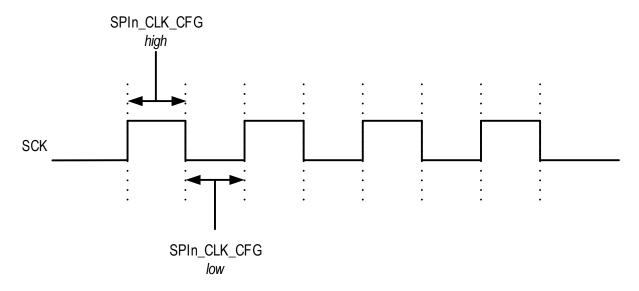
For slave operation, set the master enable bit to 0 (*SPI0_CTRL0.mm_en* = 0). In slave mode, the slave select pin is used for to indicate that the SPI Master is starting a communication with the SPI Slave. Set the slave select pin as an input by setting *SPI0_CTRL0.ss_io* to 0.

13.3.4 Three and Four Wire SPI Configuration

Select three-wire SPI or four-wire SPI communication using the *SPI0_CTRL2.three_wire* bit. Set *SPI0_CTRL2.three_wire* = 0 for four-wire mode or set this bit to 1 to select three-wire operation.

13.3.5 SPI Peripheral Clock

The System Peripheral Clock, PCLK, drives the SPIO peripheral clock. The SPIO provides an internal clock, SPIO_CLK, that is used within the SPI peripheral for the base clock to control the module and generate the SCK clock when in master mode. Set the SPIO internal clock using the field *SPIO_CLK_CFG.scale* as shown in *Equation 13-1*. Valid settings for *SPIO_CLK_CFG.scale* are 0 to 8, allowing a divisor of 1 to 256.


Equation 13-1: SPI Peripheral Clock

$$f_{SPI_CLK} = \frac{f_{PCLK}}{2^{scale}}$$

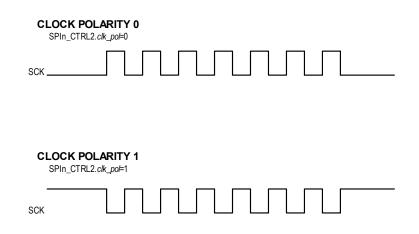
13.3.6 Master Mode Serial Clock Generation

In master and multi-master mode the SCK clock is generated by the master. The SPI0 provides control for both the high time and low time of the SCK clock. This control allows setting the high and low times for the SCK to duty cycles other than 50% if required. The SCK clock uses the SPI peripheral clock as a base value and the high and low values are a count of the number of $f_{SPI_{CLK}}$ clocks. Figure 13-4, below, visually represents the use of the SPI0_CLK_CFG.hi and SPI0_CLK_CFG.low fields. Refer to Equation 13-2 and Equation 13-3 for calculating the SCK high and low time from the hi and low field values.

Figure 13-4: SCK Clock Rate Control

Equation 13-2: SCK High Time

$$t_{SCK_HI} = t_{SPI_CLK} \times SPIn_CLK_CFG.high$$


Equation 13-3: SCK Low Time

 $t_{SCK_LOW} = t_{SPI_CLK} \times SPIn_CLK_CFG.$ low

13.3.7 Clock Phase and Polarity Control

SPIn supports four combinations of clock and phase polarity as shown in *Table 13-4, below*. Clock polarity is controlled using the bit *SPI0_CTRL2.clk_pol* and determines if the clock is active high or active low as shown in *Figure 13-5*. Clock polarity does not affect the transfer format for SPI. Clock phase determines when the data must be stable for sampling. Setting the clock phase to 0, *SPI0_CTRL2.clk_pha* = 0, dictates the SPI data is sampled on the initial SPI clock edge regardless of clock polarity. Phase 1, *SPI0_CTRL2.clk_pha* = 1, results in data sample occurring on the second edge of the clock regardless of clock polarity.

Figure 13-5: SPI Clock Polarity

For proper data transmission, the clock phase and polarity must be identical for the SPI master and slave. The master always places data on the MOSI line a half-cycle before the SCLK edge for the slave to latch the data.

Table 13-4.	Clock Ph	ase and P	Polarity	Operation
-------------	----------	-----------	----------	-----------

SPIO_CTRL2 clk_pha	SPI0_CTRL2 clk_pol	SCK Transmit Edge	SCK Receive Edge	SCK Idle State
0	0	Falling	Rising	Low
0	1	Rising	Falling	High
1	0	Rising	Falling	Low
1	1	Falling	Rising	High

13.3.8 Transfer Format Phase 0

Figure 13-7 is the timing diagram for an SPI 16-bit transfer in which the clock phase is cleared (*SPI0_CTRL2.clk_pha* = 0). The two SCK waveforms show active low (*SPI0_CTRL2.clk_pol* = 0) and active high (*SPI0_CTRL2.clk_pol* = 1). The diagram may be interpreted as either a master or slave timing diagram since the SCLK, MISO and MOSI pins are directly connected between the master and the slave.

In the case of multi-character transfers with SSO remaining asserted between characters, the output data will change at the end of the BitO (final clock edge) to reflect the output value for Bit15 of the next character.

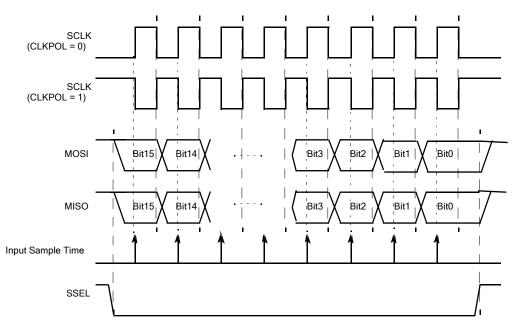


Figure 13-6. SPI Timing (SPI0_CTRL2.clk_pha = 0)

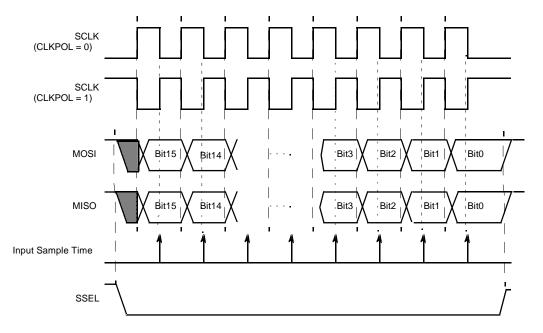
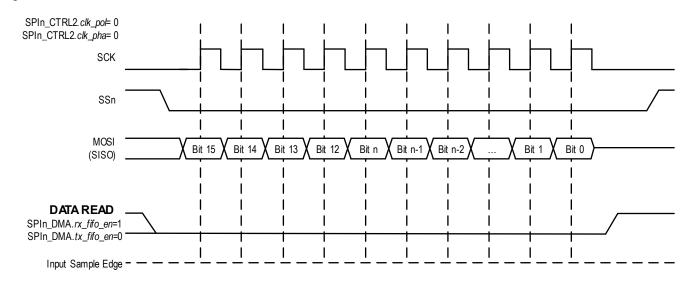

13.3.9 Transfer Format Phase 1

Figure 13-7 is the timing diagram for an SPI transfer in which the clock phase is set (*SPI0_CTRL2.clk_pha* = 1). The two SCLK waveforms show active low (*SPI0_CTRL2.clk_pol* = 0) and active high (*SPI0_CTRL2.clk_pol* = 1). The diagram may be interpreted as either a master or slave timing diagram since the SCLK, MISO and MOSI pins are directly connected between the master and the slave.

In the case of multi-character transfers with SSO remaining asserted between characters, the bit 0 output data will remain stable until the clock edge which starts bit 15 of the next character or until the SSO deasserts at the end of the transfer.

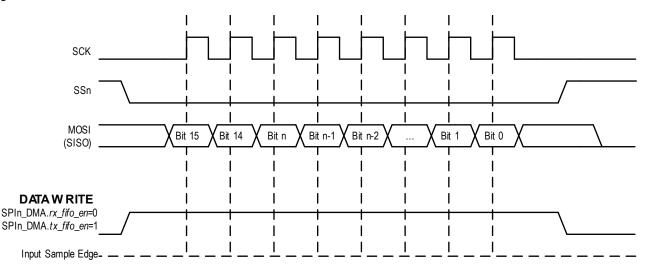
Figure 13-7. SPI Timing (SPI0_CTRL2.clk_pha = 1)

13.3.10 Three-Wire SPI Read and Write


In three-wire SPI, read and write transactions are controlled using the SPI FIFO enable bits. For a read transaction, enable the Receive FIFO and disable the Transmit FIFO.

13.3.10.1 Read Transaction

Figure 13-8 shows a three-wire SPI read transaction. The direction is set to a read by enabling the receive FIFO (*SPI0_DMA.rx_fifo_en* = 1) and disabling the transmit FIFO (*SPI0_DMA.tx_fifo_en* = 0). The SPI0_MOSI(SISO) pin is automatically set as an input by hardware based on the FIFO enable bits.


Figure 13-8: Three-Wire SPI Read

13.3.10.2 Write Transaction

Figure 13-9 shows a three-wire SPI write transaction. The direction is set to write by disabling the receive FIFO (*SPI0_DMA.rx_fifo_en* = 0) and enabling the transmit FIFO (*SPI0_DMA.tx_fifo_en* = 1). The SPI0_MOSI(SISO) pin is automatically set as to an output by hardware based on the FIFO enable bits. Data should be loaded to the transmit FIFO for the write.

Figure 13-9: Three-Wire SPI Write

13.3.11 Additional Configuration

Interrupt events are configured using the *SPIO_INT_EN* register.

Wakeup events are configured using the SPIO_WAKE_EN register.

The DMA is configured using SPIO_DMA.

Set *SPI0_CTRL0.start* = 1 to begin a Master Mode transmission.

Do not modify the SPI timing registers while a SPI transaction is in progress. Modifying any SPI timing register while a SPI transfer is in progress will result in an invalid SPI communication transaction.

To prevent a stall condition when in Master Mode, ensure that the transmit FIFO does not empty until the entire transmission is complete.

13.3.12 SPI FIFOs

The Transmit FIFO hardware is 32 bytes deep. The write data width can be 8-, 16- or 32-bits wide. A 16-bit write queues a 16-bit word to the FIFO hardware. A 32-bit write queues two 16-bit words to the FIFO hardware with the least significant word dequeued first. Bytes must be written to two consecutive byte addresses, with the odd byte as the most significant byte, and the even byte as the least significant byte. The FIFO logic waits for both the odd and even bytes to be written to this register space before dequeuing the 16-bit result to the FIFO.

The Receive FIFO hardware is 32 bytes deep. Read data width can be 8-, 16- or 32-bits. A byte read from this register dequeues one byte from the FIFO. A 16-bit read from this register dequeues two bytes from the FIFO, least significant byte first. A 32-bit read from this register dequeues four bytes from the FIFO, least significant byte first.

13.3.13 SPI Interrupts and Wakeups

The SPI supports multiple interrupt sources. Interrupt source events can come from the FIFOs, the SS and SR signals, and SPI status. Status flags for each interrupt are set regardless of the state of the interrupt enable bit for that event. Each interrupt flag field is set once when the condition is satisfied and remains set until cleared by the application. Write 1 to clear a specific interrupt flag field.

The following FIFO interrupts are supported:

- Transmit FIFO Empty
- Transmit FIFO Level below threshold, where the level is set by firmware.
- Receive FIFO Full
- Receive FIFO Level above threshold, where the level is set by firmware.
- Transmit FIFO Underrun (Slave mode only, Master mode stalls the clock)
- Transmit FIFO Overrun
- Receive FIFO Underrun
- Receive FIFO Overrun (Slave Mode only, Master Mode will stall the clock)

Note: On the MAX32660 SPI0 use of the Transmit FIFO level interrupt is recommended to avoid the Transmit FIFO empty and the TX FIFO underrun conditions from occurring in both Master or Slave mode operation.

The SPI supports interrupts for the internal state of the SPI as well as external signals. The following transmission interrupts are supported:

- SS Asserted or Deasserted
- Transmission Complete
- Slave Mode Transaction Aborted
- Multi-Master Fault

MAX32660 User Guide

SPIO has four Wakeup (WAKE) sources that can wake the core from *SLEEP* mode when the WAKE event occurs. The following WAKE events are supported:

- Wake on RX FIFO Full
- Wake on TX FIFO Empty
- Wake on RX FIFO Level crossed
- Wake on TX FIFO Level crossed

13.4 SPIO Registers

The SPIO base peripheral address is 0x4004 6000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Offset	Register Name	Access	Description
[0x0000]	SPIO_DATA	R/W	SPI FIFO Data Register
[0x0004]	SPIO_CTRL0	R/W	SPI Master Signals Control Register
[0x0008]	SPIO_CTRL1	R/W	SPI Transmit Packet Size Register
[0x000C]	SPIO_CTRL2	R/W	SPI Static Configuration Register
[0x0010]	SPIO_SS_TIME	R/W	SPI Slave Select Timing Register
[0x0014]	SPIO_CLK_CFG	R/W	SPI Master Clock Configuration Register
[0x001C]	SPIO_DMA	R/W	SPI DMA Control Register
[0x0020]	SPIO_INT_FL	R/W1O	SPI Interrupt Status Flags Register
[0x0024]	SPIO_INT_EN	R/W	SPI Interrupt Enable Register
[0x0028]	SPIO_WAKE_FL	R/W10	SPI Wakeup Status Flags Register
[0x002C]	SPIO_WAKE_EN	R/W	SPI Wakeup Enable Register
[0x0030]	SPI0_STAT	RO	SPI Active Status Register

Table 13-5: SPIO Master Register Addresses and Descriptions

13.4.1 SPIO Register Details

Table 13-6: SPI FIFO Data Registers

SPIn FIFO	Data Register			SPI0_DATA	[0x0000]	
Bits	Name	Access	Reset	et Description		
31:0	-	R/W	0	SPI FIFO Data Register Reading from this register dequeues data Writes to this register queues data to the Reads and writes with this register are in 1	transmit FIFO.	

Table 13-7: SPI Master Signals Control Registers

SPI Master Signals Control Register		SPI0_CTRL0	[0x0004]		
Bits	Name	Access	Rese	et Description	
31:20	-	R/W	0	Reserved for Future Use Do not modify this field.	

SPI Maste	r Signals Cont	rol Register		SPI0_CTRL0	[0x0004]
Bits	Name	Access	Reset	Description	
19:16	ss_sel	R/W	0	Slave Select Enable Set this field to 1 to enable the slave select pin for SPI Master mode. When this field is set to 1, the SPI0_SSO pin is used for the slave select output when the next SPI transaction is started (SPI0_CTRL0.start = 1). 0: SPI0_SSO is disabled 1: SPI0_SSO is enabled for output in SPI Master mode operation. 2 15: Reserved for Future Use.	
15:9	-	R/W	0	Reserved for Future Use Do not modify this field.	
8	ss_ctrl	R/W	0	Master Mode Slave Select Control In Master Mode operation, this bit co end of a transmission. 0: Slave Select is deasserted at the 1: Slave Select stays asserted at the	
7:6	-	R/W	0	Reserved for Future Use Do not modify this field.	
5	start	R/WAC	0	initiated. 1: Master initiates a data transmiss complete before writing a 1.	ng a 0 is ignored. s field to 0 when the transaction has been sion. Ensure that all pending transactions are in the TX FIFO prior to setting this bit to 1.
4	ss_io		0	Master Mode Slave Select Output This field must be set to 0 for the MAX32660. 0: Slave Select is an output 1: Reserved for Future Use Note: This field is only used when the SPI is configured for Master Mode (SPI0_CTRL0.mm_en = 1).	
3:2	-	R/W	0	Reserved for Future Use Do not modify this field.	
1	mm_en	R/W	0	SPI Master Mode Enable This field selects between slave mode and master mode operation for the SPI port. Write this field to 0 to operate as an SPI slave. Setting this field to 1 sets the port as an SPI master. 0: SPI port is in Slave Mode.	
0	spi_en	R/W	0	1: SPI is in Master Mode SPI Enable/Disable This field enables the SPI port instance. Setting this field disables the SPI port, but does not change the contents of the receive or transmit FIFOs or other SPI registers. 0: SPI port is disabled 1: SPI port is enabled	

Table 13-8: SPI Transmit Packet Size Register

SPI Transmit Packet Size Register				SPI0_CTRL1	[0x0008]	
Bits	Name	Access	Reset	Description		
				Number of Receive Characters Number of characters to receive in RX	FIFO.	
31:16	31:16 rx_num_char R/W 0		0	Note: If the SPI port is set to operate in 4-wire mode, this field is ignored and the tx_num_chars field is used for both the number of characters to receive or transmit.		
15:0 tx num char R/W		0	Number of Transmit Characters Number of characters to transmit fror	n TX FIFO.		
	., ••	U	Note: In 4-wire mode, this also applies	to the RX FIFO.		

Table 13-9: SPI Static Configuration Registers

SPI Static C	SPI Static Configuration Register			SPI0_CTRL2	[0x000C]
Bits	Name	Access	Reset	Description	•
31:17	-	R/W	0	Reserved for Future Use Do not modify this field.	
16	ss_pol	R/W	0	Slave Select Polarity Controls the polarity of the SPIO SS signal 0: SS is active low 1: SS is active high	
15	three_wire	R/W	0	Three-Wire Mode Enable 0: Four-wire mode enabled. 1: Three-wire mode enabled (Single IO	Mode only).
14	-	R/W	0	Reserved for Future Use Do not modify this field.	
13:12	data_width	R/W	0	SPI Data Width Set this field to the required number of S this field must be set to 0. Four-wire SPI r 0: 1-data pin (Single IO Mode - MOSI) 1: 2-data pins (Dual IO Mode - MOSI/M 2: Reserved 3: Reserved	mode supports Single or Dual IO Mode.
11:8	num_bits	R/W	0x0	Number of Bits per Character 1-bit and 9-bit character lengths are not s	supported in Slave Mode
7:2	-	R/W	0	Reserved for Future Use Do not modify this field.	
1	clk_pol	R/W	0	Clock Polarity Selects the SPI clock polarity. 0: Normal clock. Use when in SPI Mode 1: Inverted clock. Use when in SPI Mod	
0	clk_pha	R/W	0	Clock Phase O: Data sampled on clock rising edge. U 1: Data sampled on clock falling edge. L	

Table 13-10: SPI Slave Select Timing Register

SPI Slave Se	elect Timing			SPI0_SS_TIME	[0x0010]
Bits	Name	Access	Reset	Description	
31:24	-	R/W	0	Reserved for Future Use Do not modify this field.	
23:16	ssinact	R/W	0	SS Inactive Clock Delay This is the time SS is inactive, and the transmission. It is the number of system clock cycle SS is inactive to the time SS is active a 0: 256 1: 1 2: 2 3:3 254: 254 255: 255	s from the time a character is transmitted, and
15:8	ssact2	R/W	0	Slave Select Active After Last SCLK Number of system clock cycles that S inactive. 0: 256 1: 1 2: 2 3:3 254: 254 255: 255	S is active from the last SCLK edge to when SS is
7:0	ssact1	R/W	0	Slave Select Active to First SCLK Number of system clock cycles betwee edge. 0: 256 1: 1 2: 2 3:3 254: 254 255: 255	en the time SS is asserted until the first SCLK

Table 13-11: SPI Master Clock Configuration Registers

SPI Master Clock Configuration Register			gister	SPI0_CLK_CFG	[0x0014]
Bits	Name	Access	Reset	Description	
31:20	-	R/W	0	Reserved for Future Use Do not modify this field.	

SPI Master Clock Configuration Register		SPI0_CLK_CFG	[0x0014]		
Bits	Name	Access	Reset	Description	
19:16	scale	R/W	0	0x9 - 0xF: Invalid Note: The microcontroller System Clock is clock. The external SPI clock, SCLK, is gen the high cycle time, hi.	^{le} to generate the SPI module clock. The set value to generate the internal SPI clock The scaled by scale to generate the internal SPI terated by setting the low cycle time, low, and The sizes of 2 and 10 bits are not supported.
15:8	hi	R/W	0x00	SCLK Hi Clock Cycles Control 0x0: Hi duty cycle control disabled. Only valid if scale = 0. 0x1 – 0xF: Number of internal SPI clocks that SCLK is high. Note: If scale=0, hi=0, and lo=0, character sizes of 2 and 10 bits are not supported.	
7:0	lo	R/W	0x00	SCLK Low Clock Cycles Control 0x0: Low duty cycle control disabled. O 0x1 – 0xF: Number of internal SPI clock Note: If SPI0_CLK_CFG.scale=0, SPI0_CLK sizes of 2 and 10 bits are not supported.	

Table 13-12: SPI DMA Control Registers

SPI DMA Control Register				SPI0_DMA	[0x001C]	
Bits	Name	Access	Reset	Description		
31	rx_dma_en	R/W	0	RX DMA Enable 0: RX DMA is disabled. Any pending D 1: RX DMA is enabled	0: RX DMA is disabled. Any pending DMA requests are cleared	
30	-	R/W	0	Reserved for Future Use Do not modify this field.		
29:24	rx_fifo_cnt	R	0	Number of Bytes in the RX FIFO Read returns the number of bytes currently in the RX FIFO		
23	rx_fifo_clear	w	-	Clear the RX FIFO 1: Clear the RX FIFO and any pending RX FIFO flags in SPIO_INT_FL. This should be done when the RX FIFO is inactive. Writing a 0 has no effect.		
22	rx_fifo_en	R/W	0	RX FIFO Enabled 0: RX FIFO disabled 1: RX FIFO enabled		
21	-	R/W	0	Reserved for Future Use Do not modify this field.		

SPI DMA	SPI DMA Control Register			SPIO_DMA [0x001C]		
Bits	Name	Access	Reset	Description		
20:16	rx_fifo_level	R/W	0	RX FIFO Threshold Level When the RX FIFO contains more bytes than the value set in this field, a DMA request is triggered, and the SPI0_INT_FL.rx_level interrupt flag is set. Valid levels for this field are from 0x00 to 0x1E. 0x00: 1 byte in the RX FIFO generates a SPI0_INT_FL.rx_level interrupt flag. 0x01: 2 bytes in the RX FIFO generates an interrupt. n: n+1 bytes in the RX FIFO sets the SPI0_INT_FL.rx_level interrupt flag. 0x1E: Maximum allowed value for this field. 0x1F bytes in the RX FIFO set the SPI0_INT_FL.rx_level interrupt flag. 0x1F is not a valid value.		
15	tx_dma_en	R/W	0	TX DMA Enable 0: TX DMA is disabled. Any pending DMA requests are cleared 1: TX DMA is enabled		
14	-	R/W	0	Reserved for Future Use Do not modify this field.		
13:8	tx_fifo_cnt	RO	0	Number of Bytes in the TX FIFO Read returns the number of bytes currently in the TX FIFO		
7	tx_fifo_clear	W10	-	 Clear the TX FIFO Set this field to flush the TX FIFO. Write 1 only. Write 0 is ignored. 0: TX FIFO flush not active. 1: Clear the TX FIFO and any pending TX FIFO flags in SPI0_INT_FL. This should be done when the TX FIFO is inactive. Note: Writing 0 has no effect. 		
6	tx_fifo_en	R/W	0	TX FIFO Enabled Enable the TX FIFO by setting this field to 1. 0: TX FIFO disabled 1: TX FIFO enabled		
5	-	R/W	0	Reserved for Future Use Do not modify this field.		
4:0	tx_fifo_level	R/W	0x10	TX FIFO Threshold Level When the TX FIFO has fewer than the value set in this field, a DMA request is triggered, and the <i>SPIO_INT_FL.tx_level</i> interrupt flag is set.		

Table 13-13: SPI Interrupt Flag Registers

SPI Interrupt Flag Register			SPI0_INT_FL	[0x0020]	
Bits	Name	Access	Reset	Description	
31:16	-	R/W1C	0	Reserved for Future Use Do not modify this field.	
15	rx_und	R/W1C	0	RX FIFO Underrun Flag Set when a read is attempted from an empty RX FIFO.	
14	rx_ovr	R/W1C	0	RX FIFO Overrun Flag Set if SPI is in Slave Mode, and a write to a full RX FIFO is attempted. If the SPI is in Master Mode, this bit is not set as the SPI stalls the clock until data is read from the RX FIFO.	

SPI Interr	upt Flag Regist	er		SPIO_INT_FL	[0x0020]
Bits	Name	Access	Reset	Description	
13	tx_und	R/W1C	0	TX FIFO Underrun Flag Set if SPI is in Slave Mode, and a read from empty TX FIFO is attempted. If SPI0 is in Master Mode, this bit is not set as the SPI stalls the clock until data is written to the empty TX FIFO. Note: This condition should be avoided by using the SPI0_INT_FL.tx_level interrupt flag to ensure that the underrun condition does not occur.	
12	tx_ovr	R/W1C	0	TX FIFO Overrun Flag Set when a write is attempted to a fu 0: Condition has not occurred. 1: Condition occurred. Write 1 to cl	
11	m_done	R/W1C	0	Master Data Transmission Complete Set if SPI is in Master Mode and all da	-
10	-	R/W	0	Reserved for Future Use Do not modify this field.	
9	abort	R/W1C	0	Slave Mode Transaction Abort Detect Set if the SPI is in Slave Mode, and SS received.	:ted Flag is deasserted before a complete character is
8	-	R/W1C	0	Reserved for Future Use Do not modify this field.	
7:6	-	R/W	0	Reserved for Future Use Do not modify this field.	
5	ssd	R/W1C	0	Slave Select Deasserted Flag This flag is set when the slave select pin is deasserted and the SPI is operating in slave mode.	
4	ssa	R/W1C	0	Slave Select Asserted Flag This flag is set when the slave select pin is asserted and the SPI is operating in slave mode.	
3	rx_full	R/W1C	0	1: Slave Select pin is asserted from a deasserted state. RX FIFO Full Flag This flag is set when the RX FIFO is full. Write 1 to clear. Clearing this flag and not reading data from the RX FIFO will result in this flag being set by hardware automatically when another byte is received on the SPI port. 1: Slave Select pin is asserted from a deasserted state.	
2	rx_level	R/W1C	0	1: RX FIFO is full. RX FIFO Threshold Level Crossed Flag Set when the RX FIFO exceeds the level set in the SPIO_DMA.rx_fifo_level.	
1	tx_empty	R/W1C	1	TX FIFO Empty Flag This field is set when the Transmit FIFO is empty. Write 1 to clear. This flag must be cleared by the application directly. Writing data to the TX FIFO does not clear this flag automatically. Note: On the MAX32660 SPIO port, the SPIO_DMA.tx_fifo_level should be used to avoid an empty TX FIFO condition.	
0	tx_level	R/W1C	0	TX FIFO Threshold Level Crossed Flag Set when the TX FIFO is less than the value in SPI0_DMA.tx_fifo_level. Write 1 to clear. This flag must be cleared by the application explicitly. Correcting the condition by writing data to the TX FIFO does not clear this flag.	

Table 13-14: SPI Interrupt Enable Registers

SPI Interrupt Enable Register			SPIO_INT_EN	[0x0024]		
Bits	Name	Access	Reset	Description		
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.		
15	rx_und	R/W	0	RX FIFO Underrun Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
14	rx_ovr	R/W	0	RX FIFO Overrun Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
13	tx_und	R/W	0	TX FIFO Underrun Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
12	tx_ovr	R/W	0	TX FIFO Overrun Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
11	m_done	R/W	0	Master Data Transmission Done Inter 0: Interrupt is disabled 1: Interrupt is enabled	rrupt Enable	
10	-	R/W	0	Reserved for Future Use Do not modify this field.		
9	abort	R/W	0	Slave Mode Abort Detected Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
8	fault	R/W	0	Multi-Master Fault Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
7:6	-	R/W	0	Reserved for Future Use Do not modify this field.		
5	ssd	R/W	0	Slave Select Deasserted Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
4	ssa	R/W	0	Slave Select Asserted Interrupt Enab 0: Interrupt is disabled 1: Interrupt is enabled	le	
3	rx_full	R/W	0	RX FIFO Full Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
2	rx_level	R/W		RX FIFO Threshold Level Crossed Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
1	tx_empty	R/W	0	TX FIFO Empty Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		
0	tx_level	R/W	0	TX FIFO Threshold Level Crossed Interrupt Enable 0: Interrupt is disabled 1: Interrupt is enabled		

SPI Wakeu	SPI Wakeup Status Flags			SPI0_WAKE_FL	[0x0028]
Bits	Name	Access	Reset	Description	
31:4	-	R/W	0	Reserved for Future Use Do not modify this field.	
3	rx_full	R/W1C	0	Wake on RX FIFO Full Flag0: Wake condition has not occurred.1: Wake condition occurred.	
2	rx_level	R/W1C	0	Wake on RX FIFO Threshold Level Crossed Flag 0: Wake condition has not occurred. 1: Wake condition occurred.	
1	tx_empty	R/W1C	0	Wake on TX FIFO Empty Flag 0: Wake condition has not occurred. 1: Wake condition occurred.	
0	tx_level	R/W1C	0	Wake on TX FIFO Threshold Level Crossed Flag0: Wake condition has not occurred.1: Wake condition occurred.	

Table 13-16: SPI Wakeup Enable Registers

SPI Wakeu	SPI Wakeup Enable			SPI0_WAKE_EN [0x002C]	
Bits	Name	Access	Reset	Description	
31:4	-	R/W	0	Reserved for Future Use Do not modify this field.	
3	rx_full	R/W	0	Wake on RX FIFO Full Enable 0: Wake event is disabled 1: Wake event is enabled.	
2	rx_level	R/W	0	Wake on RX FIFO Threshold Level Crossed Enable 0: Wake event is disabled 1: Wake event is enabled.	
1	tx_empty	R/W	0	Wake on TX FIFO Empty Enable 0: Wake event is disabled 1: Wake event is enabled.	
0	tx_level	R/W	0	Wake on TX FIFO Threshold Level Cross 0: Wake event is disabled 1: Wake event is enabled.	ed Enable

Table 13-17: SPI Status Registers

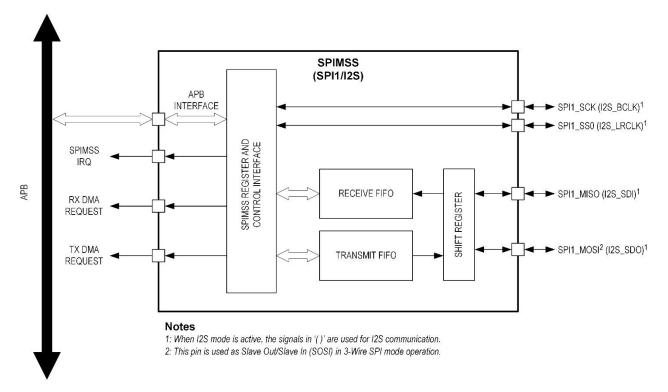
SPI Status Register				SPIO_STAT [0x0030]	
Bits	Name	Access	Reset	Description	
31:1	-	R/W	0	Reserved for Future Use Do not modify this field.	
0	busy	R	0	 SPI Active Status O: SPI is not active. In Master Mode, cleared when the last character is sent. In Slave Mode, cleared when SS is deasserted. 1: SPI is active. In Master Mode, set when transmit starts. In Slave Mode, set when SS is asserted. 	

14 SPIMSS (SPI1/I²S)

14.1 Overview

The SPIMSS peripheral provides either an SPI interface or an I²S interface. When set to SPI mode, the peripheral supports SPI with a four-wire full-duplex serial bus operating as either a master or slave. When set to I²S mode, the peripheral support full-duplex bi-directional I/O, a signal for Left/Right clock and a bit rate clock signal for master or slave communications.

The SPIMSS (SPI1/I²S) peripheral supports Inter-IC Sound (I²S) protocol for 16-bit mono or stereo audio transfer to or from an external I²S audio codec.


14.1.1 Features

- Dedicated Bit Rate Generator
- Eight entry, 16-bit wide transmit and receive FIFOs
- DMA support for both transmit and receive operations
- SPI Features
 - Full-duplex, synchronous communication of 1 to 16-bit characters
 - Four-wire interface
 - Data transfers rates up to one-fourth the peripheral clock frequency $({f_{PCLK}}/{_{A}})$
 - Master and Slave mode SPI operation
 - 1 Slave Select Pin
- I²S Features
 - 16-bit audio transfer
 - I²S master or slave mode
 - Bidirectional, full-duplex communication supported
 - Left-Right Clock and Bit Clock generation in I²S master mode

Figure 14-1 shows a high-level block diagram of the SPIMSS peripheral including the external interface signals, control unit, receive and transmit FIFOs, and single shift register common to the transmit and receive data path for SPI or I²S operation. The SPIMSS peripheral is configurable to operate as a SPI port or an I²S port. The same physical pins are used for SPI or I²S operation. The reset default sets the SPIMSS to SPI operation. Enabling I²S, setting *SPIMSS_I2S_CTRL.i2s_en* to 1, results in hardware using the pins as defined for I²S.

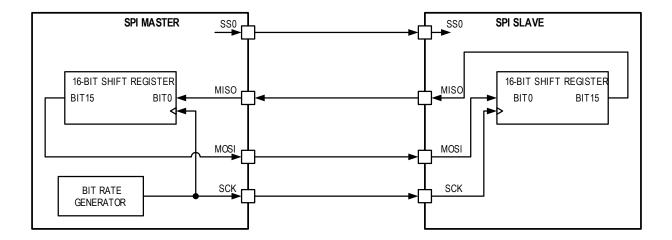
Figure 14-1. SPIMSS Block Diagram

An SPI system has a single master and one or more slaves for any given transaction. The SPIMSS supports single master mode networks only when operating in SPI master mode.

14.1.2 Four-Wire SPI Signals

SPI devices operate as either a master or slave device. In four-wire SPI, four signals are required for communication as shown in *Table 14-3, below*.

Signal	MAX32660 Alternate Function Name	Description	Direction
SCK	SPI1_SCK	Serial Clock	The master generates the Serial Clock signal, which is an output from the master and an input to the slave.
MOSI	SPI1_MOSI	Master Output Slave Input	In master mode, this signal is used as an output for sending data to the slave. In slave mode this is the input data from the master.
MISO	SPI1_MISO	Master Input Slave Output	In master mode, this signal is used as an input for receiving data from the slave. In slave mode, this signal is an output for transmitting data to the master.
SS	SPI1_SSO	Slave Select	In master mode, this signal is an output used to select a slave device prior to communication. In slave mode, this signal is an input used to indicate the master is going to start communication.


Table 14-1: Four-Wire SPI Signals

Note: The MAX32660 supports a single slave select pin in the SPIMSS peripheral for SPI1. This pin's alternate function name is SPI1_SS0.

A typical four-wire SPI network is shown in *Figure 14-2, below*. In a typical SPI network, the master device selects the slave device using the slave select output pin. The master starts the communication by selecting the slave device by asserting the slave select output pin. The master then starts the SPI clock via the SCK output pin. When a slave device's slave select pin is deasserted, the device is required to put the SPI pins in tri-state mode.

Figure 14-2: 4-Wire SPI Connection Diagram

14.1.3 *I*²*S Signals*

I²S devices operate as either a master or slave device. Three signals are required for communication as shown in *Table 14-3*, *below*. For a slave I²S device, the SDI signal is used for audio input and the SDO pin is not required. For a master I²S device, the SDO pin is used for audio output and the SDI pin is not required.

Table	14-2:	I^2S	Signals	
-------	-------	--------	---------	--

Signal	MAX32660 Alternate Function Name	Name	Description
ws	I2S_LRCLK	Word Select	The word select clock indicates which channel is currently being sent. I ² S supports two channels, channel 1 and channel 2, left and right respectively. The word select signal is often referred to as left-right clock (LRCLK). Channel 1, the left audio, is transmitted when the LRCLK is low. Channel 2, the right audio, is transmitted when the LRCLK is high.
SCK	I2S_BCLK	Continuous Serial Clock	SCK is referred to as the Bit Clock, BCLK. The BCLK pulses once for each discrete bit of data on the data lines.
SDI	I2S_SDI	Serial Data In	Audio data input line. Data is signed, encoded as two's complement with the MSB first.
SDO	I2S_SDO	Serial Data Out	Audio data output line.

14.2 SPIMSS Configuration

Before configuring the SPIMSS peripheral, first disable any SPIMSS activity by setting the SPIMSS_CTRL.enable field to 0.

14.2.1 SPIMSS Pin Configuration for SPI and I²S Operation

Pin selection and configuration is required to use the SPIMSS for either SPI or I²S operation. The following information applies to both I²S or SPI operation. *Table 14-3* shows the pin selection options for the SPIMSS (SPI1/I²S) for each package available. The Alternate Function Name column maps the typical SPI signal name to the Alternate Function name on the MAX32660 family of parts. The required pins for SPIMSS are all mapped to Alternate Function 2 on GPIO Port 0 and are available on the same pins in both the 16-WLP and the 20-TQFN as shown in *Table 14-3*.

For SPI operation, an external pull-up resistor should be used to prevent floating input signals when operating the SPI signals in open drain mode (refer to the *SPIMSS_CTRL*. *wor* bit) or high impedance mode.

When the SPI or I^2S are not enabled, *SPIMSS_CTRL.enable* = 0, all the SPI1 pins are put into high-impedance mode.

		Alternate	Alternate	GPIO		
SPI Signal	I ² S Signal	Function Name	Function Number	16-WLP	20-TQFN	
SCK	WS (BCLK)	SPI1_SCK (I2S_BCLK)	AF2	P0.2	P0.2	
MOSI (SISO)	SDO	SPI1_MOSI (I2S_SDO)	AF2	P0.1	P0.1	
MISO	SDI	SPI1_MISO (I2S_SDI)	AF2	P0.0	P0.0	
SS	BCLK (LRCLK)	SPI1_SSO (I2S_LRCLK)	AF2	P0.3	P0.3	

Table 14-3: SPIMSS Pins for SPI1 and I²S

Four-wire SPI uses SCK, MISO, MOSI, and the SS pin. I²S requires BCLK, LRCLK and either SDO or SDI. The following steps outline setting up the GPIO pins for the SPI1/I²S alternate function usage.

- 1. Set the GPIO pin for alternate function operation.
 - a. SPI1_SCK (I2S_BCLK): Set GPIO0_EN[2] to 0.
 - b. SPI1_MOSI (I2S_SDO): Set GPIO0_EN[1] to 0.
 - c. SPI1_MISO (I2S_SDI): Set GPIO0_EN[0] to 0.
 - d. SPI1_SSO (I2S_LRCLK): Set GPIO0_EN[3] to 0.
- 2. Select AF2 using the GPIO0_AF_SEL register.
 - a. SPI1_SCK (I2S_BCLK):: Set GPIO0_AF_SEL[2] to 1
 - b. SPI1_MOSI (I2S_SDO): Set GPIO0_AF_SEL[1] to 1.
 - c. SPI1_MISO (I2S_SDI):: Set GPIO0_AF_SEL[0] to 1.
 - d. SPI1_SSO (I2S_LRCLK): Set GPIO0_AF_SEL[3] to 1.

14.3 SPI Operation

SPI is a full-duplex, synchronous, character-oriented serial communication channel that supports a four-wire interface consisting of a serial clock, SCK, a slave select line, SS, and two data lines, MOSI and MISO. The SPIMSS consists of a transmit and receive shift register, a transmit FIFO, a receive FIFO, a bit rate generator and a control unit as shown in *Figure 14-1*.

During an SPI transfer, data is sent and received simultaneously by both the master and slave device. When an SPI transfer occurs, a multi-bit character, selectable from 1-bit to 16 bits, is shifted out on the data output line and a multi-bit character is simultaneously shifted in on the data input pin. A 16-bit shift register in the master and another 16-bit shift register in the slave are connected as a circular buffer with the most significant bit (bit15) sent first. The SPIMSS contains two 8 entry, 16-bit FIFOs to support transmit and receive data. Any data in the transmit FIFO is moved into the shift register at the start of every new SPI transfer if there is data in the transmit FIFO. At the end of each SPI character transmitted, data is moved from the input shift register into the receive FIFO.

14.3.1 Serial Clock

The Serial Clock (SCK) synchronizes data movement in and out of the device through the SPI1_MOSI and SPI1_MISO pins. The master drives the serial clock out its SCK pin to the slave's SCK pin. When SPI1 is set to master mode, the SPIMSS bit rate generator creates the serial clock and outputs it on the SPI1_SCK pin. When SPI1 is configured for slave operation the SPI1_SCK pin is an input from the external master. Slave devices ignore the SCK signal unless their slave select pin is asserted.

When SPI1 is configured for slave operation, the maximum SCK input frequency supported is $f_{SCK} = \frac{f_{PCLK}}{8}$. For example, if $f_{PCLK} = 48MHz$, the maximum SPI clock frequency supported in slave mode for SPI1 is 6MHz.

In both master and slave devices, data is shifted on one edge of the SCK and is sampled on the opposite edge where data is stable. Data availability and sampling time is controlled using the SPI phase control field, *SPIMSS_CTRL.phase*. The SCK clock polarity field, *SPIMSS_CTRL.clkpol*, controls if the SCK signal is active high or active low.

SPIMSS supports four combinations of SCK phase and polarity. Clock Polarity (*SPIMSS_CTRL.clkpol*) selects an active low/high clock and has no effect on the transfer format. Clock Phase (*SPIMSS_CTRL.phase*) selects one of two different transfer formats.

For proper data transmission, the clock phase and polarity must be identical for the SPI master and slave. The master always places data on the MOSI line a half-cycle before the SCLK edge for the slave to latch the data.

SPIMSS_CTRL phase	SPIMSS_CTRL clkpol	SCLK Transmit Edge	SCLK Receive Edge	SCLK Idle State
0	0	Falling	Rising	Low
0	1	Rising	Falling	High
1	0	Rising	Falling	Low
1	1	Falling	Rising	High

Table 14-4. Clock Phase and Polarity Operation

14.3.2 SPI Slave Select Configuration

The Slave Select (SS) signal is used to select a specific slave device during SPI transfers or to distinguish left and right channel audio data in I²S mode. In an SPI system with multiple slaves, the master must provide separate slave select signals to each slave. The slave select is set to active prior to any communication with a slave and must remain in the active state for the full duration of each character transferred at a minimum. The slave select signal may stay low during the transfer of multiple characters or may deassert between each character. The *SPIMSS_MODE.ssv* bit is not used in SPI slave mode.

14.3.2.1 SPI Master Mode

If using SPI1 as a SPI master, set the slave select pin, SPI1_SSO, as an output (*SPIMSS_CTRL.ss_io* = 1). The polarity of the slave select signal is selected via the *SPIMSS_MODE.ssv* bit and defaults to active low (*SPIMSS_MODE.ssv*).

14.3.2.2 SPI Slave Mode

When using SPI slave mode, *SPIMSS_CTRL.mode = 0*, configure the slave select pin, SPI1_SSO, as an input by clearing *SPIMSS_CTRL.ss_io*. The *SPIMSS_MODE.ssv* bit is not used in SPI slave mode.

14.3.3 SPI Character Size

SPI transmits and receives characters simultaneously. The transmit and receive character size is the same. Set the number of bits per character using the *SPIMSS_MODE.numbits* field.

14.3.4 SPI Data Movement

Data movement in SPI mode is controlled using one of the following methods:

- Synchronous operation
 - Application polling of the *SPIMSS_INT_FL.txst* bit to transfer single words.
 - Application polling of the SPIMSS_DMA.tx_fifo_level or SPIMSS_DMA.rx_fifo_level fields enables transfers of up to eight characters at a time.
- Asynchronous Operation
 - The SPIMSS_CTRL.irge bit can be set to enable data and error interrupts. The SPIMSS_CTRL.str bit may be used if desired to force a "startup" data interrupt. A data interrupt will be generated on completion of each character transfer.
- DMA Operation
 - Control of data transferred is enabled via the SPIMSS_DMA.rx_dma_en and/or SPIMSS_DMA.tx_dma_en bits. The SPIMSS_DMA.tx_fifo_level and SPIMSS_DMA.rx_fifo_level control when DMA requests are asserted. When DMA is enabled, the SPIMSS data interrupt is disabled by hardware, error interrupts remain available. DMA operation is beneficial for block transfers as the CPU only needs to service one DMA interrupt per block of data versus one interrupt for each character transferred if data interrupt-based transfer is used.

The SPIMSS Data Register, *SPIMSS_DATA*, is used for transferring data for both transmit and receive operations.

For incoming data, the receive data is shifted into an internal shift register. Once a full character is received, the character is automatically moved into the receive FIFO. Read received data using the *SPIMSS_DATA* register.

For outgoing data, data written to the *SPIMSS_DATA* register is automatically moved to the transmit FIFO. The data is then transmitted via the shift register. When the shift register is empty, any data in the transmit FIFO is moved to the shift register.

Note: When the SPIMSS is not actively transmitting or receiving data (SPIMSS_CTRL.enable = 0), data written to the SPIMSS Data Register is stored in the transmit FIFO, if the transmit FIFO is not full. Any data in the transmit FIFO when the SPIMSS enable bit is set to 1 is transmitted immediately by the hardware. Flush the transmit FIFO at any time by setting the SPIMSS_DMA.tx_fifo_clr bit to 1.

With the SPIMSS configured as a SPI master, writing data to the *SPIMSS_DATA* register initiates the data transmission. With the SPIMSS configured as a SPI slave, writing data *SPIMSS_DATA* register loads the shift register in preparation for the next data transfer with the external master. In either SPI master or slave mode, when the transmit FIFO is full, writes to the *SPIMSS_DATA* register are ignored and result in a transmit overrun error interrupt (*SPIMSS_INT_FL.tovr* = 1).

Data is shifted out starting with the most significant bit first (bit 15). The last bit received will reside in the least significant bit, (bit 0). In SPI mode, when the character length is less than 16 bits, set by the *SPIMSS_MODE.numbits* field, the transmit character must be left justified in the *SPIMSS_DATA* register. A received character of less than 16 bits is always right justified, with the last bit received loaded into the least significant bit (bit 0). For example, if SPI1 is configured for 4-bit characters, write transmit data to *SPIMSS_DATA*[15:12] and received characters are read from *SPIMSS_DATA*[3:0].

The application overhead required to left justify the transmit data can be eliminated by setting the *tx_lj* bit in the *SPIMSS_MODE* register. When *SPIMSS_MODE*.*tx_lj* = 1, transmit data is always written by software or DMA to *SPIMSS_DATA* in right justified form and hardware performs the left justify according to *SPIMSS_MODE*.*numbits* when the shift register is loaded. For the 4-bit character example, when *SPIMSS_MODE*.*tx_lj* = 1, transmit data is written to *SPIMSS_DATA* [3:0] and hardware shifts these to bits *SPIMSS_DATA* [15:12] when the shift register is loaded. The *SPIMSS_MODE*.*tx_lj* bit has no effect on receive data which is always right justified.

14.3.5 SPI Master Configuration

Perform the following steps to configure SPI1 for master mode:

- Set *SPIMSS_CTRL.enable* to 0 to disable the SPIMSS peripheral.
- Enable SPI master mode by setting *SPIMSS_CTRL.mode* to 1.
- Set the SPIMSS SPI1 pins to wired OR/open drain, if required, by setting SPIMSS CTRL.wor to 1.
- Set the slave select pin to an output by setting SPIMSS_CTRL.ss_io = 1
- Configure the clock phase and polarity, if required, using the SPIMSS_CTRL.phase and SPIMSS_CTRL.clkpol bits.
- Set the number of bits per character using the *SPIMSS_MODE.numbits* field.
- Configure the Bit Rate Generator for the desired bit transmission rate. Refer to section SPIMSS Bit Rate Generator.
- Load data in the Transmit FIFO to send to the slave or configure the Transmit and Receive DMA.
- Enable SPI1 by setting the SPIMSS enable bit, *SPIMSS_CTRL.enable*, to 1.
- Optionally force a SPIMSS data interrupt by setting *SPIMSS_CTRL.str* to 1.

The SPIMSS_CTRL.phase, SPIMSS_CTRL.clkpol and the SPIMSS_MODE.numbits fields must be consistent with the slave SPI device for successful operation. The SPIMSS_MODE.ssv bit controls the asserted level for the slave select output pin, SPI1_SS0. Set SPIMSS_MODE.ssv to 1 to set the slave select to active high. The typical SPI device uses an active low slave select signal and the SPIMSS_MODE.ssv defaults to 0 for an active low slave select output.

14.3.6 SPI Slave Configuration

Perform the following steps to configure SPI1 for slave mode:

- 3. Disable the SPI1 by clearing the enable bit (*SPIMSS_CTRL.enable* = 0)
- 4. Set SPI1 to slave mode, by setting the *SPIMSS CTRL.mode* bit to 0.
- 5. Set SPIMSS_CTRL.wor to 0 for wired OR/open drain for all the SPIMSS (SPI1/I²S) I/O pins.
- 6. Set SPIMSS_CTRL.ss_io to 0 to set the slave select pin (SPI1_SS0) as an input.
- 7. Configure the clock phase and polarity, if required, using the *SPIMSS_CTRL.phase* and *SPIMSS_CTRL.clkpol* bits.
- 8. Set the number of bits per character using the *SPIMSS MODE.numbits* field.
- 9. Load data in the Transmit FIFO to send to the master for the next communication or configure the Transmit and Receive DMA.
- 10. Enable SPI1 by setting the enable bit, SPIMSS_CTRL.enable, to 1 to begin transmitting and receiving data.

The *SPIMSS_CTRL.phase* and *SPIMSS_CTRL.clkpol* bits and the *SPIMSS_MODE.numbits* field must be set to be consistent with the SPI master. The *SPIMSS_CTRL.str* bit may be used, if desired, to force a start interrupt when the master SPI device asserts the slave select pin, SPI1_SS0. The baud rate generator timer interrupt flag, *SPIMSS_CTRL.birq*, and the slave select value bit, *SPIMSS_CTRL.ssv*, are not used in SPI slave mode. The SPI bit rate generator is not used in slave mode, so the Mode Register, *SPIMSS_MODE*, does not need initialization.

If the slave has data to send to the master, the data should be written before the transaction starts (first edge of SCK after the slave select pin, SPI1_SSO, is asserted). If the *SPIMSS_DATA* register is not written prior to the slave transaction, the SPI1_MISO pin will output whatever value was written last into the *SPIMSS_DATA* Register. Avoid this issue by loading the transmit FIFO or configure transmit DMA prior to enabling SPI1.

14.4 I²S Mode

Configure the SPIMSS peripheral for I²S mode as follows:

- SPIMSS_CTRL.enable = 0, disable the SPIMSS for SPI and I²S.
- *SPIMSS_I2S_CTRL.i2s_en* = 1, enable I²S mode
- *SPIMSS_CTRL.phase* = 0, set the phase
- SPIMSS_CTRL.clkpol = 0
- SPIMSS_MODE.numbits = 0 (to select 16-bit characters)
- SPIMSS_CTRL.enable = 1

The *SPIMSS_CTRL.mmen* and *SPIMSS_CTRL.ss_io* bits are set in accordance with either master or slave mode of operation. The *SPIMSS_MODE.ssv* bit is ignored by hardware in I²S mode. In I²S, the master hardware sources the word select pin, I2S_BCLK, and the left-right clock pin, I2S_LRCLK. In I²S mode, the word select signal toggles between consecutive audio words. I2S_LRCLK is low for the left channel data and is high for the right channel data.

The receive and/or transmit DMA channels must be enabled when operating in I²S mode. Typically, audio data will only flow in one direction as defined by the *SPIMSS_DMA.rx_dma_en* or *SPIMSS_DMA.tx_dma_en* bits, however audio data may be transferred in both directions simultaneously if desired. Data in the transmit buffer should be initialized with the first 16-bit character containing a left channel audio sample, then alternating right and left channel 16-bit audio samples. When audio data is being received, the first sample written into the receive buffer will be a left channel audio sample.

14.4.1 Mute

The *SPIMSS_12S_CTRL.i2s_mute* bit in the I²S Control Register can be set by software asynchronously to the DMA transfers to silence the transmit output. At the beginning of the next left channel audio sample after *SPIMSS_12S_CTRL.i2s_mute* is asserted, DMA and FIFO accesses will continue, however, the data read from the transmit FIFO will be discarded and replaced with zeroes. When *SPIMSS_12S_CTRL.i2s_mute* is deasserted, the transmit output will resume at the beginning of the next left channel audio sample.

14.4.2 Pause

The *SPIMSS_I2S_CTRL.i2s_pause* bit can be set by software asynchronously to the DMA transfers to halt DMA and FIFO accesses. At the beginning of the next left channel audio sample after *SPIMSS_I2S_CTRL.i2s_pause* is set to 1, both transmit and receive DMA and FIFO accesses will halt and the transmit data will be forced to zero. At the beginning of the next left channel audio sample after *SPIMSS_I2S_CTRL.i2s_pause* is set to 0, the DMA accesses will resume from the position at which the pause occurred. Pause takes precedence over mute.

14.4.3 Mono

The *SPIMSS_I2S_CTRL.i2s_mono* bit in the I²S Control Register is set to select single channel audio data vs. stereo format. In mono mode each transmit data word read from the transmit FIFO is duplicated for both left and right channel output words. The receive channel will read the data from the left channel (I2S_LRCLK pin low) and ignore data in the right channel (I2S_LRCLK pin high). This allows DMA buffers for mono mode to be one-half the size of DMA buffers for stereo mode.

14.4.4 Left Justify

The *SPIMSS_I2S_CTRL.i2s_Ij* bit selects the phase of the I2S_LRCLK signal versus the data. When *SPIMSS_I2S_CTRL.i2s_Ij* = 0 (normal I²S mode), the audio data lags the transition of the I2S_LRCLK signal by one I2S_BCLK period as shown in *Figure 14-3*, *below*. When *SPIMSS_I2S_CTRL.i2s_Ij* = 1, the audio data is "left justified" so that the most significant bit of the channel audio data is available when the I2S_LRCLK signal transitions.

Figure 14-3: I²S Audio Data in Standard I²S Operation

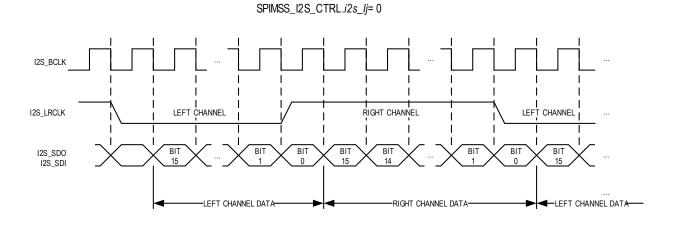
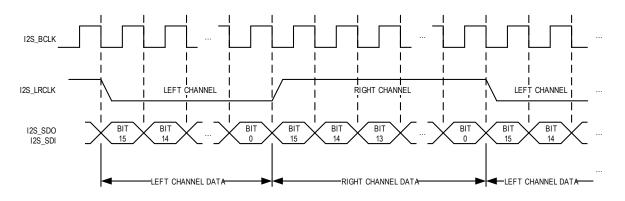



Figure 14-4: I²S Mode (i2s_en=1, i2s_lj=1)

SPIMSS_I2S_CTRL.i2s_Ij=1

14.5 SPI and I²S Error Detection

The SPIMSS peripheral includes error detection logic to recognize when communication errors occur for either SPI or I²S communications. If the *SPIMSS_CTRL.irqe* bit is set to 1, error conditions generate a SPIMSS IRQ. The SPIMSS Interrupt Flag Register, *SPIMSS_INT_FL*, includes the error flags described below.

14.5.1 Transmit Overrun

A transmit overrun error indicates a write to the transmit FIFO was attempted when the internal transmit FIFO was full in either SPI or I²S modes. An overrun condition sets the *SPIMSS_INT_FL.tovr* bit to 1. Writing a 1 to *SPIMSS_INT_FL.tovr* clears this error flag.

Note: A transmit FIFO overrun in I²S mode may result in mixing left and right channel data. Software should reinitialize the DMA channel, the Transmit FIFO and restart the I²S transfer.

14.5.2 SPI Slave Mode Abort

A SPI slave mode abort error indicates that the SPI1_SSO pin deasserted before all bits in a character were transferred. The next time SPI1_SSO asserts, the SPI1_MISO pin outputs *SPIMSS_DATA[15]*, regardless of where the previous transaction aborted. A slave mode abort sets the *SPIMSS_INT_FL.abt* error flag to 1. Writing a 1 to *SPIMSS_INT_FL.abt* clears this error flag.

*Note: This error interrupt does not occur in SPI Master or I*²*S mode.*

14.5.3 Receive Overrun

This error occurs if data is received and the Receive FIFO is full and applies to SPI master, SPI slave and I²S modes. The *SPIMSS_INT_FL.rovr* error flag is set to 1 if this error occurs. Writing a 1 to *SPIMSS_INT_FL.rovr* bit clears this error flag.

*Note: A Receive Overrun error in I*²*S mode results in left/right channel data corruption. If a Receive Overrun error occurs, the application must flush the Receive FIFO, reinitialize the receive DMA channel, restart the I*²*S transfer.*

14.6 SPI1 and I²S Interrupts

The SPIMSS provides interrupt support for a variety of conditions for SPI and I²S modes. Setting *SPIMSS_CTRL.irqe* to 1 enables the SPIMSS IRQ. The SPIMSS generates an IRQ when one of the following interrupt conditions occur.

14.6.1 Data Interrupt

A data interrupt occurs when a the Transmit FIFO is empty and the transmit shift register shifts out the last bit of the active transmit word The Data Interrupt flag applies to both transmit and receive data for SPI and I²S because the transmit and receive paths are interlocked.

The data interrupt does not occur if either Transmit DMA or Receive DMA is enabled because the DMA interface handles the data interrupt condition directly in hardware.

A data interrupt is indicated as follows:

- The SPIMSS_INT_FL.irq flag is set to 1.
- No error condition flags are set in the SPIMSS_INT_FL register.
 SPIMSS_INT_FL[6:2] = 0

Clear the data interrupt condition by writing 1 to *SPIMSS_INT_FL.irq*.

14.6.2 Forced Interrupt

To start the data transfer process, an SPI interrupt may be forced by software by writing a 1 to the *SPIMSS_CTRL.str* bit in the SPI Control Register.

14.6.3 Error Condition Interrupt

If any of the SPI error conditions occurs as described in section *SPI and I2S Error Detection, above*, the corresponding error bit in the *SPIMSS_INT_FL* register and the *SPIMSS_INT_FL.irq* bit are set to 1. The error flags and the irq bit should be cleared simultaneously by writing both to 1 simultaneously. For example, a transmit overrun error is indicated by the *SPIMSS_INT_FL.tovr* bit set to 1 and the *SPIMSS_INT_FL.irq* bit set to 1. Clear this condition by writing 0x06 to *SPIMSS_INT_FL.*

14.6.4 Bit Rate Generator Time-out Interrupt

If the SPI is disabled, an SPI interrupt can be generated by a Bit Rate Generator time-out. This timer function must be enabled by setting the *SPIMSS_CTRL.birq* bit to 1.

14.7 SPIMSS Bit Rate Generator

14.7.1 SPI and I²S Slave Mode

The Bit Rate Generator is not used in SPI or I²S slave mode. When configured as a SPI or I²S slave, the maximum SCK or BCLK frequency is $f_{PCLK}/_{o}$.

14.7.2 SPI and I²S Master Mode Bit Rate Generator

For SPI or I²S master operation, the Bit Rate Generator (BRG) creates a lower frequency clock for SCK or BCLK for data transmission synchronization between the master and the external slave. The input to the Bit Rate Generator is the System Peripheral clock, PCLK. The Bit Rate Generator register is a 16-bit reload value, *SPIMSS_BRG.div*, for the Bit Rate Generator. The reload value, *SPIMSS_BRG.div*, must be greater than or equal to 0x02 for SPI and I²S master operation with a maximum bit rate frequency of $\frac{f_{PCLK}}{4}$. Equation 14-1 shows the equation for calculating the SPI master and I²S master bit rate frequency.

Equation 14-1: SPI Master and I²S Master Bit Rate Calculation

$$Bit Rate\left(\frac{bits}{sec}\right) = \left(\frac{f_{PCLK}}{2 \times SPIMSS_BRG.div}\right)$$

Note: For SPIMSS_BRG. div = 0, use 2^{16}

14.7.3 Timer Mode

When SPI1 or I²S is not active, the Bit Rate Generator can function as a continuous mode 16-bit timer with interrupt on time-out. To configure the Bit Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Set *SPIMSS_CTRL.enable* = 0 to stop any SPI or I^2S activity.
- 2. Disable the transmit and receive FIFOs
 - a. SPIMSS_DMA.tx_fifo_en = 0
 - b. *SPIMSS_DMA.rx_fifo_*en = 0
- 3. Disable DMA mode
 - a. *SPIMSS_DMA.tx_dma_en* = 0
 - b. *SPIMSS_DMA.rx_dma_en* = 0
- 4. Load the desired 16-bit divisor into the SPIMSS Bit Rate Generator Register, SPIMSS_BRG.div.
- 5. Set *SPIMSS_CTRL.birq* = 1 to enable the Bit Rate Generator
- 6. Enable the SPIMSS peripheral by setting *SPIMSS_CTRL.enable* = 1

14.8 SPIMSS (SPI1/I²S) Registers

The SPIMSS base peripheral address is 0x4001 9000. Refer to *Table 3-1: APB Peripheral Base Address Map* for the addresses of all APB mapped peripherals.

Table 14-5: SPIMSS Register Offsets, Access and Descriptions

Offset	Register Name	Access	Description
[0x0000]	SPIMSS_DATA	R/W	SPIMSS Data Register
[0x0004]	SPIMSS_CTRL	R/W	SPIMSS Control Register
[0x0008]	SPIMSS_INT_FL	R/W	SPIMSS Interrupt Flag Register
[0x000C]	SPIMSS_MODE	R/W	SPIMSS Mode Register
[0x0014]	SPIMSS_BRG	R/W	SPIMSS Bit Rate Register
[0x0018]	SPIMSS_DMA	R/W	SPIMSS DMA Register
[0x001C]	SPIMSS_I2S_CTRL	R/W	SPIMSS I ² S Control Register

14.8.1 SPIMSS Register Details

Table 14-6. SPIMSS Data Register

SPIMSS Data Register				SPIMSS_DATA	[0x0000]	
Bits	Name	Access	Reset	Description		
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.		
15:0	data	R/W	0	SPIMSS Data Refer to the SPI Data Movement se	ction for details.	

Table 14-7: SPIMSS Control Register

SPIMSS Control Register				SPIMSS_CTRL [0x0004]	
Bits	Name	Access	Reset	Description	
31:8	-	R/W	0	Reserved for Future Use Do not modify this field.	
7	irqe	R/W	0	 Interrupt Request Enable Set to enable interrupts for the SPIMSS peripheral. 0: SPIMSS (SPI1/I²S) interrupts are disabled. 1: SPI MSS (SPI1/I²S) interrupts are enabled. Interrupt requests are sent to the Interrupt Controller Note that if transmit or receive DMA is enabled, the transmit data complete interrupt is disabled, but other interrupt sources are available. 	
6	str	R/W	0	Start SPI Interrupt Setting this bit starts a SPIMSS interrupt request. Setting this bit also sets SPIMSS_INT_FL.irq to 1. Setting this bit forces the SPIMSS to send an interrupt request to the Interrupt Controller if SPIMSS_CTRL.irqe = 1. This bit is cleared by writing a 0 to this bit or by writing a 1 to SPIMSS_INT_FL.irq.	
5	birq	R/W	0	 Bit Rate Generator Timer Interrupt Request Enable or disable the Bit Rate Generator if the SPIMSS is enabled (SPIMSS_CTRL.enable = 1). 0: Clearing this bit disables the Bit Rate Generation timer function. 1: Setting this bit to 1 enables the Bit Rate Generation timer function and enables the time-out interrupt. Note: If SPIMSS_CTRL.enable = 0, this bit has no effect. 	

SPIMSS Control Register				SPIMSS_CTRL	[0x0004]
Bits	Name	Access	Reset	Description	
4	phase	R/W	0	 Phase Select Refer to the section 13.3.7 Clock Phase and Polarity Control for details. 0: Data is valid prior to first serial clock edge. 1: Data transition occurs after the first serial clock edge. 	
3	clkpol	R/W	0	Clock Polarity Sets the idle state for the SCK clock pin after a character transaction. 0: SCK idles low (0) after character transmission or reception. 1: SCK idles high (1) after character transmission or reception.	
2	wor	R/W	0	Wired OR (Open Drain) Enable Set to enable wired OR for the SPIMSS signal pins (SPI1_SCK, SPI1_SSO, SPI1_MOSI, SPI1_MISO). 0: Wired OR configuration disabled. 1: Wired OR configuration enabled.	
1	mmen	R/W	0	SPI Master Mode Enable Set this field to enable master mode for SPI1. 0: SPI set to slave mode operation	
0	enable	R/W	0	1: SPI set to master mode operation SP1/l ² S Enable Set this field to enable operation of the SPIMSS as configured, either for SPI1 or l ² S. If the Transmit FIFO contains data, the data is considered valid and is transmitted. If data is in the Receive FIFO, the data is considered valid and is used as received data. 0: Disable SPI1 and l ² S. 1: Enable SPI1 or l ² S, if configured. Note: This bit should be set to 1 only after the SPIMSS is configured for operation as either SPI or l ² S. Setting this bit to 0 does not reset or change any configuration of the SPI or l ² S and does not affect any data in the Transmit or Receive FIFOs. Note: Clear the Transmit and Receive FIFOs, if desired, prior to setting this field to 1 by writing 1 to SPIMSS_DMA.tx_fifo_clr or SPIMSS_DMA.rx_fifo_clr respectively.	

Table 14-8: SPIMSS Interrupt Flag Register

SPIMSS Interrupt Flag Register				SPIMSS_INT_FL [0x0008]		
Bits	Name	Access	Reset	Description		
31:8	-	R/W	0	Reserved for Future Use Do not modify this field.		
				SPIMSS Interrupt Request Flag This bit is set by hardware when an SPIMSS interrupt request is pending to clear.		
7	7 irq R/W	R/W1C	0	0: No SPIMSS interrupt request is pending 1: An SPIMSS interrupt request is pending Note: This field cannot be cleared unless all interrupt flags in this register are cleared.		
6	tovr	R/W1C	0	Transmit Overrun Flag This bit is set by hardware when a t clear.	transmit FIFO overrun has occurred. Write 1 to	
				0: No SPI interrupt request is pen 1: An SPI interrupt request is pen	0	

SPIMSS Interrupt Flag Register				SPIMSS_INT_FL	[0x0008]		
Bits	Name	Access	Reset	Description			
5	col	R/W1C	0	Collision Flag This bit is set by hardware when a r Write 1 to clear. 0: No multi-master collision has or 1: A multi-master collision has or			
4	abt	R/W1C	0	Slave Mode Transaction Abort Flag This bit is set by hardware when a slave mode transaction abort occurs. Write 1 to clear. 0: No slave mode transaction abort has occurred 1: A slave mode transaction abort has occurred			
3	rovr	R/W1C	0	Receive Overrun Flag This bit is set by hardware when a receive FIFO overrun occurs. Write 1 to clear. 0: No FIFO overrun has occurred 1: A FIFO overrun has occurred.			
2	tund	R/W1C	0	Write 1 to clear.	Transmit Underrun Flag This bit is set by hardware to indicate a transmit FIFO underrun has occurred. Write 1 to clear. 0: No FIFO underrun has occurred		
1	txst	RO	0	Transmit StatusThis field reads 1 if a SPIMSS data transmission is currently in progress.0: No data transmission currently in progress.			
0	slas	R/W	0	1: Data transmission currently in progress Slave Select If the SPI is in slave mode, this bit indicates if the SPI is selected. If the SPI is in master mode, this bit has no meaning. 0: Slave SPI is selected 1: Slave SPI is not selected			

Table 14-9: SPIMSS Mode Register

SPIMSS	Mode Register			SPIMSS_MODE	[0x000C]	
Bits	Name	Access	Reset	Description		
31:8	-	R/W	0	Reserved for Future Use Do not modify this field.		
7	7 tx_lj R/W		0	Transmit Data Alignment Selects left or right alignment wher field for transmission if the charact	n data is loaded into the <i>SPIMSS_DATA.data</i> er size is less than 16-bits.	
		K/ VV	0	8	used bits set to 0 up to the MSB (right aligned) nused bits set to 0 down to the LSB (left	
6	-	R/W	0	Reserved for Future Use Do not modify this field.		

SPIMSS Mode Register				SPIMSS_MODE	[0x000C]		
Bits	Name	Access	Reset	et Description			
					its to shift for each character transfer. Refer to ormation on valid bit positions when the		
5:2	numbits	R/W	0	Ob0000: 16-bits Ob0001: 1-bits Ob0010: 2-bits Ob1110: 14-bits Ob1111: 15-bits Note: Setting this field to 0 (default) sets the number of bits per character to 16.		
1	ss_io	R/W	0	Slave Select Input/Output Mode Setting this field to 1 sets the slave select pin, SPI1_SSO, as an output. Clearing this field sets the slave select pin, SPI1_SSO, to an input. 0: The SPI1_SSO pin is configured as an input. 1: The SPI1_SSO pin is configured as an output Note: This field is only used if the SPIMSS is in SPI Master mode (SPIMSS_CTRL.mode = 1).			
0	ssv	R/W	0	pin is configured as an output (SPIN the pin to the value written. If the s	_SSO (I2S_LRCLK) pin if the SPIMSS slave select <u>ASS_MODE.ss_io</u> = 1), writing this field drives slave select pin is set to an input this field returns the level of the slave select		

Table 14-10: SPIMSS Bit Rate Generator Register

SPIMSS Bit Rate Generator Register				SPIMSS_BRG	[0x0014]
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved for Future Use Do not modify this field.	
15:0	div	R/W	0	Bit Rate Reload Value The SPI Bit Rate register is a 16-bit reload value for the SPI Bit Rate Generator. The reload value, div, must be greater than or equal to 2 for proper SPI operation. Refer to section 14.7.2 SPI and I2S Master Mode Bit Rate Generator.	

Table 14-11: SPIMSS DMA Register

SPIMSS DMA Register				SPIMSS_DMA [0x0018]	
Bits	Name	Access	Reset	Description	
31	rx_dma_en	R/W	0	Receive DMA Enable Disabling clears any active request to the DMA controller. 0: Disable RX DMA requests 1: Enable RX DMA requests	
30:28	-	R/W	0	Reserved for Future Use Do not modify this field.	

SPIMSS DMA Register SPIMSS_DMA [0x0018]					[0x0018]
Bits	Name	Access	Reset	Description	
27:24	rx_fifo_cnt	R/W	0	Receive FIFO Count Ob0000: RX FIFO empty (0 entries) Ob0001: RX FIFO contains 1 entry Ob0010: RX FIFO contains 2 entries Ob0011: RX FIFO contains 3 entries Ob1000: RX FIFO contains 15 entries	
23:21	-	R/W	0	Reserved for Future Use Do not modify this field.	
20	rx_fifo_clr	R/W	0	Receive FIFO Clear Write 1 to reset the Receive FIFO. Writing 0 has no effect. 0: Ignored 1: Reset Receive FIFO	
19	-	R/W	0	Reserved for Future Use Do not modify this field.	
18:16	rx_fifo_lvl	R/W	0	Receive FIFO Level Sets the RX FIFO DMA request threshold. This configures the number of filled RX FIFO entries before activating an RX DMA request. 000: Request Receive DMA when RX FIFO contains 1 entry 001: Request Receive DMA when RX FIFO contains 2 entries 010: Request Receive DMA when RX FIFO contains 3 entries 111: Request Receive DMA when RX FIFO contains 8 entries	
15	tx_dma_en	R/W	0	Transmit DMA Enable Disabling clears any active request to the DMA controller. 0: Disable TX DMA requests 1: Enable TX DMA requests	
14:12	-	R/W	0	Reserved for Future Use Do not modify this field.	
11:8	tx_fifo_cnt	R/W	0	Transmit FIFO Count Ob0000: TX FIFO empty (0 entries Ob0001: TX FIFO contains 1 entry Ob0010: TX FIFO contains 2 entrie Ob0011: TX FIFO contains 3 entrie Ob1000: TX FIFO contains 15 entr	25 25
7:5	-	R/W	0	Reserved for Future Use Do not modify this field.	
4	tx_fifo_clr	R/W	0	Transmit FIFO Clear Write 1 to reset the Receive FIFO. Writing 0 has no effect. 0: Ignored 1: Reset Receive FIFO	
3	-	R/W	0	Reserved for Future Use Do not modify this field.	

SPIMSS DMA Register				SPIMSS_DMA	[0x0018]
Bits	Name	Access	Reset	Description	
		tx_fifo_lvl R/W 0		Transmit FIFO Level Sets the TX FIFO DMA request threshold. This configures the number of empty TX FIFO entries before activating a Transmit DMA request.	
2:0	tx_fifo_lvl		0	0b000: Request Transmit DMA w 0b001: Request Transmit DMA w 0b010: Request Transmit DMA w 0b111: Request Transmit DMA w	hen TX FIFO has 2 free entries. hen TX FIFO has 3 free entries.

Table 14-12: SPIMSS I²S Control Register

SPIMSS I2S Control Register				SPIMSS_I2S_CTRL	[0x001C]
Bits	Name	Access	Reset	Description	
31:5	-	R/W	0	Reserved for Future Use Do not modify this field.	
4	i2s_lj	R/W	0	 I²S Left Justify 0: Normal I²S audio protocol - aud SCLK period. 1: Audio data is synchronized wit 	dio data lags left/right channel signal by one h SSEL (left/right channel signal).
3	i2s_mono	R/W	0	word is replicated on both left and channel, right channel receive data	c audio mode. In this mode, each transmit data right channels. Receive data is taken from left is ignored.
				0: Stereophonic audio. 1: Monophonic audio format	
2	i2s_pause	R/W	0	 I²S Pause Transmit/Receive 0: Normal transmission/reception. 1: Halt transmit and receive FIFO and DMA accesses, transmit 0. 	
1	i2s_mute	R/W	0	I²S Mute Transmit0: Normal transmit.1: Transmit data is replaced with	0
0	i2s_en	R/W	0	I²S Mode Enable Set to enable I ² S mode.	
			-	0: I ² S mode is disabled. 1: I ² S mode enabled.	

15 Trademarks

Arm and Cortex are registered trademarks of ARM Limited.

16 Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION
0	7/18	Initial Release.

©2018 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other product or service names are the property of their respective owners.