

The Reality about Energy Harvesting

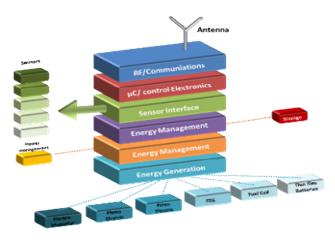
Speaker:

Lorandt Fölkel M.Eng
Field Application Engineer &
Business Development Manager
Iorandt.foelkel@we-online.de

Energy Harvesting = Energy for free?

- Energy harvesting has recently become a topic of much discussion with its potential to self-power autonomous devices for wearables, medical devices and for IoT (the Internet of Things)
- Examples of real life use cases demonstrating that Energy Harvesting has already progressed from the laboratory to commercial applications
- We need devices that are:
 - Wireless (avoid power and communications cables)
 - Totally autonomous
 - Highly reliable with backup battery lifetime up to 15~20 years

Energy Harvesting = Energy for free?


- We have to consider that the laws of physics are still valid.
- But wasted energy are everywhere
- We just need to :
 - find them
 - convert them (harvest)
 - transform them into electrical energy
 - to store it for the time when not used
 - recall it when needed

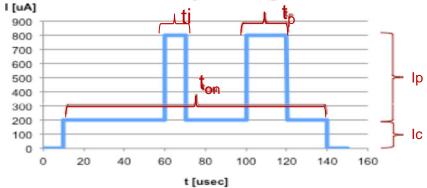
Digital Age

Source: Tyndall National Institute

Wireless IoT devices

16.01.2017 LF | Public | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting APEC

3


Basic consideration for Energy Harvesting

First step:

- calculate the total energy demand for your system
- watch out for your peak energy demand

$$\begin{split} E_{total} &= \int V * I * dt \\ E_{total} &= V_S * (I_c * t_{on} + \sum_i I_{i,p} * t_{i,p}) \\ P_{AVG} &= \frac{E}{\Delta t} = \frac{E_{total} * DC_{AVG}}{\Delta t} \end{split}$$

Vs: Supply Voltage

tp,i: pulse duration

Ic: continuous current

ton: system on time

lp: pulsed current

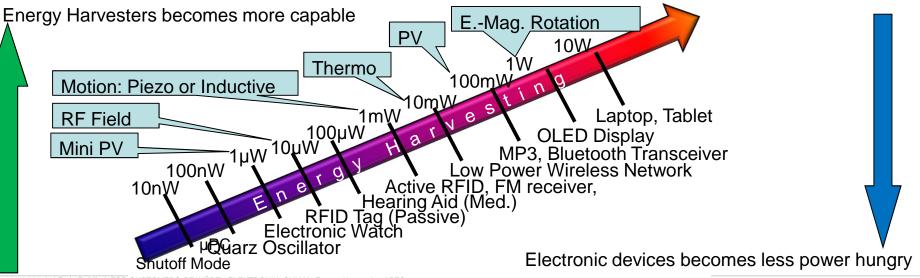
DC: sequence Duty Cycle

Basic consideration for Energy Harvesting

Second step:

- consider the source capabilities
- check multiple source availability (solar, thermo, motion, chemical... etc.)
- watch out for the stability over the time (use a data logger)

Third step:


- choose the right harvester (transducer)
- build the right voltage converter (source impedance matching)
- consider an energy storage for back up
 - capacity bank
 - supercaps
 - ultracaps (Supercap/Lithium-Ion)
 - Li-Pol rechargeable

Where to find "free energy"

- Typical energy harvester output power
- RF: 0.1μW/cm²
- Vibration: 1mW/cm²
- Thermal: 10mW/cm²
- Photovoltaic: 100mW/cm²

- Typical energy harvester voltages
- ▶ RF: 0.01mV
- Vibration: 0.1 ~ 0.4 V
- Thermal: 0.02 ~ 1.0 V
- Photovoltaic: 0.5 ~ 0.7 V typ./cell

16.01.2017| LF | Public | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting APEC

Energy Harvesting Kit "Gleanergy" with Battery lifetime extender

Environment energy captured and converted into electricity for small autonomous devices making them self-sufficient.

- Thermo Electric Generator (heat)
- Piezo Electric (vibration/strain)
- Photovoltaic (light)
- Induction (motion)
- Battery (Lithium)

7

Energy Harvesting Kit – Power Demoboard DC2344A

Featuring:

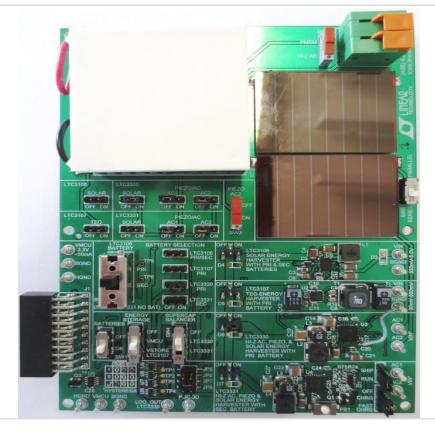
LTC3106 - Solar Harvesting

- Battery Lithium

- Li-Ion Rechargeable

LTC3107 - TEG Harvesting

- Battery Lithium


LTC3330 - Piezo Harvesting

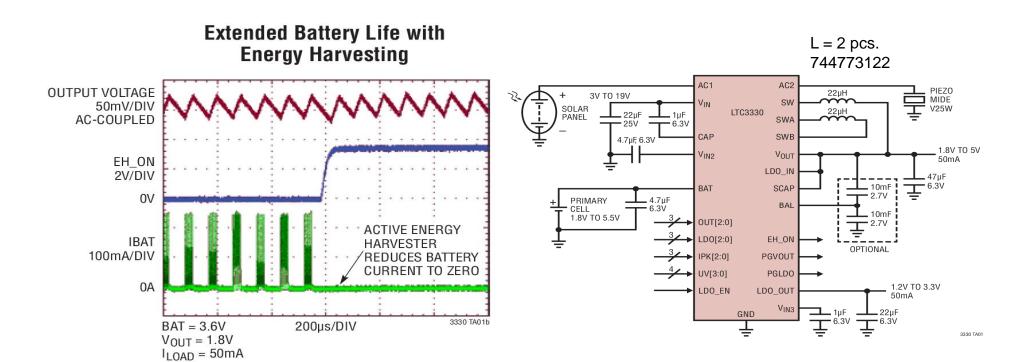
- Solar Harvesting
- Battery Lithium
- Supercap Balancer

LTC3331 - Piezo Harvesting

- Solar Harvesting
- Li-Ion Rechargeable

- Supercap Balancer

Energy Harvesting Kit – μPC/RF Module Demoboard DC2321A

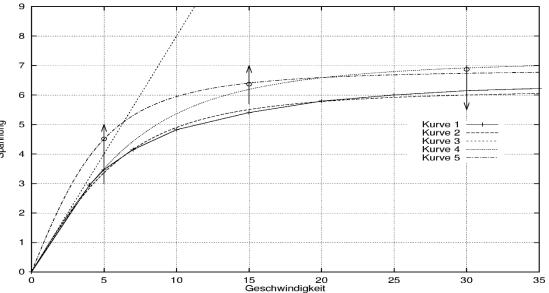

Featuring:

- TP5901 Dust assembly including ARM Cortex-M3 processor embedded with SmartMesh IP networking software (RF Module)
- E-Ink display for user feedback
- Two coulomb counters for battery data measurement
- Shield board headers and programming headers for development
- Optionally, use DC2510A shield board to connect extra components to the ADCs, GPIOs, and serial ports of the mote

LTC3330 Energy Harvesting Solar

Source: Linear Technology Corporation

Typical Inductive Transducers


Average Power: 3W

Downhill Peak Power: 4W

Output Voltage: 6V @ 12Ω Load

Felt Efficiency: <10%

Typical Inductive Transducers

EM-1D-09

Vibration Generator

Generator Code: 151001200019

Generator Data					
60x24x22	mm				
32	cm ³				
42	g				
430	Ω				
14.2	Hz				
3.6	mW				
0.11	mW/cm ³				
85.7	mW/kg				
12.4 - 16	Hz				
	32 42 430 14.2 3.6 0.11 85.7				

EM-1D-10

Vibration and Push-Button Generator

Generator Data		
Dimensions (L x W x H)	60x24x22	mm
Volume	32	cm ³
Mass	46.5	g
Inner Resistant	430	Ω
Resonant Frequency	47	Hz
Power Output (0.5g continous)	30	mW
Power Density	0.96	mW/cm ³
Specific Power	660	mW/kg
Frequency Range of 50% Power	42 - 48	Hz
Energy Output (1x Push Button)	1.5	mJ

Source: www.pmdm.de

Generator Code: 151001200018

EnOcean

Per Click 30µC 6.38V @ 4.7µF

Source: www.enocean-alliance.org

Other Development Kits: EnOcean

Product name: EDK 350 Frequency: 868 MHz

Ordering Code: S3004-X350

Description:

The EnOcean Developer Kit EDK 350 gives the designer a fast and full overview of the powerful Dolphin platform. OEMs can develop their own energy-autonomous applications for building automation and other purposes, and assure themselves a competitive edge. The kit covers the entire product range, from energy harvesting and wireless modules to ready-made product solutions

Source: EnOcean

Other Development Kits: ZF Cherry

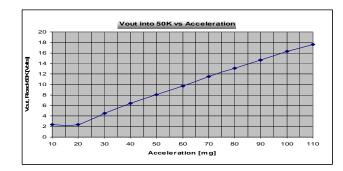
CHERRY's Energy Harvesting Evaluation Kit

- 1x Energy Harvesting Generator
- 1x Wireless Snap Switch
- 1x Wireless Rocker Switch
- 1x Receiver
- 1x USB Cable
- 1x Antenna bushing

Source: ZF Cherry

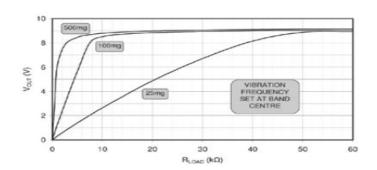
P/N: AFIK-1002

Typical Inductive Transducers



Ferro Solutions

Size: $DxH = 6cm \times 6.75cm$

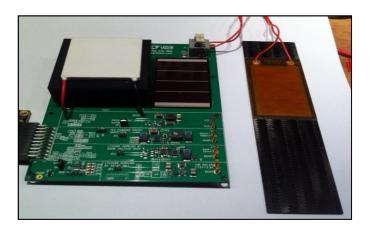


POWER OUTP	UT @ 60 HZ (Rect	ified DC Power)			
Acceleration	25 milli-g	0.3 mW			
	50 milli-g	1.3 mW			
	100 milli- <i>g</i>	5.2 mW			
BANDWIDTH (Δf = 3 Hz)					
Peak frequency	,	60 Hz			
50% power deli	vered	+/-1.5 Hz			
Q @ 100 milli-g		18			

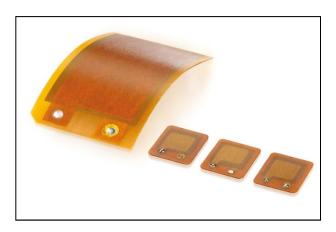
Perpetuum

Size: $DxH = 6.85cm \times 6.85cm$

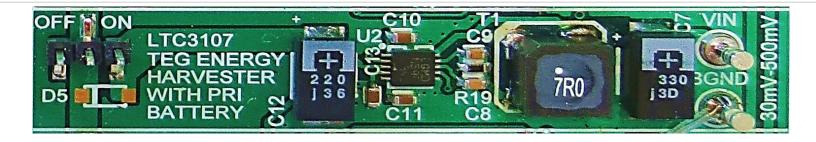
Operates from prevalent 100Hz/ and 120Hz vibration bands found on electrical machines 1mW peak power at 0.025G with >2Hz half-power bandwidth

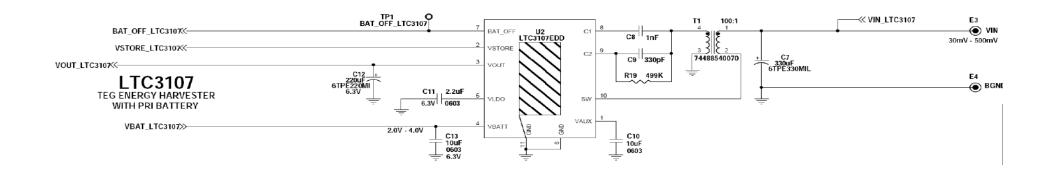

Typically >0.3mW output on 95% of machines

16


Examples for Piezo Transducers

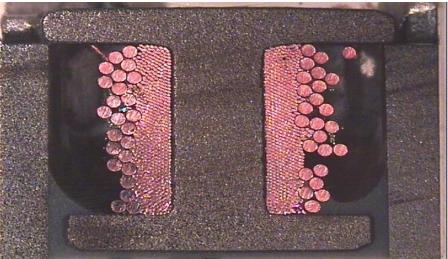
PI Ceramic


The "Piezo Ruler" Size: 150 x 35 x 2,5 mm³



Made from DuraAct Transducers

EH-Kit: LTC3107 - TEG



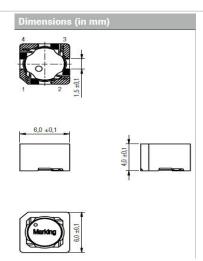
What is behind the WE-EHPI transformer?

winding style

Würth Elektronik eiSos components

WE-EHPI

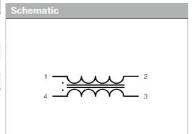
Energy Harvesting Power Inductor

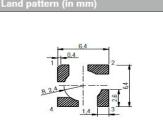


WÜRTH ELEKTRON

Applications

- Wireless fire, alarm, gas and metering remote sensors driven by environmental energies based on energy harvesting voltage transformers like LTG3108/LTC3109
- Sensors with predictive battery replacements in applications which are difficult to access
- Energy self-sufficient supply using subsequent installed sensors for energy harvesting





Electrical properties									
Order Code	L ₁ ±20% (μH)	L ₂ ±20% (μH)	n	I _{R1} (A)	sat1 (A)	R _{DC1} (Ω)	R _{DC2} (Ω)		
744 885 400 70	7.5	75000	1:100	1.9	1.3	0.085	205		
744 885 401 20	13.0	33000	1:50	1.7	1.0	0.090	135		
744 885 402 50	25.0	10000	1:20	1.5	0.7	0.200	42		

Transformer designed on EP7 cores are available on request - Order code: 760370096, 760370097, 760370098

During design stage of this series, we used S11100032, S11100033 & S11100034. With our standard series we have replaced these order codes.

16.01.2017| LF | Public | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting APEC

19

Where is it useful?

- Where line power is unavailable or costly
- Where batteries are costly or difficult to replace
- Where energy is needed only when ambient energy is present

Asset Tracking/Monitoring

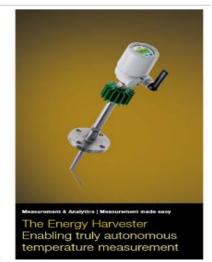
Building
Security, Lighting
&
Climate Control

Plant Automation

Remote Monitoring

TPMS

Source: LTC - Sam Nork - Energy Harvesting Presentation


16.01.2017 LF | Public | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting APEC

Industrial Application

- TSP300-W with Energy Harvester the first autonomous Wireless temperature sensor.
- Enables the easy addition of temperature measuring points throughout operations.

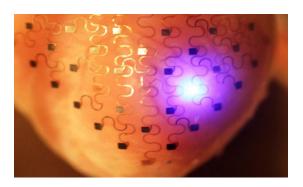
 Shorten installation times by eliminating complex wired infrastructure and lower overall implementation costs of process measu wireless devices

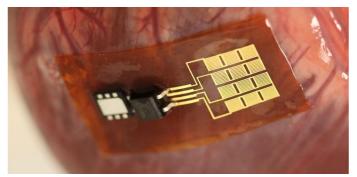
Energy Harvested Application

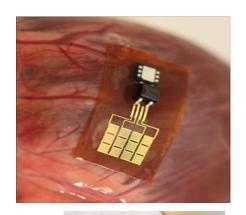
- Customer feedback for EH projects:
 - Total amount of harvested energy: min 50μW up to 200mW
 - The highest harvested energy was 5W using Solar cells

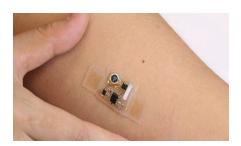
Devices are:

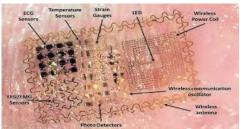
- Aftermarket solutions for Portable Navigators & Mobile Phones (Solar)
- GSM/GPS module (5W Solar)
- Window status monitoring for Hotels and Homes (Solar)
- Chainsaw electronic at engine (TEG)
- High Voltage cable status (Magnetic field)
- Water purification plant PH measuring (chemical)
- Temperature measurement for engines (TEG)
- Object tracking at airport (Piezo & RF-ID)

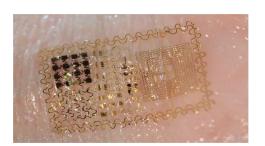



© Fraunhofer IMS


Energy Harvesting Healthcare Application




Pacemaker



Source: Prof John A. Rogers University of Illinois

16.01.2017| LF | Public | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting APEC

Another application for Harvesting?

Source: http://www.joaolammoglia.com/concept/1/aire-concept/

Energy Harvesting Evaluation Boards:

"Gleanergy" p/n: IC-744 888 "To Go" Kit p/n: IC-744 885

More information at: **Booth #811**

or visit:

www.we-online.com/gleanergy

and at our local distributor:

www.diaikev.com

