

SocketModem[®]

MT5692SMI Device Guide

www.multitech.com

SocketModem Device Guide

S000535, Version A

MT5692SMI-34, MT5692SMI-L-34, MT5692SMI-92, MT5692SMI-L-92, MT5692SMI-X-L-92, MT5692SMI-IP-92, MT5692SMI-IP-42, MT5692SMI-IP-42, MT5692SMI-P-434, MT5692SMI-P-434, MT5692SMI-P-22, MT5692SMI-P-24, MT5692SMI-P-434, MT5692SMI-P-4344, MT5692SMI-P-43444, MT5692SMI-P-43444, MT5692SMI-P-43444, MT5692SMI-P-43444, MT5692SMI-P-43444, MT5692SMI-

Copyright

This publication may not be reproduced, in whole or in part, without the specific and express prior written permission signed by an executive officer of Multi-Tech Systems, Inc. All rights reserved. Copyright © 2012 by Multi-Tech Systems, Inc.

Multi-Tech Systems, Inc. makes no representations or warranties, whether express, implied or by estoppels, with respect to the content, information, material and recommendations herein and specifically disclaims any implied warranties of merchantability, fitness for any particular purpose and non-infringement.

Multi-Tech Systems, Inc. reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Multi-Tech Systems, Inc. to notify any person or organization of such revisions or changes.

Trademarks

Multi Tech, SocketModem, SocketWireless, Universal IP, SocketEthernet IP and the Multi-Tech logo are registered trademarks of Multi-Tech Systems, Inc. All other brand and product names are trademarks or registered trademarks of their respective companies.

Legal Notices

The Multi-Tech products are not designed, manufactured or intended for use, and should not be used, or sold or re-sold for use, in connection with applications requiring fail-safe performance or in applications where the failure of the products would reasonably be expected to result in personal injury or death, significant property damage, or serious physical or environmental damage. Examples of such use include life support machines or other life preserving medical devices or systems, air traffic control or aircraft navigation or communications systems, control equipment for nuclear facilities, or missile, nuclear, biological or chemical weapons or other military applications ("Restricted Applications"). Use of the products in such Restricted Applications is at the user's sole risk and liability.

The Multi-Tech products and the final application of the Multi-Tech products should be thoroughly tested to ensure the functionality of the Multi-Tech products as used in the final application. The designer, manufacturer and reseller has the sole responsibility of ensuring that any end user product into which the Multi-Tech product is integrated operates as intended and meets its requirements or the requirements of its direct or indirect customers. Multi-Tech has no responsibility whatsoever for the integration, configuration, testing, validation, verification, installation, upgrade, support or maintenance of such end user product, or for any liabilities, damages, costs or expenses associated therewith, except to the extent agreed upon in a signed written document. To the extent Multi-Tech provides any comments or suggested changes related to the application of its products, such comments or suggested changes is performed only as a courtesy and without any representation or warranty whatsoever.

Revisions

Revision	Date	Description
А	12/05/12	Initial release. Information was in the Universal Socket Developer Guide.

Contacting Multi-Tech

Knowledge Base

The Knowledge Base provides immediate access to support information and resolutions for all Multi-Tech products. Visit http://www.multitech.com/kb.go.

Support Portal

To create an account and submit a support case directly to our technical support team, visit: https://support.multitech.com.

Support

Business Hours: M-F, 9am to 5pm CT

Country	By Email	By Phone
Europe, Middle East, Africa:	support@multitech.co.uk	+(44) 118 959 7774
U.S., Canada, all others:	support@multitech.com	(800) 972-2439 or (763) 717-5863

World Headquarters

Multi-Tech Systems, Inc. 2205 Woodale Drive Mounds View, Minnesota 55112 Phone: 763-785-3500 or 800-328-9717 Fax: 763-785-9874

Warranty

To read the warranty statement for your product, please visit: <u>http://www.multitech.com/warranty.go.</u>

Contents

Chapter 1 – Device Overview	5
Description	5
Product Build Options	5
Documentation	6
Chapter 2 – Mechanical Drawings	7
Mechanical Drawings – MT5692SMI-34/92 Builds	7
Mechanical Drawings – MT5692SMI-X-L-92 no LEDs 3.3V Build	8
Mechanical Drawings – MT5692SMI-V Voice Builds	9
Mechanical Drawings – Parallel Builds	
Chapter 3 – Specifications	11
Technical Specifications	
Mounting Hardware	
Device Reset	
Reset Line Interface	
Operating Conditions	
DC Electrical Characteristics	
Absolute Maximum Rating	
Pin Descriptions for a Parallel SocketModem	
Power Measurements	
Chapter 4 – Application Notes	17
Tip and Ring Interface	
Recommended Uses for Filtering Options	
Microphone and Speaker	
Microphone Input Option	
Speaker Output Option 1	
Speaker Output Option 2	
Speaker Output	
Chapter 5 – Parallel Devices	20
Parallel Host Bus Timing	
Timing Requirements for Parallel Write	
Timing Requirements for Parallel Read	
SocketModem Parallel Interface	
FIFO Mode Selected	
FIFO Mode Not Selected	
Receive Data	21

	Transmit Data	21
	Receiver FIFO interrupt operation	22
	Transmitter FIFO Interrupt Operation	22
R	egister Functional Definitions	23
	Internal Registers	23
	IER – Interrupt Enable Register	24
	FCR – FIFO Control Register	
	IIR – Interrupt Identifier Register	25
	LCR – Line Control Register	27
	MCR – Modem Control Register	28
	LSR – Line Status Register	28
	MSR – Modem Status Register	29
	RBX – RX Buffer (Receiver Buffer Register)	30
	THR – TX Buffer (Transmitter Holding Register)	30
	SCR – Scratch Register	
	Divisor Registers	30

Chapter 1 – Device Overview

Description

The Multi-Tech SocketModem creates communication-ready devices by integrating data, fax, and voice functionality into a single product design. The SocketModem is a space-efficient, embedded modem that provides V.92 or V.34/33.6K data communication.

The MT5692SMI SocketModem:

- Is a standard 64-pin modem used for integrating data communications.
- Is a single-port modem that integrates the controller, DSP, and DAA in a 1" x 2.5" form factor and communicates to a host controller via an asynchronous serial interface.
- Is available with an 8-bit parallel interface.

The SocketModem IP, MT5692SMI-IP, embedded modem creates Internet-ready devices by integrating modem functionality and a complete TCP/IP protocol stack into a single, universal socket design. This embedded modem sends and receives data via e-mail, HTTP, or socket interfaces. It also complies with global telecom requirements allowing for worldwide shipments.

This device guide covers the SocketModem MT5692SMI and its various builds: serial, parallel, voice. The serial build option can be ordered with or without IP functionality.

Product Build Options

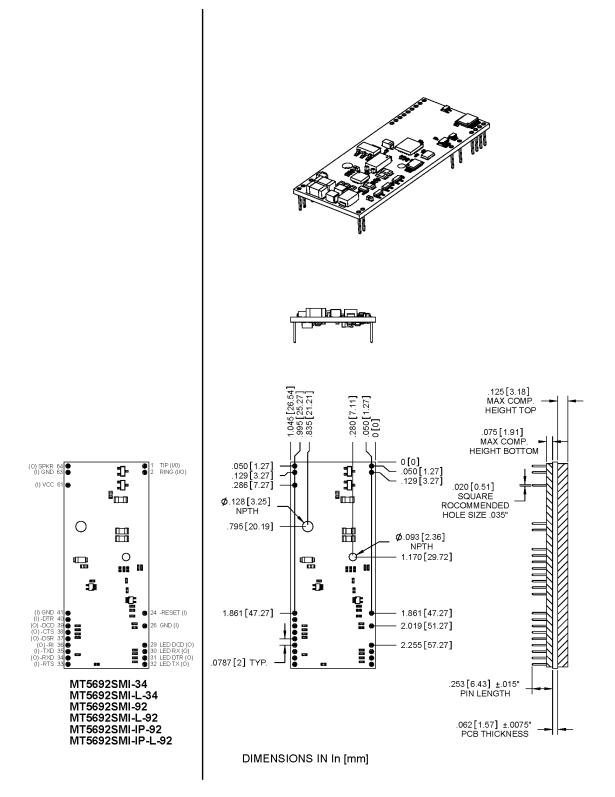
Product	Description	Region
Serial Builds		
MT5692SMI-34	V.34 Serial Data / V.17 Fax, 5V	Global
MT5692SMI-L-34	V.34 Serial Data / V.17 Fax, 3.3V	Global
MT5692SMI-92	V.92 Serial Data / V.17 Fax, 5V	Global
MT5692SMI-L-92	V.92 Serial Data / V.17 Fax, 3.3V	Global
MT5692SMI-X-L-92	V.92 Serial Data / V.17 Fax, 3.3V (excludes LED pins)	Global
IP Builds		
MT5692SMI-IP-92	V.92 Serial Data-Only, 5V, Universal IP	Global
MT5692SMI-IP-L-92	V.92 Serial Data-Only, 3.3V, Universal IP	Global
Voice Builds		
MT5692SMI-V-34	V.34 Serial Data / V.17 Fax / Voice, 5V	Global
MT5692SMI-V-92	V.92 Serial Data / V.17 Fax / Voice, 5V	Global
Parallel Builds		
MT5692SMI-P-34	V.34 Parallel Data / V.17 Fax, 5V	Global
MT5692SMI-P-L-34	V.34 Parallel Data / V.17 Fax, 3.3V	Global
MT5692SMI-P-92	V.92 Parallel Data / V.17 Fax, 5V	Global
MT5692SMI-P-L-92	V.92 Parallel Data / V.17 Fax, 3.3V	Global
Developer Kit		
MTSMI-UDK	Universal Developer Kit	Global
MTSMI-P-UDK	SocketModem Parallel Developer Kit	Global

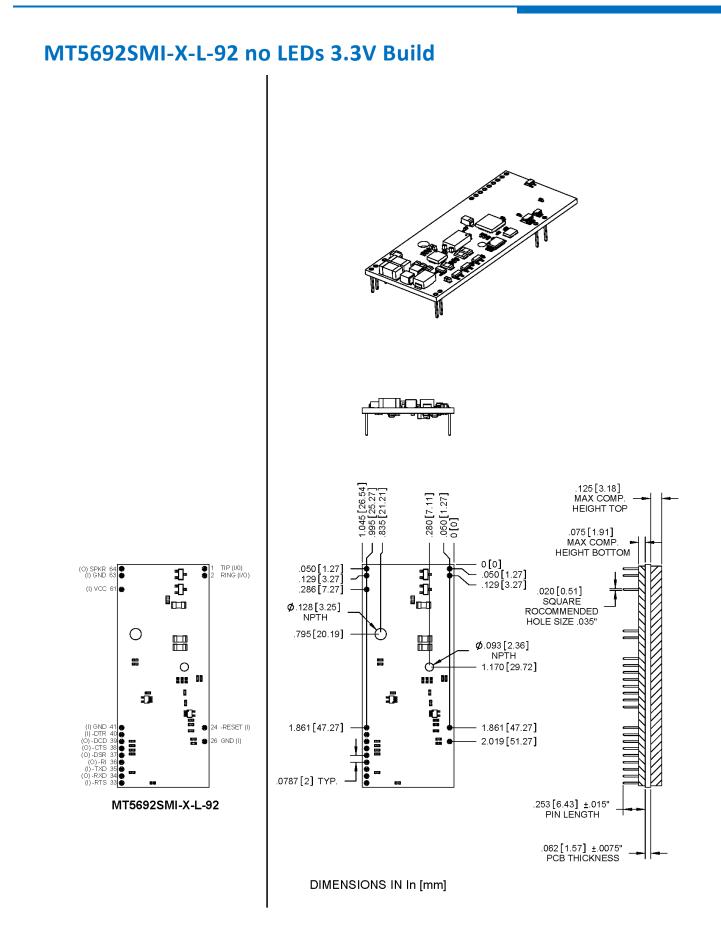
Notes:

Voice builds include microphone and speaker pins.

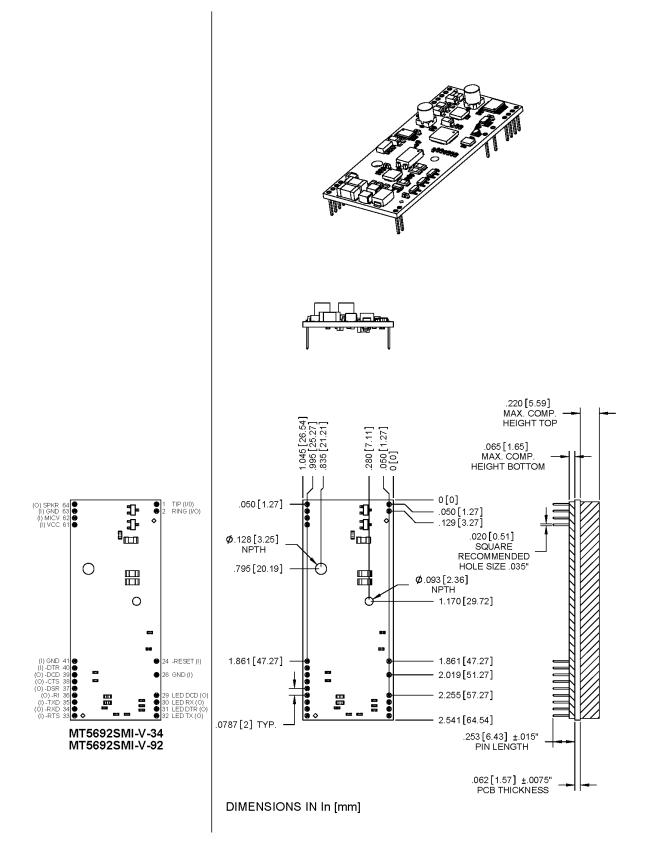
All builds can be ordered individually or in 50-packs.

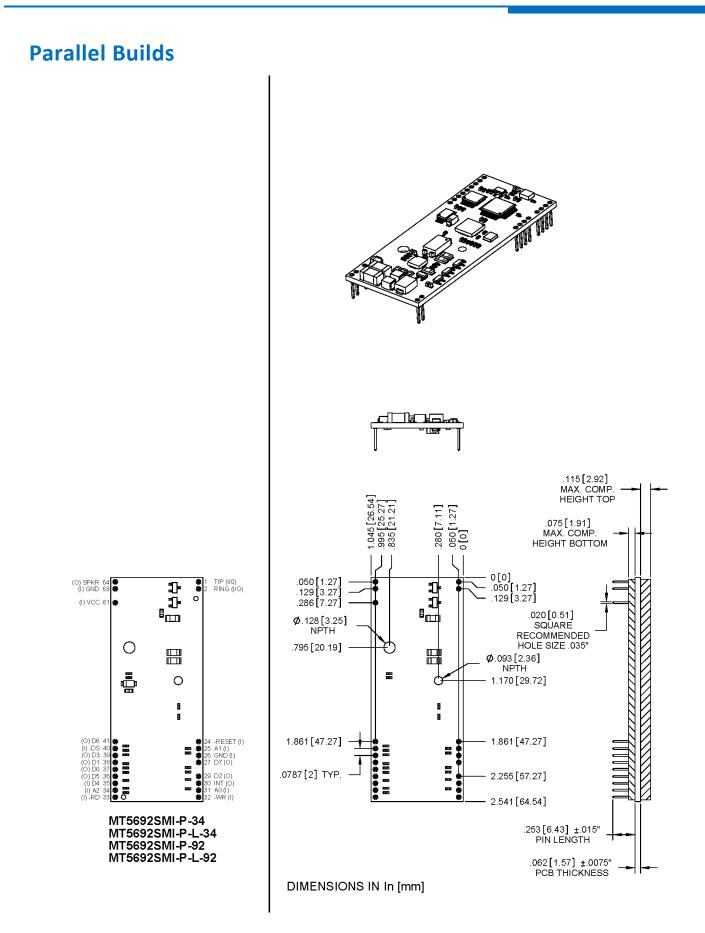
The complete product code may end in .Rx, for example MT5692SMI.Rx, where R is revision and x is the revision number.


Documentation


The following documentation is available by email to <u>oemsales@multitech.com</u> or by using the Developer Guide Request Form on the <u>multitech.com</u> website.

- **Device Guides** This document. Provides model-specific specifications and developer information.
- Universal Socket Developer Guide Provides an overview, safety and regulatory information, design considerations, schematics, and general device information.
- AT Command Guide Use the following AT Command Guides:
 - S000468 for MT5692SMI Modems
 - S000457 Universal IP Commands


Chapter 2 – Mechanical Drawings


MT5692SMI-34/92 Builds

MT5692SMI-V Voice Builds

Chapter 3 – Specifications

Technical Specifications

Category	Description
General	
Standards	V.92, V.34, V.32bis, V.32, V.23, V.23 half-duplex, V.23 reverse, V.22bis, V.22bis Fast Connect, V.22, V.21, Bell 212A/Bell 103, V.29 FastPOS, V.80 Synchronous Access Mode (V.80 not for IP build)
Speed, Format, Compression	on
Serial/Data Speeds	All builds except IP: Supports DTE speeds up to 230.4Kbps, autobaud up to 115.2Kbps For IP build: Supports DTE speeds up to 921.6Kbps
Client-to-Client Data Rates	33600, 31200, 28800, 26400, 24000, 21600, 19200, 16800, 14400, 12000, 9600, 7200, 4800, 2400, 1200, 0-300 bps
Data Format	All builds: Serial, asynchronous Parallel build: 8-bit parallel interface
Character Format	10-bit
Data Error Correction (ECM)	V.42 LAPM and MNP 2–4
Data Compression	V.44, V.42bis, MNP 5
Fax	
Fax Compatibility	All builds except IP: V.17, V.29, V.27ter, V.21 channel 2
Fax Class	All builds except IP: Class 1 & 1.0
Operation Modes	Full duplex over dial-up lines; data mode; command mode; online command mode
Physical Description	
Weight	0.6 oz. (0.017kg)
Dimensions	2.541" L x 1.045" W x 0.44" H (6.45cm L x 2.65cm W x 1.1 cm H) Voice build: 2.541" L x 1.045" W x 0.535" H (6.45cm L x 2.65cm W x 1.4cm H) Consult mechanical drawings for model specific variance.
Environment	
Operating Temperature	-40° C to +85° C
Storage Temperature	-40° C to +85° C
Humidity	20% to 90% non-condensing
Power Requirements	
Operating Voltage	3.3V or 5V depending on build; voice models are 5V only

Category	Description
Transmission	
Transmit Level	- 12 dBm (varies by country setting)
Receiver Sensitivity	- 43 dBm under worst-case conditions
DAA Isolation	1.5Kv r.m.s. or 2121 VDC at working voltage of 250VAC
Flow Control	All builds except IP: XON/XOFF (software), RTS/CTS (hardware)
Command Buffer	60 characters
Telephony/TAM	All builds except voice:
	V.253 commands
	8 kHz sample rate
	Concurrent DTMF, distinctive ring, and "Bell Core Type 1" Caller ID
	8-bit μ-law and A-law PCM coding
	Supports PCM encoding: 8-bit and 16-bit linear PCM; and 4-bit IMA coding
	Voice build: Voice build has a microphone for speakerphone function
IP, M2M, SMS	I
Supported IP Protocols	For IP build only:
	Internet Protocols Supported: Dial-in PPP, DNS, FTP, ICMP, IP, LCP, PPP, SMTP,
	SNTP, TCP, UDP Socket
	Authentication Protocols: CHAP, Dial-up Script, PAP
Certifications, Compliand	
EMC Compliance	FCC Part 15 (Class B)
	ICES-003 (Class B)
	EN 55022 (Class B)
	EN 55022 (class b)
Safety Compliance	UL 60950-1
Surcey compliance	cUL 60950-1
	EN 60950-1
	AS/NZS 60950:2003
Telecom Compliance	47 CFR Part 68
	CS-03
	R&TTE
	A-Tick (Other countries included per the Modem Globalization Guide)

Mounting Hardware

#2 or M2 for hardware should be used for mounting the analog modem on the board when the tooling hole diameter on the board is .093.

#4 or M3 for hardware should be used for mounting the analog modem on the board when the tooling hole diameter on the board is .128

Important:

There are traces and vias around the tooling holes, so use nylon hardware if you are using the tooling holes to mount the SocketModems on the board.

Device Reset

The SocketModem is ready to accept commands after a fixed amount of time ("X" Time) after power-on or reset.

Model	Time Constant	"X" Time	Minimum Reset Pulse ¹
MT5692SMI	250 ms	6 seconds	100us

¹The SocketModem may respond to a shorter reset pulse.

Reset Line Interface

The modem's reset line employs a 10K pull up resistor. If using an open collector driver, run that output to the modem only and use a separate driver for other embedded components. The modem's reset signal may also be driven by a circuit that both sinks and sources current. These modems do not require an external reset. They have their own internal reset circuitry and voltage monitor and will function correctly even if the reset input is open.

Modem Reset (with weak pull-up)

The active low –RESET input resets the SocketModem logic and returns the AT command set to the original factory default values or to "stored values" in NVRAM. The modem is ready to accept commands within 6 seconds of power-on or reset. Reset must be asserted for a minimum of 100 ns.

Operating Conditions

Parameter	Minimum	Maximum
5V Supply Range – Vcc	4.5V	5.5V
3.3V Supply Range – Vcc	3.135V	3.465V

DC Electrical Characteristics

Units: Volts

5VDC Characteristics (VDD = $5V \pm 0.25V$) VDDMAX = 5.25V3.3VDC Characteristics (VDD = $3.3V \pm 0.3V$) VDDMAX = 3.6V

Parameter	Minimum	Maximum	
5V Serial SocketModem			
Digital Inputs	Input High	Input Low	
–DTR (40), –TXD (35), –RTS (33), –Reset (24)	Min 2.2V	Max .8V	
Digital Outputs	Output High	Output Low	
–DCD (39), –CTS (38), –DSR (37), –RI (36), –RXD (34)	Min 2.9V	Max 0.4V	
Digital Input Capacitance			50 pF
5V Parallel SocketModem			
Digital Inputs	Input High	Input Low	
A0 (31), A1 (25), –WR (32), –RD (33), –DS (40)	Min 2.2V	Max 0.8V	
Digital Outputs	Output High	Output Low	
DO (37), D1 (38), D2 (29), D3 (39), D4 (35), D5 (36), D6 (41), D7 (27), INT (30)	Min 2.4V	Max 0.4V	
Digital Input Capacitance			50pF

3.3V Serial SocketModem			
Digital Inputs	Input High	Input Low	
–DTR (40), –TXD (35), –RTS (33), –Reset (24)	Min 2.2V	Max 0.8V	
Digital Outputs	Output High	Output Low	
–DCD (39), –CTS (38), –DSR (37), –RI (36), –RXD (34)	Min. 2.9V	Max 0.4V	
Digital Input Capacitance			50 pF
3.3V Parallel SocketModem			
Digital Inputs	Input High	Input Low	
A0 (31), A1 (25), A2 (34), –WR (32), –RD (33), –DS (40)	Min 2V	Max 0.8V	
Digital Outputs	Output High	Output Low	
DO (37), D1 (38), D2 (29), D3 (39), D4 (35), D5 (36), D6 (41), D7 (27), INT (30)	Min 2V	Max 0.4V	
Digital Input Capacitance			50 pF

Absolute Maximum Rating

Voltage at any signal pin: GND -0.3V Maximum VCC +3.3V

Pin Descriptions for a Parallel SocketModem

Note: Consult the Universal Socket Developer Guide for serial SocketModem pin information.

Pin #	Signal	I/O	Description
1	Тір	I/O	Tip Signal from Telco. Tip connection to the phone line (RJ-11 Pin 4). The SocketModem is
			Tip/Ring polarity insensitive.
2	Ring	I/O	Ring Signal from Telco . Ring connection to the phone line (RJ-11 Pin 3). The SocketModem
			is Tip/Ring polarity insensitive.
24	-RESET	I.	Device Reset (with pull-up). The active low –RESET input resets the device logic and
			returns the configuration of the device to the original factory default values or "stored
			values" in the NVRAM.
			-RESET is tied to VCC through a time-constant circuit for "Power-on-Reset" functionality.
			The SocketModem is ready to accept commands after a fixed amount of time ("X" Time)
			after power-on or reset.
25			Refer to <i>Device Reset</i> for more information.
25	A1	1	Host Bus Address Line 0. During a host read or write operation, A0 selects an internal
			16C450 or 16C550-compatible register. The state of the divisor latch access bit (DLAB) affects the selection of certain registers.
26	DGND		
26		GND	Digital Ground
27	D7	0	Data Bus. See pin 35.
29	D2	0	Data Bus. See pin 35.
30	INT	0	Host Bus Interrupt. INT output is set high when the receiver error flag, receiver data
			available, transmitter holding register empty, or modem status interrupt have an active
			high condition. INT is reset low upon the appropriate interrupt service or master reset
			operation.
31	A0	I	Host Bus Address Line 1. During a host read or write operation, A1 selects an internal
			16C450 or 16C550-compatible register. The state of the divisor latch access bit (DLAB)
			affects the selection of certain registers.
32	–WR	1	Host Bus Write. –WR is an active low, write control input. When –DS is low, –WR low
			allows the host to write data or control words into a selected modem register.

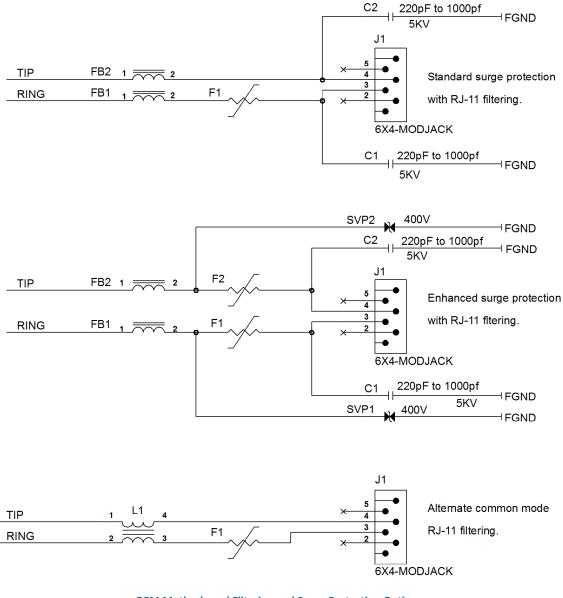
Pin #	Signal	I/O	Description
33	–RD	I	Host Bus Read. –RD is an active low, read control input. When –DS is low, –RD low allows
			the host to read status information or data from a selected modem register.
34	A2	1	Host Bus Address Line 2. During a host read or write operation, A2 selects an internal
			16C450 or 16C550-compatible register. The state of the divisor latch access bit (DLAB)
			affects the selection of certain registers.
35	D4	I	
36	D5	0	Data Bus. These pins are the eight bit, tristate data bus for transferring information to or
37	D0	0	from the controlling CPU. D0 is the least significant bit and the first
38	D1	0	data bit in a transmit or receive serial data stream.
39	D3	0	
40	–DS	I	Host Bus Device Select. –DS input low enables the modem for read or write.
41	D6	0	Data Bus. See pin 35.
61	VCC	PWR	+5V or 3.3V Supply (depends upon model).
63	AGND	GND	Analog Ground. This is tied common with DGND on the SocketModem. To minimize
			potential ground noise issues, connect audio circuit return to AGND.
64	SPKR	0	Speaker. Dual purpose output for call progress signals or speakerphone functions.
			Call Progress signaling on MT5692SMI is a square wave output that can be optionally
			connected to a low-cost single-ended speaker; e.g., a sounducer or an analog speaker
			circuit.
			Speakerphone Output on the MT5692SMI is under the control of +FCLASS. This is a single-
			ended analog output. SPKR is tied directly to the CODEC. One side of a differential AC
			output coupled through a 6.8K ohm resistor and capacitor.

Power Measurements

Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into your power source when determining product load.

	Sleep Mode	Typical	Maximum1			
MT5692SMI-Serial Build at 3.3 Volts						
Current (AMPS)	0.014	0.069	0.080			
Watts	0.046	0.216	0.249			
MT5692SMI-Serial Build at 5	5.0 Volt					
Current (AMPS)	0.018	0.074	0.088			
Watts	0.089	0.359	0.425			
MT5692SMI-IP Build at 3.3 \	/olt					
Current (AMPS)	0.047	0.101	0.112			
Watts	0.151	0.316	0.349			
MT5692SMI-IP Build at 5.0 \	/olt					
Current (AMPS)	0.052	0.109	0.121			
Watts	0.256	0.528	0.583			
MT5692SMI-V Build at 5.0 Volt (Voice build)						
Current (AMPS)	0.016	0.076	0.089			
Watts	0.080	0.380	0.445			

MT5692SMI-P Build at 3.3 Volt (Parallel build)				
Measured voltage	3.30	3.29	3.29	
Current (AMPS)	0.015	0.072	0.081	
Watts	0.051	0.236	0.267	
MT5692SMI-P Build at 5.0 Volt (Parallel build)				
Measured voltage	4.91	4.86	4.84	
Current (AMPS)	0.014	0.069	0.079	
Watts	0.068	0.334	0.380	


¹Maximum: The continuous current during maximum data rate at maximum power.

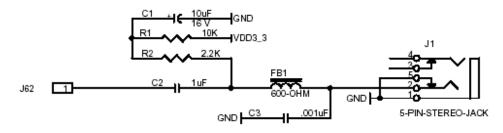
Notes:

Voice builds are not available in 3.3V builds.

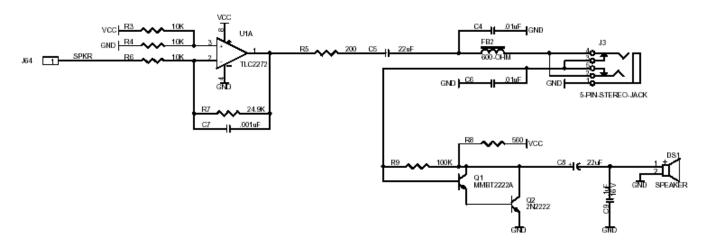
Chapter 4 – Application Notes

Tip and Ring Interface

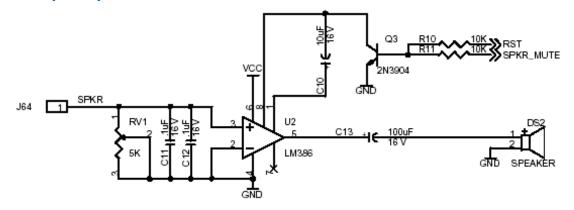
OEM Motherboard Filtering and Surge Protection Options See Design Considerations and Recommended Parts in the Universal SocketModem Developer Guide.


Recommended Uses for Filtering Options

- Enhanced Surge Protection with RJ-11 Filtering
 Use this option when additional lightning protection may be needed.
- Alternate Common Mode with RJ-11 Filtering
 Use this option when your design has common mode emission issues.


Microphone and Speaker

Note: Applies to the MT5692SMI Voice only.


Microphone Input Option

Speaker Output Option 1

Speaker Output Option 2

Differences between Options 1 and 2: Speaker 1 does not have an amplifier while Speaker 2 does.

Specifications for the Microphone Input

Impedance	>70K Ω
AC Input Voltage Range	1.1V P-P
Reference Voltage	1.35V

Specifications for the Speaker Output from the Codec

Minimum Load	300 Ω
Maximum Capacitive Load	0.01 uF
Output Impedance	10 Ω
AC Output Voltage Range	1.4V P-P
Reference Voltage	+1.35 VDC
DC Offset Voltage	\pm 20 mV

Speaker Output

The speaker output from the codec is coupled to the speaker pin (64) through a 1uF cap and a 33 ohm resistor. The speaker pin is shared with the call progress monitor which is a digital I/O pin on the DSP that is coupled to the speaker pin through a 1uF and 3.9K.

Chapter 5 – Parallel Devices

Parallel Host Bus Timing

Timing Requirements for Parallel Write

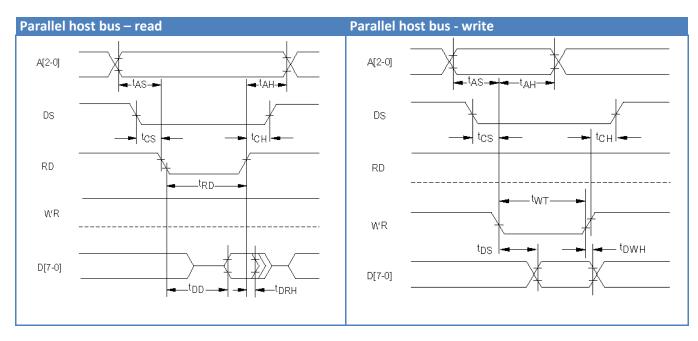
Symbol	Parameter	Mi	n Max	Unit
^t AS	Address Setup	5	-	Ns
^t AH	Address Hold	5	-	Ns
^t CS	Chip Select Setup	0	-	Ns
^t CH	Chip Select Hold	10	-	Ns
^t WT	WT Strobe Width	15	-	Ns
^t DS	Write Data Setup	15	20	Ns
^t DWH	Write Data Hold	5	-	Ns

Timing Requirements for Parallel Read

Symbol	Parameter	Min	Max	Unit
^t AS	Address Setup	5	-	Ns
^t AH	Address Hold	5	-	Ns
^t CS	Chip Select Setup	5	-	Ns
^t СН	Chip Select Hold	0	-	Ns
^t RD	RD Strobe Width	77	-	Ns
^t DD	Read Data Delay	10	25	Ns
^t DRH	Read Data Hold	5	-	Ns

Notes:

When the host executes consecutive Rx FIFO reads, a minimum delay of 2 times the internal CPU clock cycle plus 15 ns (85.86 ns at 28.224 MHz) is required from the falling edge of RD to the falling edge of the next Host Rx FIFO RD clock.


When the host executes consecutive Tx FIFO writes, a minimum delay of 2 times the internal CPU clock cycle plus 15 ns (85.86 ns at 28.224 MHz) is required from the falling edge of WT to the falling edge of the next Host Tx FIFO WT clock.

^tRD' ^tWT ^{= t}CYC ^{+ 15 ns.}

^tDS is measured from the point at which both CS and WT are active.

^tDWH is measured from the point at which either CS and WT become active.

Clock Frequency = 1.8432 MHz clock.

SocketModem Parallel Interface

The modem supports a 16550A interface in parallel interface versions. The 16550A interface can operate in FIFO mode or non-FIFO mode. Non-FIFO mode is the same as the 16450-interface operation.

The modem emulates the 16450/16550A interface and includes both a 16-byte receiver data first-in first-out buffer (RX FIFO) and a 16-byte transmit data first-in first-out buffer (TX FIFO).

FIFO Mode Selected

When FIFO mode is selected in the FIFO Control Register (FCR0 = 1), both FIFOs are operative.

FIFO Mode Not Selected

When FIFO mode is not selected, operation is restricted to a 16450-interface operation.

Receive Data

The host reads received data from the Receiver Buffer (RX Buffer). The RX Buffer corresponds to the Receiver Buffer Register in a 16550A device. In FIFO mode, the RX FIFO operates transparently behind the RX Buffer. Interface operation is described with reference to the RX Buffer in FIFO and non-FIFO modes.

Transmit Data

The host loads transmit data into the Transmit Buffer (TX Buffer). The TX Buffer corresponds to the Transmit Holding Register in a 16550A device. In FIFO mode, the TX FIFO operates transparently behind the TX Buffer. Interface operation is described with reference to the TX Buffer in both FIFO and non-FIFO modes.

Receiver FIFO interrupt operation

Receiver Data Available Interrupt

When you enable FIFO mode (FCR0 = 1) and receiver interrupt (RX Data Available) (IER0 = 1), the receiver interrupt operates as follows:

- 1. The Receiver Data Available Flag (LSR0) is set as soon as a received data character is available in the RX FIFO. LSR0 clears when RX FIFO is empty.
- 2. The Receiver Data Available interrupt code (IIRO-IIR4 = 4h) is set whenever the number of received data bytes in the RX FIFO reaches the trigger level specified by FCR6-FCR7 bits. It clears whenever the number of received data bytes in the RX FIFO drops below the trigger level specified by FCR6-FCR7 bits.
- 3. The HINT interrupt is asserted whenever the number of received data bytes in the RX FIFO reaches the trigger level specified by FCR6-FCR7 bits. HINT interrupt is de-asserted when the number of received data bytes in the RX FIFO drops below the trigger level specified by FCR6-FCR7 bits.

Receiver Character Timeout Interrupts

When you enable the FIFO mode (FCR0 = 1) and receiver interrupt (Receiver Data Available) (IER0 = 1), the receiver character timeout interrupt operates as follows:

A Receiver Character Timeout interrupt code (IIRO-IIR3 = Ch) is set if at least one received character is in the RX FIFO, the most recent received serial character is longer than four continuous character times ago (if 2 stop bits are specified, the second stop bit is included in this time period), and the most recent RX FIFO host read is longer than four continuous character times ago.

Transmitter FIFO Interrupt Operation

Transmitter Empty Interrupt

When you enable FIFO mode (FCR0 = 1) and transmitter interrupt (TX Buffer Empty) (IER0 =1), the transmitter interrupt operates as follows:

- 1. The TX Buffer Empty interrupt code (IIRO-IIR3 = 2h) occurs when the TX Buffer is empty. It clears when the TX Buffer is written to (1 to 16 characters) or the IIR is read.
- 2. The TX Buffer Empty indications will be delayed 1 character time minus the last stop bit time whenever the following occur:
 - THRE = 1 and there has not been at least two bytes at the same time in the TX FIFO Buffer since the last setting of THRE was set. The first transmitter interrupt after setting FCRO will be immediate.

Register Functional Definitions

The following table and descriptions define the assigned bit functions for the twelve internal registers.

Internal Registers

Reg.	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
No.	Name								
7	Scratch Register (SCR)	Scratch R	egister						
6	Modem Status Register (MSR)	Data Carrier Detect (DCD)	Ring Indicator (RI)	Data Set Ready (DSR)	Clear to Send CTS)	Delta Data Carrier Detect (DDCD)	Trailing Edge of Ring Indicator (TERI)	Delta Data Set Ready (DDSR)	Delta Clear to Send (DCTS)
5	Line Status Register (LSR)	RX FIFO Error	Transmitter Empty (TEMT)	Transmitter Buffer Register Empty (THRE)	Break Interrupt (BI)	Framing Error (FE)	Parity Error (PE)	Overrun Error (OE)	Receiver Data Ready (DR)
4	Modem Control Register (MCR)	0	0	0	0	Out 2	Out 1	Request to Send (RTS)	Data Terminal Ready (DTR)
3	Line Control Register (LCR)	Divisor Latch Access Bit (DLAB)	Set Break	Stick Parity	Even Parity Select (EPS)	Parity Enable (PEN)	Number of Stop Bits (STB)	Word Length Select Bit 1 (WLS1)	Word Length Select Bit 0 (WLSO)
2	Interrupt Identify Register (IIR) (Read Only)	FIFOs Enabled	FIFOs Enabled	0	0	Pending Interrupt ID Bit 2	Pending Interrupt ID Bit 1	Pending Interrupt ID Bit 0	"O" if Interrupt Pending
2	FIFO Control Register (FCR) (Write Only)	Receiver Trigger MSB	Receiver Trigger LSB	Reserved	Reserved	0	TX FIFO Reset	RX FIFO Reset	FIFO Enable
1 (DLAB = 0)	Interrupt Enable Register (IER)	0	0	0	0	Enable Modem Status Interrupt (EDSSI)	Enable Receiver Line Status Interrupt (ELSI)	Enable Transmitter Holding Register Empty Interrupt (ETBEI)	Enable Received Data Available Interrupt (ERBFI)

Reg. No.	Register Name	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0 (DLAB = 0)	Transmitter Buffer Register (THR)	Transmit	ter FIFO Buf	fer Register ((Write Only)			
0 (DLAB = 0)	Receiver Buffer Register (RBR)	Receiver	FIFO Buffer	Register (Re	ad Only)				
1 (DLAB = 1)	Divisor Latch MSB Register (DLM)	Divisor L	atch MSB						
0 (DLAB = 1)	Divisor Latch LSB Register (DLL)	Divisor L	atch LSB						

IER – Interrupt Enable Register

(Addr = 1, DLAB = 0)

The IER enables five interrupt types that can separately assert the HINT output signal (Refer to *Interrupt Sources* and Reset Control in the IIR).

To enable a selected interrupt:

• Set the corresponding enable bit to 1.

To disable a selected interrupt:

• Set the corresponding enable bit to 0.

Disabling an interrupt in the IER keeps you from setting the corresponding indication in the IIR and HINT assertion. Disabling all interrupts (resetting IER0 – IER3 to a 0) prevents setting any Interrupt Identifier Register (IIR) bits and HINT output assertion. All other system functions operate normally.

Bit	Description	Settings
7-4	Not used.	Always 0.
3	Enable Modem Status Interrupt (EDSSI)	1 enables HINT output assertion whenever the Delta CTS (MSR0), Delta DSR (MSR1), Delta TER (MSR2), or Delta DCD (MSR3) bit in the Modem Status Register (MSR) is 1. O disables HINT assertion due to the any of the four MSR bit settings.
2	Enable Receiver Line Status Interrupt (ELSI)	1 enables HINT output assertion when the Overrun Error (LSR1), Parity Error (LSR2), Framing Error (LSR3), or Break Interrupt (LSR4) receiver status bit in the Line Status Register (LSR) changes state. 0 disables HINT assertion due to LSR5.

Bit	Description	Settings
1	Enable Transmitter Holding Register Empty Interrupt (ETBEI)	1 enables HINT output assertion when the Transmitter Empty bit in the Line Status Register (LSR5) is 1. O disables assertion of HINT due to LSR5.
0	Enable Receiver Data Available Interrupt (ERBFI) and Character Timeout in FIFO Mode	1 enables HINT output assertion when the Receiver Data Ready bit in the Line Status Register (LSRO) is 1 or character timeout occurs in the FIFO mode. O disables HINT assertion due to the LSRO or character timeout.

FCR – FIFO Control Register

(Addr = 2, Write Only)

FCR is a write-only register used to enable FIFO mode, clear the RX FIFO and TX FIFO, enable DMA mode, and set the RX FIFO trigger level.

Bit	Description	Settings					
7-6	RX FIFO Trigger Level		FCR7 and FCR6 set the trigger level for the RX FIFO (Receiver Data Available) interrupt.				
		7	6	RX FIFO Trigger Level (Bytes)			
		0	0	01			
		0	1	04			
		1	0	08			
		1	1	14			
5-4	Not Used						
3	DMA Mode Select – Must be set to zero.	When FIFO is selected, FCR0= 1, FCR3 selects non-DMA operation (FCR3=0) or DMA operation (FCR3=1).					
		When FIFO mode is not selected, FCR0=0, this bit is not used and the modem operates in non-DMA mode in 16450 operation.					
	DMA Operation in FIFO Mode	Not Supported					
	Non-DMA Operation in FIFO Mode	RXRDY asserted when there are one or more characters in the RX FIFO. It is inactive when there are no more characters in the RX FIFO.					
				when there are no characters in the TX FIFO. It is inactive ter is loaded into the TX FIFO Buffer.			
2	TX FIFO Reset	When FO clears th		l bytes in the TX FIFO are cleared. The modem automatically			
1	RX FIFO Reset	When FO clears th	-	l bytes in the RX FIFO are cleared, The modem automatically			
0	FIFO Enable			5450 mode is selected and all bits are cleared in both FIFOs.			
				FO mode (16550A) is selected and both FIFOs are enabled. when other bits in the FCR are written or they will not be acted			

IIR – Interrupt Identifier Register

(Addr = 2)

The Interrupt Identifier Register (IIR) identifies the existence and up to five prioritized pending interrupts types. Set four priority levels to assist interrupt processing in the host. The four levels, in decreasing priority, are highest receiver line status, receiver data available or receiver character timeout, TX buffer empty, and modem status.

The modem freezes all interrupts and indicates the highest priority interrupt pending when the IIR is accessed. Until this access is complete, changes occurring in interrupt conditions are not indicated.

Bit	Description	Settings	
7-6	FIFO Mode	These bits copy FCR0.	
5-4	Not Used	Always 0.	
3-1	Highest Priority Pending Interrupt	These bits identify the highest priority pending interrupt. Bit 3 is applicable only when FIFO mode is selected; otherwise, bit 3 is a 0. Refer to <i>Interrupt Sources and Reset Control</i> for details.	
0	Interrupt Pending	When this bit is a 0, an interrupt is pending; IIR bits 1-3 can be used to determine the source of the interrupt. When this bit is a 1, an interrupt is not pending.	

Interrupt Identification Register			ister	Interrupt Set and Reset Functions			
Bit 31	Bit 2	Bit 1	Bit 0	Priority	Interrupt Type	Interrupt Source	Interrupt Reset Control
0	0	0	1	—	None	None	—
0	1	1	0	Highest	Receiver Line Status	Overrun Error (OE) (LSR1), Parity Error (PE) (LSR2), Framing Error (FE) (LSR3), or Break Interrupt (BI) (LSR4)	Reading the LSR
0	1	0	0	2	Received Data Available	Received Data Available (LSR0) or RX FIFO Trigger Level (FCR6-FCR7) Reached ¹	Reading the RX Buffer or the RX FIFO drops below the Trigger Level
1	1	0	0	2	Character Timeout Indication ¹	The RX FIFO contains at least 1 character and no characters have been removed from or input to the RX FIFO during the last 4 character times.	Reading the RX Buffer
0	0	1	0	3	TX Buffer Empty	TX Buffer Empty	Reading the IIR or writing to the TX Buffer
0	0	0	0	4	Modem Status	Delta CTS (DCTS) (MSR0), Delta DSR (DDST) (MSR1), Trailing Edge Ring Indicator (TERI) (MSR3), or Delta DCD (DCD) (MSR4)	Reading the MSR

Interrupt Sources and Reset Control Table

¹FIFO Mode only.

LCR – Line Control Register

(Addr = 3)

The Line Control Register (LCR) specifies the format of the asynchronous data communications exchange.

Bit	Description	Settings		
7	Divisor Latch Access Bit (DLAB)	To access the Divisor Latch Registers during a read or write operation, set to 1. To access the Receive Buffer, Transmitter Buffer, or Interrupt Enable Register, it must be reset to a 0.		
6	Set Break	Bit 6=1 Transmit Data forced to break condition and space (0) is sent. Bit 6=0, break is not sent. The Set Break bit acts only on Transmit Data and has no effect on the serial in logic.		
5	Stick Parity	 When Parity is enabled (LCR3=1) and Stick Parity selected (LCR5=1), the parity is transmitted and checked by the receiver: As 0 if even parity is selected (LCR4=1) As 1 if odd parity is selected (LCR4=0) When Stick Parity is not selected (LCR3 = 0), parity is transmitted and checked as determined by the LCR3 and LCR4 bits. 		
4	Even Parity Select (EPS)	When Parity is enabled (LCR3=1) and Stick Parity not selected (LCR5=0), the number of 1s transmitted or checked by the receiver in the data word bits and parity bit is: Even, LCR4=1 or Odd, LCR4=0		
3	Enable Parity (PEN)	When Bit 3= 1, a parity bit is generated in the serial out (transmit) data stream and checked in the serial in (receive) data stream as determined by the LCR4 and LCR5 bits. The parity bit is located between the last data bit and the first stop bit.		
2	Number of Stop GBITS (STB)	 This specifies the number of stop bits in each serial out character. Bit 2=0, one stop bit is generated regardless of word length. Bit 2=1 with 5-bit word length, generates one and one-half stop bits Bit 2=1 with 6-, 7-, or 8-bit word length, generates two stop bits 		
1-0	Word Length Select (WLSO and WLS1)	These bits specify the number of bits in each serial in or serial out character. The encoding of bits 0 and 1 is:Bit 1Bit 0Word Length005 Bits (Not supported)016 Bits (Not supported)107 Bits118 Bits		

MCR – Modem Control Register

(Addr = 4)

The Modem Control Register (MCR) controls the interface with modem or data set.

Bit	Description	Settings	
7-5	Not used	Always 0	
3	Output 2	Bit 3=1 HINT is enabled.	
		Bit 3=0 HINT is in the high impedance state.	
2	Output 1	Reserved.	
1	Request to Send (RTS)	Controls the Request to Send (RTS) function.	
		Bit 1=1 RTS is on	
		Bit 1=0 RTS is off.	
0	Data Terminal Ready (DTR)	TR) Controls the Data Terminal Ready (DTR) function.	
		Bit 1=1 DTR is on	
		Bit 1=0 DTR is off	

LSR – Line Status Register

(Addr = 5)

This 8-bit register provides status information to the host concerning data transfer.

Bit	Description	Settings	
7	RX FIFO Error	In 16450 mode, this bit is not used and is always 0.	
		In FIFO mode, this bit is set if there are one or more characters in the RX FIFO with parity error, framing error, or break indication detected. If the host reads the LSR and note of the above conditions exist in the RX FIFO, it is reset to 0.	
6	Transmitter Empty (TEMT)) If the TX Buffer (THR) and the equivalent of Transmitter Shift Register (TRS) are both empty, TEMT is set to 1.	
		If either the THR or TSR contains a character, TEMT is set to 0.	
		In FIFO mode, TEMT is set to a 1 whenever the TX FIFO and the equivalent of the TSR are both empty	
5	Transmitter Holding Register Empty (THRE) [TX Buffer Empty]	When set, THRE indicates that the TX Buffer is empty and the modem can accept a new character for transmission.	
	[When IIR1=1, THRE causes the modem to issue an interrupt to the host.	
		THRE bit is set to 1 when a character is transferred from the TX Buffer. It is set	
		to 0 when the host writes a byte into the TX Buffer.	
		In FIFO mode, THRE is set when the TX FIFO is empty; it is cleared when at least one byte is in the TX FIFO.	
4	Break Interrupt (BI)	When the received data input is a space (logic 0) for longer than two full word lengths plus 3 bits, BI is set to 1. It is reset when the host reads the LSR.	

Bit	Description	Settings	
3	Framing Error (FE)	Indicates that the received character did not have a valid stop bit. When the stop bit following the last data bit or parity bit is detected as a space (logic 0), FE is set to 1. When the host reads the LSR, FE is set to 0	
		In FIFO mode, error indication is associated with the particular character in the FIFO it applies to. FE is set to 1 when this character is loaded into the RX Buffer.	
2	Parity Error (PE)	Indicates that the received data character in the RX Buffer does not have the correct even or odd parity, as selected by LCR4 and LCR5. When the host reads the LSR, PE is reset to 0.	
		In FIFO mode, error indication is associated with the particular character in the FIFO it applies to. PE is set to 1 when this character is loaded into the RX Buffer.	
1	Overrun Error (OE)	When received data is loaded into the RX Buffer before the host has read the previous data from the RX Buffer, this bit is set to 1. When the host reads the LSR, OE is reset 0.	
		In FIFO mode, if data continues to fill beyond the trigger level, an overrun condition occurs only if the RX FIFO is full and the next character has been received completely.	
0	Receiver Data Ready (DR)	When a complete incoming character has been received and transferred into the RX Buffer, DR is set to 1. When the host reads the RX Buffer, DR is reset to 0.	
		In FIFO mode, DR is set when the number of received data bytes in the RX FIFO equals or exceeds the trigger level specified in the FCR0-FCR1.	

MSR – Modem Status Register

(Addr = 6)

The Modem Status Register (MSR) reports modem current state and change information. Bits 4-7 supply current state and bits 0-3 supply change information. Change bits are set to 1 whenever a control input from the modem changes state from the last MSR read by the host. Bits 0-3 are reset to 0 when the host reads the MSR or upon reset.

When bits 0, 1, 2, or 3 are set to 1, a Modem Status Interrupt (IIRO-IIR3 = 0) is generated.

Bit	Description	Settings
7	Data Carrier Detect (DCD)	Indicates the DCH# (RLSD#) output logic state.
6	Ring Indicator (RI)	Indicates the RI# output logic state.
5	Data Set Ready (DSR)	Indicates the DSR# output logic state.
4	Clear to Send (CTS)	Indicates the CTS# output logic state.
3	Delta Data Carrier Detect (DDCD)	When DCD has changed since the host last read the MSR, DDCD is set to 1.
2	Trailing Edge of Ring Indicator (TERI)	When RI has changed from a 1 to a 0 state since the host last read the MSR, TERI is set to 1.
1	Delta Data Set Ready (DDSR)	When DSR has changed since the host last read the MSR, DDSR is set to 1.
0	Delta Clear to Send (DCTS)	When CTS has changed since the host last read the MSR, DCTS is set to 1.

RBX – RX Buffer (Receiver Buffer Register)

(Addr = 0, DLAB = 0)

The RX Buffer (RBR) is a read-only register at address 0 (with DLAB = 0). Bit 0 is the least significant data bit and is the first bit received.

THR – TX Buffer (Transmitter Holding Register)

(Addr = 0, DLAB = 0)

The TX Buffer (THR) is a write-only register at address 0 when DLAB = 0. Bit 0 is the least significant bit and the first bit sent.

SCR – Scratch Register

(Addr = 7)

The Scratchpad Register is a read-write register at address 7. This register is not used by the modem and can be used by the host for temporary storage.

Divisor Registers

(Addr = 0 and 1, DLAB = 1)

The Divisor Latch LS (least significant byte) and Divisor Latch MS (most significant byte) are two read-write registers at locations 0 and 1 when DLAB = 1, respectively.

The baud rate is selected by loading each divisor latch with the appropriate hex value. See *Programmable Baud Rates.*

Programmable Baud Rates

Divisor Latch (Hex)		Divisor (Decimal)	Baud Rate
MS	LS		
06	00	1536	75
04	17	1047	110
03	00	768	150
01	80	384	300
00	C0	192	600
00	60	96	1200
00	30	48	2400
00	18	24	4800
00	0C	12	9600
00	06	6	19200
00	04	4	28800
00	03	3	38400
00	02	2	57600
00	01	1	115600
00	00	NA	230400