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Preface 
 
This tutorial answers the question “What’s a multicore microcontroller?” and shows 
students how to use one to design their own “smart” invention.  It features Parallax Inc.’s 
Propeller microcontroller, which is built into the Propeller Activity Board.  The tutorial 
activities are designed to appeal to a student’s imagination by using motion, light, sound, 
and tactile feedback to explore new concepts.  Along the way, students encounter basic 
principles in the fields of computer programming, electricity and electronics, 
mathematics, and physics.  Many activities give hands-on experience with design 
practices and common electronic components used by engineers and technicians in the 
creation of modern machines and appliances.  At the end of this course students will 
understand the capabilities of microcontrollers, design their own projects, and build them.  
In short, they will be able to use multicore microcontrollers as another tool to equip their 
genius. 

AUDIENCE 
This tutorial is designed to be an entry point to technology literacy, and an easy learning 
curve for embedded programming and device design.  The text is organized so that it can 
be used by the widest possible variety of students as well as by independent learners.  
Middle-school students can try the examples in this text in a guided tour fashion by 
simply following the check-marked instructions with instructor supervision.  At the other 
end of the spectrum,  engineering students’ comprehension and problem-solving skills 
can be tested with the questions, exercises, and projects (with solutions) in each chapter 
summary.  The independent learner can work at his or her own pace, and obtain 
assistance through the Learn forum cited below.  

A BIT ABOUT PROPELLER C AND SIMPLE LIBRARIES  
Propeller C is introduced here: http://learn.parallax.com/propellerc.  This program 
combines the most popular elements of the Stamps in Class program for the BASIC 
Stamp with the multicore Propeller microcontroller and the C programming language.   
 
Those of you who got started with Stamps in Class tutorials will probably recognize 
many of the PBASIC features that made getting started with microcontrollers and 
electronics so fun with the BASIC Stamp.  For example, blinking a light in PBASIC uses 
commands named high, low and pause.  The Propeller C tutorials use a library called 
simpletools, which has equivalent functions named: high, low and pause.  A few more 
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examples from simpletools you might recognize: pulse_in, pulse_out, shift_in, 
shift_out, i2c_in, i2c_out, freq_out, count.  You can go here for the complete list, 
and click the simpletools.h link: 
 
https://propsideworkspace.googlecode.com/hg/Learn/Simple%20Libraries%20Index.html   
 
The portions of PBASIC that were incorporated into the simpletools library were the P 
(for Parallax) part of PBASIC, not the BASIC part.  In other words, the simpletools 
library made functions out of the commands that can be applied in any language to 
simplify the the I/O control and timing commonly used to make microcontrollers interact 
with the circuits inside products, robots, and inventions.  The rest is C language, built by 
the fully C compliant Propeller GCC compiler.  So, instead of putting high, low, and 
pause commands in a PBASIC do...while loop for the BASIC Stamp, to blink that 
light with a BASIC Stamp, we have high, low, and pause function calls inside a C 
language while(1){...} loop for the Propeller.   
 
Launching into the larger world of C language and multicore microcontroller 
applications, Propeller C uses both custom and standard libraries.  Some custom libraries 
support popular devices.  So instead of needing to write a function to check a PING))) 
Ultrasonic Distance Sensor and convert the echo time measurement to centimeters, you 
can just include the ping.h header, and call its ping_cm function.  Some libraries even 
provide simple function calls that launch and manage multicore processes like wav files, 
VGA display, and/or controlling many servos with a single core.   
 
Standard libraries are used whenever possible.  Trig functions, random numbers, and 
string comparisons are all examples that can be found in the tutorials.  The original intent 
was to also use the stdio library’s printf and scanf functions.  Another original intent 
that guided the design of the Propeller Activity Board was to have all Propeller C 
examples executed in CMM (compact memory) mode so that programs could be run by 
just the Propeller chip on most existing boards without requiring extended memory 
hardware add-ons.   
 
The first stdio obstacle was encountered when floating point was added to a simple 
program that wrote to/from SD.  Even in CMM mode, the program overflowed the 
Propeller chip’s 32 KB memory.  Although a library called libtiny reduced the size of 
some programs with printf and scanf, it didn’t support floating point or file I/O.  In 
contrast, the simpletext library’s print and scan functions supported a more well-
rounded subset of printf / scanf features, including floating point. In addition, print 

https://propsideworkspace.googlecode.com/hg/Learn/Simple%20Libraries%20Index.html
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supports a binary formatter that is not available to printf, yet is extremely useful for 
microcontroller applications and was expected by BASIC Stamp users.  The simpletext 
library also has other functions for communicating with peripheral devices, including 
simple and full duplex serial, and VGA.  This, combined with the fact that it supported 
floating point and allowed judicious use of fread and fwrite for SD I/O and still left 
space for application code, made it the best choice at the time.   
 
The simpletext library has been a great tool for terminal examples, as an addition to 
libraries for serial peripheral devices, and for applications with multiple peripherals that 
handle text input and/or display.  Examples on learn.parallax.com include many terminal 
examples, serial LCD, XBee, RFID, VGA, and more.  The list will grow as as more 
libraries are submitted. 
 
The Propeller C Simple Libraries are part of an open source project, and we highly 
encourage submissions of new libraries, especially for supporting devices.  Simple 
Libraries posted to obex.parallax.com will be evaluated and considered for inclusion in 
future revisions.  Libraries that are compatible with existing simple libraries and follow 
the existing Simple Library API pattern and Doxygen comments will be more readily 
incorporated.  For examples, look for similar devices in the Library Index, Learn 
Tutorials, and in the Simple Libraries folder that SimpleIDE places in 
...Documents/SimpleIDE/Learn/.  If another subset version of stdio is submitted, it will 
also be carefully considered.  It would need to be able support all the existing tutorials 
and device drivers with an equivalent level of simplicity to what’s already there and 
either use equal or less code space. 

ABOUT THE AUTHOR 
Andy Lindsay joined Parallax Inc. in 1999, and has since authored numerous books, 
articles, product documents, and web tutorials for the company.  Andy also travels the 
nation and abroad teaching Parallax Educator Courses and events, and gathers feedback 
from educators’ observations to improve the material.  Andy studied Electrical and 
Electronic Engineering at California State University, Sacramento.  When he’s not 
writing educational material, Andy does product and application engineering for Parallax. 

CONTRIBUTORS 
This Parallax-authored tutorial includes application engineering, activity design, technical 
writing, photographs, and C code by Andy Lindsay; technical illustration by Andy 
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Lindsay and Courtney Jacobs; editing and layout by Courtney Jacobs, and technical 
nitpicking/general prodding by Stephanie Lindsay.  
  
A very special thank you goes to educator and customer John Kauffman for extensive 
edits and suggestions made to the What’s a Multicore Microcontroller? draft, for test-
driving the activities in the classroom, and for creating and sharing the Educators Guide 
and assessment material.   
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Chapter 1: Getting Started 

HOW MANY MICROCONTROLLERS DID YOU USE TODAY? 
A microcontroller is a kind of miniature computer brain that you can find in all kinds of 
devices.  Some common, every-day products that have microcontrollers inside are shown 
in Figure 1-1.  If it has buttons and a digital display, chances are it also has a 
programmable microcontroller brain. 

                    

Figure 1-1 
Many devices 
contain 
microcontrollers 

Try counting how many devices with microcontrollers you use in a day.  If you hit your 
alarm clock’s snooze button a few times in the morning, the first thing you did is interact 
with a microcontroller.  Heating up some food in the microwave oven and making a call 
on a mobile phone also involve interacting with microcontrollers.  Each of those 
microcontrollers is doing several jobs at once; the radio calculates the time, displays the 
numbers, tunes to the right station and reacts when you hit the snooze button.  All of 
those devices have microcontrollers inside them that interact with you.  

THE PROPELLER ACTIVITY BOARD – YOUR NEW EMBEDDED SYSTEM 
Parallax Inc.’s Propeller Activity Board shown in Figure 1-2 has a multicore 
microcontroller built onto it; it is the largest black chip just above the Propeller Activity 
Board label.  That chip has eight cores inside that perform the actual computing 
functions. The rest of the parts on the board support the microcontroller by providing 
power, a USB connection to your computer, extra memory, and sockets for connecting 
other devices.  When all of these parts work together they are called an embedded 
computer system.  This name is almost always shortened to just “embedded system.”   
 

 

Explore the Board.  Learn more about each part by reading the Propeller Activity Board’s 
product documentation, a free download from www.parallax.com/product/32910.  

 
 

http://www.parallax.com/product/32910
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Figure 1-2 
Propeller Activity 
Board with Built-
in Propeller 
Microcontroller 

 
The activities in this tutorial will guide you through building circuits with electronic parts 
similar to the ones found in consumer appliances and high-tech gadgets.  You will also 
write computer programs that the Propeller chip will run.  These programs will make the 
Propeller Activity Board monitor and control these circuits so that they perform useful 
functions.  

AMAZING INVENTIONS WITH MICROCONTROLLERS 
Consumer appliances aren’t the only things that contain microcontrollers.  Robots, 
machinery, aerospace designs, and other high-tech devices are also built with 
microcontrollers.  Let’s take a look at two in Figure 1-3 shows two robotic examples. On 
each of these robots, students use the Propeller microcontroller to read sensors, control 
motors, and communicate with other computers.   
 
 
 
  

                                               Figure 1-3 
Educational Robots 
 
ActivityBot robot 
(left)  
CSU Monterey Bay 
Ulithi ROV Project 
(right) 
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The robot on the left is Parallax Inc.’s ActivityBot robot.  It uses the Propeller Activity 
Board mounted on a small chassis with servo motors, wheels, and sensors to navigate by 
touch, visible light, infrared light, or ultrasound.  The robot on the right is called an 
underwater ROV (remotely operated vehicle) and it was constructed at California State 
University of Monterey to study coral reefs in the Ulithi Atoll.  Operators see what the 
ROV sees through a video camera feed, and control the ROV with a combination of hand 
controls and a laptop.  Its Propeller microcontroller monitors sensors on the ROV and 
reports that information to the operator.  At the same time, it also processes signals 
received from the operator’s hand controls and relays them to the ROV’s onboard motor 
controllers. 
 
The flying quadcopter in the left of Figure 1-4 is called the ELEV-8.  It was developed by 
Parallax, and its Propeller microcontroller manages the four motor-driven flight 
propellers so the aircraft remains stable and responsive to the operator’s joystick controls.  
The millipede-like robot on the right of Figure 1-4 was developed by a professor at 
Nanyang Technical University, Singapore.  It has more than 50 simple microcontrollers 
on board, and they all communicate with each other in an elaborate network that helps 
control and orchestrate the motion of each set of legs.  In both of these vehicles, 
microcontrollers solve complex mechanical control problems.  Robots not only help us 
better understand designs in nature, but they are being used to explore remote locations, 
disaster sites, and even other planets.  
 

                      

Figure 1-4 
Research Robots  
 
Parallax’s ELEV-8 
quadcopter (left) and 
Millipede Project at 
Nanyang University 
(right) 

 
Microcontrollers are used in environmental applications, both unique and common.  The 
weather station shown on the left of Figure 1-5 is part of a coral reef decay study.  The 
microcontroller inside it gathers weather data from a variety of sensors and stores it for 
later retrieval by scientists.  Even common traffic lights use sophisticated embedded 
systems to sense the presence of vehicles, coordinate with other lights to keep traffic 
moving smoothly, and detect preemption signals sent by emergency vehicle operators.   
 

http://learn.parallax.com/activitybot
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Figure 1-5 
Environmental Devices  
 
Ecological data collection by 
EME Systems (left); traffic light 
in Greece (right) 

 
From your first project all the way through scientific applications, the microcontroller 
basics needed to get started on projects like these are introduced in this book.  By 
working through the activities, you will get to experiment with a variety of building 
blocks like the ones found in all these inventions.  You will build circuits for displays, 
sensors, and motion controllers.  You will learn how to connect these circuits to the 
Propeller Activity Board’s microcontroller, and then write programs that make it collect 
data from sensors, make decisions, and control lights or motion.  Along the way, you will 
learn many important electronic and computer programming concepts and techniques.  
By the time you’re done, you might find yourself well on the way to inventing a device of 
your own design. 
 

ACTIVITY #1: WHAT’S A “MULTICORE” MICROCONTROLLER? 
Okay, so now that we have seen where microcontrollers are used, what is a multicore 
microcontroller, and why would you want to use one?  In each of the examples above, the 
microcontroller is doing more than one task at the same time.  While a few tasks can be 
juggled at once by a single-core microcontroller, the more processes running at once, the 
more complicated it gets, especially with time-sensitive tasks like playing WAV files and 
controlling motors.  Computers now come with dual, quad, and even eight cores to 
handle multiple tasks with speed and precision.  Since a microcontroller is like a 
miniaturized computer that’s designed to be the brains of products and inventions, it was 
inevitable that microcontrollers would also be designed with more cores. 
 
The web article Propeller Brains for Your Inventions included below, breaks down and 
illustrates these concepts. 

http://learn.parallax.com/propeller-brains-your-inventions
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Propeller Brains for Your Inventions 

The Propeller microcontroller on the Activity Board can be the brains for your own 
inventions, such as a robot.  It is the brains of the ActivityBot robot, for example. 
 
So, what is a microcontroller?  It is an integrated circuit (computer chip) that includes a 
tiny processor to do the “thinking” and some memory so it can keep track of what it is 
doing.  Microcontrollers also have input/output pins, I/O pins for short, which can 
exchange electrical signals with other devices such as lights, switches, beepers, motors, 
and sensors. 

 

Figure 1-6 
So What Is a 
Microcontroller?  
 

 
A single-core microcontroller has just one processor inside.  A multicore 
microcontroller has two or more processors, also called cores, inside one chip. 
 

 

Figure 1-7 
Single Core vs. 
Multicore 
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A single-core microcontroller is multitasking when it executes several tasks that must 
share its single processor.  The processor must interrupt each task to switch briefly to 
another, to keep all of the processes going. 
 
Imagine a chef in a kitchen alone, making bread, roast beef, and sauce.  The chef must 
knead the bread dough for 15 minutes, interrupt that task every minute to stir the sauce, 
and remove the roast from the oven as soon as a thermometer reaches 120 °F.  At any 
moment, the chef (processor) is executing only one task, while keeping all three 
processes (kneading, stirring, roasting) going at once. 
 
Now imagine being that chef.  The more tasks you must do at once, the more difficult it 
gets to keep track of them all, and keeping the timing right becomes more of a challenge. 

 

Figure 1-8 
Multitasking  
 

 
A multi-core microcontroller is multiprocessing when it executes several tasks at once, 
with each task using its own processor.  This is also referred to as true multitasking. 
 
Now, imagine a chef in a kitchen with three assistants, making bread, roast beef, and 
sauce.  The chef puts one assistant at the stove to stir the sauce every minute.  Another 
assistant is sent to keep watch on the thermometer, and remove the roast when it reaches 
120 °F.  Now the chef is free to knead bread dough for 15 minutes.  The three cooks 
(processors) are keeping all three processes (kneading, stirring, roasting) executing at the 
same time, without any task-switching interruptions, and without missing the moment 
when the thermometer reaches 120 °F.  There is even an extra assistant ready to help if 
something more is needed. 
 
Having multiple cores makes it easier to do many tasks at once, especially if precise 
timing is needed. 
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Figure 1-9 
Multiprocessing 
 

 
The Propeller microcontroller has 8 cores, and can therefore do multiprocessing, also 
called true multitasking.  The cores are all the same.  It has 32 I/O pins, which are also all 
the same.  Each core can work with every I/O pin.  This means that all of the Propeller 
cores and I/O pins are equally good at any tasks they must perform.  Each core has a bit 
of its own memory.  Each core also takes turn accessing a larger Main Memory, where 
they can share information. 

 

Figure 1-10 
The Propeller Has 8 
Cores 
 

Eight cores in one microcontroller might sound intimidating.  It might seem complicated 
to have to write programs for all of them.  But the Propeller C language has pre-written 
code tasks, called functions, which make it easy. 
 
Just think of functions as recipes the head chef can hand over to assistants, instead of 
having to explain to each one how to cook.  One assistant can even ask another assistant 
for help, without bothering the head chef.  Just as a team of 8 chefs can efficiently 
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manage great meals, the Propeller with its eight cores can efficiently manage great 
inventions.  Now that's teamwork! 
 
Figure 1-11  Multicore Is Easy with C Functions 

 
 
A C library is a collection of functions, sort of the way a cookbook is a collection of 
recipes. 
 
Figure 1-12  A C Library is a Collection of Functions 

 
So what does multicore processing look like for an invention like the ActivityBot? 
 
Your C program might start a motor function, which makes another core manage the 
motors to make the robot move.  Then, it might call a sensor function so the robot can 
“see” if there is an obstacle in its path.  If an object is detected, your program then might 
call a music function, which will task other cores with the jobs of fetching songs from an 
SD card and playing music on an audio jack. 
 
The ActivityBot is just one example of a microcontroller invention.  You can use the 
Activity Board to build other projects or create your own inventions.  
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Figure 1-13  From Cooking to Robotics 

 
 

In this book, you will learn to use the Propeller microcontroller with electronic 
components you can think of as ingredients for your own inventions.  So let’s get started! 
 

ACTIVITY #2: SET UP SOFTWARE AND HARDWARE 
Getting started with the Propeller Activity Board is similar to getting started with a 
brand-new PC or laptop: take it out of the box, power it up, download and test some 
software.  If this is your first time using the Propeller Activity Board, you will be doing 
all these same activities plus (most importantly) learning to write software of your own in 
a programming language for the Propeller called “C”.   
 
If you are in a class, your hardware may already be all set up for you and your teacher 
may have other instructions.  If not, it is time to go to online resources for downloading 
and installing the software, connecting the hardware to your computer, and testing to 
make sure your computer can load programs into your board.  
 
 Using a web browser, go to the web tutorial Propeller C – Set Up SimpleIDE. 

(http://learn.parallax.com/propeller-c-set-simpleide)   
 Click the link for your operating system (Windows, Mac, or Linux). 

http://learn.parallax.com/propeller-c-set-simpleide/update-your-learn-folder
http://learn.parallax.com/propeller-c-set-simpleide
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 Follow the instructions to: 
o Download and install the USB driver. 
o Download and install the SimpleIDE software.   
o Connect your Activity Board to the computer. 
o Run a test program that displays a “Hello” message. 

 Once you are sure your board and software are working, update your learn folder 
to make sure you have the most current example programs and libraries. 
(http://learn.parallax.com/propeller-c-set-simpleide/update-your-learn-folder) 

 

 

What do I do if I get stuck? If you run into problems,  you have many options to obtain free 
Technical Support: 

• Forums: sign up and post a message in our free, moderated Learn forum at 
http://forums.parallax.com.   

• Email: send an email to support@parallax.com. 
• Telephone: In the Continental United States, call toll-free 888-997-8267.   All 

others call (916) 624-8333. 

 

ACTIVITY #3: LEARN JUST A LITTLE PROGRAMMING  
In this book, you will build lots of useful circuits and write programs to monitor and 
control them.  Most of the programming and circuit-building will be learn-as-you-go, and 
just a little at a time.  But before moving on to that, let’s try two of the tutorials from the 
Propeller C – Start Simple web tutorial series that have been included below; one in this 
activity and one in the next.  They will help you to you get familiar with the SimpleIDE 
programming software. 

Simple Hello Message Tutorial 

This C program will make the Propeller microcontroller send a "Hello!!!" message to the 
SimpleIDE Terminal on your computer. 
 
 Click the Open Project button. 
 Navigate to My DocumentsSimpleIDE\Learn\Examples\C Intro\Basics. 
 Select Hello Message.side, and click Open. 

 

http://learn.parallax.com/propeller-c-set-simpleide/update-your-learn-folder
http://learn.parallax.com/propeller-c-set-simpleide/update-your-learn-folder
http://forums.parallax.com/
mailto:support@parallax.com
http://learn.parallax.com/propeller-c-start-simple
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Figure 1-14  Opening a Project in SimpleIDE 

 
 

When SimpleIDE opens the project, it will open Hello Message.c into its text editor pane. 
 
 Click the COM Port dropdown on the right and select the com port your board is 

connected to.  If in doubt, disconnect/reconnect the board and click it again to 
see which one disappeared/reappeared. 

 Click the Run with Terminal button. 
 

 

Figure 1-15 
Setting the COM Port 
and Running the 
Terminal 
 

 
A single "Hello!!!" message should appear in the Simple IDE Terminal. 
 

 



Page 20 ⋅ What’s a Multicore Microcontroller 

 

Figure 1-16 
SimpleIDE Terminal 
 

 

How Hello Message.c Works 

The print("Hello!!!") makes the Propeller chip send its message to your computer 
through its programming port.  The SimpleIDE terminal displays the message on your 
computer screen.  
 
The print("Hello!!!") is followed by a semicolon (;).  The semicolon is what tells 
the PropGCC compiler that it has reached the end of an instruction statement.  
 
The print statement is inside curly braces {} below main(), and so we call it part of the 
main function’s code block.  A C program always starts with the first statement in the 
main function. 
 
The print command is also a function, but it is stored in other files called library files.  
Later on, you’ll get to search for libraries that contain useful functions to add to your own 
projects.  For now, just keep in mind that your program needs #include 
"simpletools.h" because it has information about print, and many other functions.  

Try This – Print Another Message 

The program has one statement: print("Hello!!!");.  Let’s save this project under a 
new name, and add a second print statement.  We can then say that the program is 
calling the print function twice. 
 
 Click the Save Project As button. 
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Figure 1-17 
Save Project As 
 

 
 Browse to My Documents\SimpleIDE\My Projects. 
 Type Hello Again into the File name field. 
 Click the Save button. 

 

 

Figure 1-18 
Saving a Copy to the 
My Projects Folder 
 

 
 Modify the main function to add a second print function call,  like this: 

 
Figure 1-19  Modified Main Function 
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 Click the Run with Terminal button, and observe the output. 
 What effect does the \n have?  Delete \n, then run the program a third time. 

 

 

Saving Programs 
SimpleIDE saves your program each time you run or compile it.  As you progress through 
these tutorials you will notice that we ask you to save a new copy of any program you'll be 
modifying to prevent you from overwriting the original project with one you have changed. 

Did You Know? 

C is case-sensitive.  You have to use the correct capitalization when programming in 
C.  If you make an error, such as typing Print, for example, SimpleIDE will let you 
know: 
 
Figure 1-20  Build Failure Message 
 

 
 

• newline — \n is called the newline character, and it is an example of a control 
character used for positioning a cursor in a serial terminal.  

• int (main) — the int in int main() is part of the C compiler's programming 
convention.  It is used no matter what you include inside the main function's 
code block.  You will learn more about how int is used in other ways as you go 
through the tutorials. 

Your Turn – Using Comments 

Comments are notes about your code that help explain it to other people that have to work 
with it.  Also, it is good to leave comments as notes to yourself about what you were 
doing in case you need a reminder days (or months or years) later.  
 
If you want to comment all or part of a single line, use two forward slashes //.  
Everything to the right of // will be ignored by the C compiler.  Block comments can 
span multiple lines.  They start with /* and end with */, and everything in between will 
be ignored by the C compiler. 
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 Click the Save As Project button again and save the project as Hello Again 

Commented. 
 Add the comments shown below. 
 Run it again to verify that the comments do not have any actual effect on the way 

your program runs.  (If your comment prevents the program from running, you 
may have a typing error!) 

 
Figure 1-21  Hello Again Commented.c in SimpleIDE 

 

ACTIVITY #4: VARIABLES AND MATH 
A variable is a name you give to a section of microcontroller memory so your program 
“remembers” values and works with them.  In this activity, the Propeller microcontroller 
will do some simple math problems, using variables to store the values and the answers. 
 
 Click SimpleIDE’s Open Project button. 
 If you’re not already there, navigate to ...\SimpleIDE\Learn\Examples\C 

Intro\Basics. 
 Open Variables and Calculations.side.  
 Examine Variables and Calculations.c, and try to predict what SimpleIDE 

Terminal will display. 
 Click the Run with Terminal button to run the program, and compare the actual 

output to your predicted output. 
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/* Variables and Calculations.c */ 
 
#include "simpletools.h"                   // Include simpletools 
 
int main()                                 // main function 
{ 
  int a = 25;                              // Initialize a variable to 25 
  int b = 17;                              // Initialize b variable to 17 
  int c = a + b;                           // Initialize c variable to a + b 
  print("c = %d ", c);                     // Display decimal value of c 
} 

How Variables and Calculations.c Works 

Variables and Calculations.c declares an integer variable named a and assigns it the value 
25 with int a = 25.  Then, it declares a second variable named b and initializes it to 17 
with int b = 17.  The last integer variable it declares is named c, and stores the result 
of a + b in it.  
 
Finally, it displays the value of c with print("c = %d", c).  This variation on print 
displays a sequence of characters called a string, followed by a variable.  The %d is called 
a format placeholder, and it tells print how to display the value stored in that variable as 
a decimal number, 42 in this case. 
 

 

The add operator (+) is a binary operator, meaning that it needs two inputs to perform an 
operation.  Here are some common binary operators: 
+ Add 
- Subtract 
* Multiply 
/ Divide 
% Modulus (remainder of a division calculation) 

Try This – Test Binary Operators 

Here is a modified version of the main routine that displays "a = , b = " with their values, 
and then "a + b = " and the value of c on a new line.  Then, it repeats for a – b.  
 
Notice that the second time it calculates the value of c, we don’t need to declare it with 
int.  It’s just c = a – b.  Notice also that print allows you to display more than one 
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numeric value within your string.  All it takes is two format placeholders in the string and 
two values, separated by commas, after the string. 
 
 Click Save As Project button, and name it Test Binary Operators. 
 Modify the main function as shown below. 
 Run the program and verify the output. 

 
Figure 1-22  Modified Main Function 

 

Your Turn – More Binary Operators 

 Expand Test Binary Operators.c so that it goes through testing all five binary 
operators in the information box, above. 

 Try changing a to 17 and b to 25, then re-run. 
 Try declaring int variables of y, m, and b, and then use them to calculate and 

display y = m * x + b. 
 

 

PRO TIP: Displaying % with print  
To display the output of the Modulus operator, use ("a mod b = ...") or ("a  %% b = 
...) in the print function.   Since % has another purpose in print strings, just saying ("a 
% b = ...) will give unexpected results. 

 
There are many additional pages in the Propeller C – Start Simple tutorial series that 
introduce more C programming.  Those topics will be introduced as you go through the 
upcoming activities as needed for a certain circuit or project.  But if you want to go 
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online to try more programming language web tutorials now, have fun.  Just make sure to 
pick back up here when you’re done.  (http://learn.parallax.com/propeller-c-start-simple) 

ACTIVITY #5: WHEN YOU ARE DONE FOR NOW 
Ready to take a break?  Whenever you leave your Activity Board unattended, it’s best to 
set its PWR switch to 0 (off) and disconnect its USB cable (and/or batteries).  Also, it is 
wise to always wash your hands after working with electronics. 
 
 Set the Activity Board’s PWR switch to 0. 
 Disconnect the USB cable. 
 If you happen to have batteries connected to the Activity Board’s 6-9 VDC jack, 

unplug them now and store them where they cannot touch other components. 

SUMMARY 
This chapter guided you through the following: 
 

• An introduction to some devices that contain microcontrollers. 
• An introduction to the Activity Board and its Propeller multicore 

microcontroller. 
• A tour of some interesting inventions made with the Propeller microcontroller 

and other embedded systems. 
• How to install the USB drivers for loading programs into the Propeller 

microcontroller. 
• How to download and install the SimpleIDE for writing programs for the 

Propeller microcontroller. 
• How to make the Propeller send messages to your computer, and how to make 

your computer display them in the SimpleIDE Terminal. 
• Using the print function in a program to make the Propeller send messages for 

your computer to display. 
• Using the \n (newline) character to move the SimpleIDE Terminal’s cursor to 

the next line. 
• How to use variables to store values.  
• How to use operators to perform simple math operations. 
• What to do when you are finished working with your Propeller Activity Board. 

http://learn.parallax.com/propeller-c-start-simple
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Questions 

1. What is a microcontroller? 
2. Is the Propeller Activity Board a microcontroller, or does it contain one? 
3. What clues would you look for to figure out whether or not an appliance like a 

clock radio or a cell phone contains a microcontroller? 
4. What effect does the double-slash // have on code to the right of it? 
5. What character tells the C compiler it has reached the end of a statement? 
6. Let’s say you want to take a break from your Propeller microcontroller project to 

go get a snack, or maybe you want to take a longer break and return to the 
project in a few days.  What should you always do before you take your break?  

Exercises 

1. Explain what the \n does in this function call: 
 
print("Hi \n there!"); 
 

2. What would the SimpleIDE Terminal display in response to this statement: 
 
print("Line1\nLine2\nLine3"); 
 

3. This statement was written so that it would display a = 1, b = 2, but it instead 
displayed a = 1, b = 1960.  (The value of b may be different for you, but it is not 
guaranteed to be 2.)  What’s the problem, and how would you correct it?  
 
  int a = 1, b = 2; 
  print("a = %d, b = %d\n", a); 

Projects 

1. Use print to display the solution to the math problem: 1 + 2 + 3 + 4. 
2. Make a program that computes z = c × (a + b).  Test with a = 1, b = 2, c = 3.  The 

result should be 9. 

Solutions 

Q1. A microcontroller is a kind of miniature computer found in electronic products.   
Q2. The Propeller Activity Board contains a Propeller microcontroller chip.  The rest 

of the board provides support for the Propeller and sockets for connecting other 
devices. 
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Q3. If the appliance has buttons and a digital display, these are good clues that it has 
a microcontroller inside.  

Q4. Whatever notes you put to the right of // will be ignored by the C compiler.  It’s 
great for inserting notes about the code into the program. 

Q5. The semicolon ( ;  ) 
Q6. Set the PWR switch to 0.  Disconnect the USB cable.  Disconnect power cable if 

connected.  Wash your hands! 
 

E1. It causes “ there!” to appear on the line below “Hi” in the SimpleIDE Terminal. 
E2. The SimpleIDE Terminal would display each item on its own line, like this:  

Line1 
Line2 
Line3 

E3. The print statement’s text had two %d formatters, but it was missing b in the 
variable list following the text.  Here is the code with the corrected print 
statement. 

  
  int a = 1, b = 2; 
  print("a = %d, b = %d\n", a, b); 
 
P1. Here are two examples of programs that display a solution to the math problem: 

1+2+3+4.  There will be lots of possible solutions, so if it displayed the correct 
answer in the SimpleIDE terminal, you got it right.  

  
/* Intro-P1-Solution1.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  int sum = 1 + 2 + 3 + 4; 
  print("1 + 2 + 3 + 4 = %d\n", sum); 
} 

  
/* Intro-P1-Solution2.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  print("1 + 2 + 3 + 4 = %d\n", 1 + 2 + 3 + 4); 
} 
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P2. Here is an example of a program that makes the calculation correctly.  Again, 
keep in mind that this is just one of many possible correct solutions. 

  
/* Intro-P2-Solution.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  int a = 1, b = 2, c = 3; 
  int z = c * (a + b); // add b and c together before multiplying by c 
 
  print("z = %d \n", z); 
}
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Chapter 2: Lights On – Lights Off 

INDICATOR LIGHTS 
Indicator lights are so common that most people tend not to give them much thought.  
Figure 2-1 shows three indicator lights on a laser printer.  Depending on which light is 
on, the person using the printer knows if it is running properly or needs attention.  Car 
stereos, televisions, DVD players, disk drives, printers, and alarm system control panels 
all use indicator lights.  Look around — can you see any from where you are sitting? 
 

 

Figure 2-1 
Indicator Lights on a Printer 
 
Indicator lights are common on 
many everyday devices. 

 
Turning an indicator light on and off is a simple matter of connecting and disconnecting 
it from a power source.  In some cases, the indicator light is connected directly to the 
battery or power supply, like the power indicator lights on the Propeller Activity Board.  
Other indicator lights are switched on and off by a microcontroller inside the device.  
These are usually status indicator lights that tell you what the device is up to.   

MAKING A LIGHT-EMITTING DIODE (LED) EMIT LIGHT 
Most of the indicator lights you see on devices are called light-emitting diodes.  It is 
abbreviated LED, and pronounced as three letters: “L-E-D.”  If you build an LED circuit 
and connect power to it, the LED emits light.  If you disconnect the power from an LED 
circuit, the LED stops emitting light.   
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When an LED circuit is connected to the Activity Board, its Propeller microcontroller can 
be programmed to connect and disconnect the LED circuit’s power.  This is much easier 
than manually changing the circuit’s wiring or connecting and disconnecting the battery, 
but we will try both ways.  Here are a few more things we will do in this chapter: 
 

• Turn an LED circuit on and off at different rates  
• Turn an LED circuit on and off a certain number of times 
• Control more than one LED circuit 
• Control the color of a bicolor (two-color) LED circuit 

ACTIVITY #1: BUILDING AND TESTING THE LED CIRCUIT 
It’s important to test components individually before building them into a larger system.  
This activity focuses on building and testing two different LED circuits.  The first circuit 
makes the LED emit light.  The second circuit makes it not emit light.  You will be 
connecting the LED to battery power, but not to the microcontroller.  (In the activity 
following this one, you connect the LED the Propeller microcontroller and write 
programs to turn it on and off.)   

Introducing the Resistor 

A resistor is a component that “resists” the flow of electricity.  This flow of electricity is 
called current.  Each resistor has a value that tells how strongly it resists current flow.  
This resistance value is called the ohm, and the sign for the ohm is the Greek letter 
omega: Ω.  Later in this tutorial you will see the symbol kΩ, meaning kilo-ohm, or one 
thousand ohms.  
 
Let’s look at an example: the 470 Ω resistor shown in Figure 2-2.  This resistor has two 
wires — called leads and pronounced “leeds” — one coming out of each end.  There is a 
ceramic case between the two leads, and it contains the part that resists current flow.  
Many circuit diagrams use the jagged-line symbol shown on the left. This tells the 
circuit-builder to use a resistor, and the number indicates the required resistance value in 
ohms.  This is numbered jagged line is an example of a schematic symbol.  The drawing 
on the right is a part drawing used in this entry-level tutorial to help you identify the 
resistor needed, and where to place it when you build a circuit.  
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470 Ω
Yellow

Violet
Brown

Gold
Silver
or
Blank

 

Figure 2-2 
470 Ω Resistor Schematic 
Symbol (left) and Part Drawing 
(right) 
 

 
Resistors like the ones in this activity have color-coded stripes to indicate their resistance 
values.  There is a different color combination for each resistance value.  For example, 
the color code for the 470 Ω resistor is yellow-violet-brown.   
 
There may be a fourth stripe that indicates the resistor’s tolerance.  Tolerance is 
measured in percent, and it tells how far off the part’s true resistance might be from the 
labeled resistance.  The fourth stripe could be gold (5%), silver (10%) or no stripe (20%).  
For the activities in this book, a resistor’s tolerance does not matter, but its value does.   
 
Each color bar corresponds to a digit, and these colors/digits are listed in Table 2-1.  
Figure 2-3 shows how to use each color bar with the table to determine the value of a 
resistor.  Always hold a resistor with the silver or gold band on the right side when 
reading its value. 
 

Table 2-1 
Resistor Color 
Code Values 

Digit Color 

0 Black 
1 Brown 
2 Red 
3 Orange 
4 Yellow 
5 Green 
6 Blue 
7 Violet 
8 Gray 
9 White 

 

First Digit

Second Digit

Number of Zeros

Tolerance 
Code

 

Figure 2-3 
Resistor Color 
Codes 
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Here is an example that shows how Table 2-1 and Figure 2-3 can be used to figure out a 
resistor value by proving that yellow-violet-brown is really 470 Ω: 
 

• The first stripe is yellow, which means the leftmost digit is a 4. 
• The second stripe is violet, which means the next digit is a 7. 
• The third stripe is brown.  Since brown is 1, it means add one zero to the right of 

the first two digits. 
 

Yellow-Violet-Brown = 4-7-0 = 470 Ω. 
 
You will be using a different resistor in this activity, with a value of 220 Ω. 
 
 Use the table to figure out the color code for a 220 Ω resistor.   
 

What did you come up with? The answer is red-red-brown.  If you came up with a 
different answer, try again to make sure you’ve got the steps right.  

Introducing the LED 

A diode is a one-way current valve, and a light-emitting diode (LED) emits light when 
current passes through it.  Unlike the color codes on a resistor, the color of the LED 
usually just tells you what color it will glow when current passes through it.  The 
important markings on an LED are contained in its shape.  Since it is a one-way current 
valve it is important to connect it the right way in your circuit or it won’t work as 
intended.   
 
Figure 2-4 shows an LED’s schematic symbol and part drawing.  An LED has two leads.  
One connects to the LED’s anode, and the other connects to its cathode.  In this activity, 
you will build the LED into a circuit, paying attention to make sure the anode and 
cathode leads are connected to the circuit properly: anode to power, cathode to ground.   
 
On the part drawing, the anode lead is longer and is labeled with the plus-sign (+).  On 
the schematic symbol, the anode is the wide part of the triangle.   
 
In the part drawing, the cathode lead is the shorter, unlabeled pin, and on the schematic 
symbol, the cathode is the line across the point of the triangle. 
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+

LED  

Figure 2-4 
LED Part Drawing and Schematic 
Symbol   
 
Part Drawing (above) and schematic 
symbol (below). 
 
The LED’s part drawings in later 
pictures will have a + next to the 
anode leg. 

When building your circuit, check it against the schematic symbol and part drawing.  
Note that the LED’s leads are different lengths.  The longer lead is connected to the 
LED’s anode; connect this lead to power. The shorter lead is connected to its cathode; 
connect this lead to ground.   
 
Also, if you look closely at the LED’s plastic case, it’s mostly round, but there is a small 
flat spot right near the shorter lead that that tells you it’s the cathode.  This is useful if an 
LED’s leads have been cut to equal lengths.   

LED Test Circuit Parts 

(1) LED – Green 
(1) Resistor – 220 Ω (red-red-brown) 
(1) Jumper Wire (black) 
 

 

Identifying the parts:  In addition to the part drawings in Figure 2-2 and Figure 2-4, you can 
use the photo on the last page of the book to help identify the parts in the kit needed for this 
and all other activities.   

Building the LED Test Circuit 

You will build a circuit by plugging the LED and resistor leads into small holes called 
sockets on the prototyping area, shown in Figure 2-5.  This prototyping area has black 
sockets along the top, left and bottom.  The black sockets along the top have labels above 
them: 3.3 V and 5 V, and there are some sockets along the bottom labeled GND.  These 
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are called the power terminals, and they will be used to supply your circuits with 
electricity.   
 
The black sockets on the left have labels P0, P1, up through P15.  Use these sockets to 
connect your circuit to the Propeller microcontroller’s input/output pins (called I/O pins).   
 
The sockets labeled D/A and A/D are the analog terminals, which we will use later in the 
tutorial.   

 

Figure 2-5 
Prototyping 
Area 

 

 

Input/output pins are usually called I/O pins. After connecting your circuit to one or more of 
these I/O pins, you can program your Propeller microcontroller to monitor the circuit (input) 
or send “on” or “off “signals to the circuit (output).  You will try this in the next activity.  

 
The white board with lots of holes in it is called a solderless breadboard.  You will use 
this breadboard to connect components to each other and build circuits.  This breadboard 
has 17 rows of sockets.  In each row, there are two five-socket groups separated by a 
trench in the middle.  All the sockets in a 5-socket group are electrically connected 
together by a metal clip under the breadboard.  So, if you plug two wires into the same 
5-socket group, they will make electrical contact.  
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Two wires in the same row but on opposite sides of the center trench will not be 
connected.  Many devices are designed to be plugged in over this trench, such as the 
pushbutton we will use in Chapter 3.  There is no connection between the black sockets 
and the white breadboard.  You will make connections to the I/O pins with short wires or 
component leads when you build circuits on the breadboard. 
 

 

More about breadboards and connecting circuits: To learn about the history of 
breadboards, how modern breadboards are constructed, and how to use them, watch the 
video on our Breadboard Basics page. 
(http://learn.parallax.com/reference/breadboard-basics)   

 
The left side of Figure 2-6 shows a circuit schematic, a drawing that uses symbols and 
lines to show how electrical components need to be connected together.  On the right is a 
wiring diagram, which is a drawing of how that circuit might look when it is built on the 
prototyping area.  
 
For this circuit, the resistor and the LED’s anode are connected because each one has a 
lead plugged into the same 5-socket group.  The resistor’s other lead is plugged into 3.3V 
so the circuit can draw power.  The LED’s cathode lead is plugged into a different 5-
socket row, along with a wire whose other end is connected to GND (0 V, ground) 
completing the circuit.  (Note that in this case, the circuit is not connected to an I/O pin. 
We will get to that in the next activity, we promise!) 
 

 

Figure 2-6 
LED On, Wired Directly to Power   
 
Schematic (left) and Wiring Diagram 
(right).  

 
Follow the checklist below to build the circuit shown in Figure 2-6: 

http://learn.parallax.com/reference/breadboard-basics
http://learn.parallax.com/reference/breadboard-basics
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 Set the Activity Board’s PWR switch to 0.   
 Plug one end of the 220 Ω resistor into one of the sockets labeled 3.3 V.  It 

doesn’t matter which end. 
 Plug the resistor’s other end into the white breadboard.   
 Use Figure 2-4 to decide which LED lead is the anode and which is the cathode.   
 Plug the LED’s longer anode lead into the same 5-socket row as the resistor.  

This connects those two leads together. 
 Plug the LED’s shorter cathode lead into a different 5-socket row.  (Remember, 

5-socket rows on opposite sides of the trench are not connected to each other.) 
 Plug one end of a wire into the same 5-socket row with the LED’s cathode.   
 Plug the other end of the wire into one of the sockets labeled GND. 

 

 

Direction does matter for the LED, but not for the resistor or the wire.  If you plug the 
LED in backward, the LED will not emit light when you connect power.  The resistor just 
resists the flow of current.  There is no backwards or forwards for a resistor.  Likewise, a 
wire conducts current either way, so it doesn’t have a backwards or forwards either.   

 
 Power your Activity Board by plugging it into your computer’s USB port.   
 Double-check your circuit connections, and then set the PWR switch to 1. 
 Is your LED is emitting light? It should glow green. 

 
If the green LED does not emit light when you connect power to the board: 
 
 Try looking straight down onto the dome part of the LED’s plastic case from 

above.  Some LEDs are brightest when viewed from above.   
 If the room is bright, try turning off some of the lights, or use your hands to cast 

a shadow on the LED. 
 
If you still do not see any glow, try these steps: 
 
 Double-check that the LED’s cathode and anode are connected properly.  If not, 

turn off power, then simply remove the LED, give it a half-turn, and plug it back 
in.  Then turn the power back on.  (It will not hurt the LED if you plugged it in 
backwards, it just doesn’t emit light.) 

 Check that you are using the correct resistor, marked red-red-brown, with the 
gold band on the right.  A high-value resistor will make the light dimmer. 



Page 38 ⋅ What’s a Multicore Microcontroller 

 Double-check that two leads that need to be connected together are actually in 
the same 5-socket row, as shown in Figure 2-6. 

 If you are using a component kit that somebody used before you, the LED may 
be damaged, so try a different one. 

 If you are in a lab class, check with your instructor. 

How the LED Test Circuit Works 

The 3.3V socket is like a battery’s positive terminal.  The GND socket is like a battery’s 
negative terminal.  Figure 2-7 shows how connecting a to a battery’s terminals causes 
electrons to flow.  This flow of electrons is called electric current, which is what causes 
the diode to emit light.  The current is limited by the resistor, so it does not apply more 
“pressure” than the LED can tolerate.   
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Figure 2-7 
LED On, Circuit Electron Flow 
 
The minus signs with the circles 
around them show electrons flowing 
from the battery’s negative terminal 
to its positive terminal. 

 

 

Chemical reactions inside the battery supply the circuit with current.  The battery’s negative 
terminal contains a compound that has molecules with extra electrons (shown in Figure 2-7 
by minus-signs).  The battery’s positive terminal has a chemical compound with molecules 
that are missing electrons (shown by plus-signs).  When an electron leaves a molecule in 
the negative terminal and travels through the wire, it is called a free electron (also shown by 
minus-signs).  The extra electrons at the negative end of battery create a force, or electrical 
pressure, to go through your circuit and get to the molecules that need electrons at the 
positive end of the battery. 

 
Figure 2-8 shows how the flow of electricity through the LED circuit is described using 
schematic notation.  The electrical pressure across the circuit is called voltage.  The + and 
– signs show the voltage applied to a circuit.  The arrow shows the current flowing 
through the circuit.   
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This arrow is almost always shown pointing the opposite direction of the actual flow of 
electrons.  Benjamin Franklin is credited with not having been aware of electrons when 
he decided to represent current flow as charge passing from the positive to negative 
terminal of a circuit.  By the time physicists discovered the true direction of electric 
current, the convention was already well established. 
 

 

Figure 2-8 
LED On, Circuit Schematic Showing 
Conventional Voltage and Current 
Flow   
 
The + and – signs show voltage 
applied to the circuit, and the arrow 
shows current flow through the 
circuit. 

 

Your Turn – Modifying the LED Test Circuit 

Now you will modify the circuit by connecting the resistor to GND instead of 3.3V, and 
verify that the LED will then not emit light.   
 
 Set your board’s PWR switch to 0.   
 Unplug the resistor lead from the 3.3V socket, and plug it into a socket labeled 

GND as shown in Figure 2-9. 
 Set the PWR switch back to 1.  
 Check to make sure your LED is not emitting light.  It should not glow anymore.  
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Figure 2-9 
LED Off Circuit   
 
Schematic (left) and 
wiring diagram (right). 

 
Why does the LED not glow?  Since both ends of the circuit are connected to the same 
voltage (GND), there isn’t any electrical pressure across the circuit.  So, no current flows 
through the circuit, and the LED stays off. 
 
Now you have experienced turning the LED on and off by moving the resistor lead from 
3.3V to GND by hand. It is effective, but not at all convenient.  Imagine if you needed the 
LED to blink very quickly, over and over again!  This is a perfect job for a 
microcontroller. In the next activity you will connect the resistor’s lead to a Propeller I/O 
pin.  Then, you will write a program that tells the Propeller to internally connect that 
resistor to 3.3V or GND to turn the LED or off.     
 

ACTIVITY #2: ON/OFF CONTROL WITH THE MICROCONTROLLER 
In Activity #1, two different circuits were built and tested.  One circuit made the LED 
emit light while the other did not.  Figure 2-10 shows how the Propeller microcontroller 
can do the same thing if you connect an LED circuit to one if its I/O pins.  In this activity, 
you will connect the LED circuit to the Activity Board and program its Propeller 
Microcontroller to turn the LED on and off.  You will also experiment with programs that 
make the Propeller do this at different rates. 
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Figure 2-10 
Switching Inside 
the Propeller  
 
A Propeller can be 
programmed to 
internally connect 
the LED circuit’s 
input to 3.3V or 
GND. 

 
 
There are two big differences between changing the connection manually and having the 
Propeller microcontroller do it.  First, the Propeller doesn’t have to cut the power to the 
development board when it changes the LED circuit’s supply from 3.3V to GND.  
Second, while a human can make that change several times a minute, the Propeller can do 
it thousands or even millions of times per second!   

LED Test Circuit Parts 

Same as Activity #1. 

Connecting the LED Circuit to the Propeller Microcontroller 

The LED circuit shown in Figure 2-11 is wired almost the same as the circuit in the 
previous exercise.  The difference is that the resistor’s lead that was manually switched 
between 3.3V and GND is now connected to a Propeller I/O pin. 
 
 Set your board’s PWR switch to 0.   
 Modify your circuit from Activity #1 so that it matches Figure 2-11. 

 



Page 42 ⋅ What’s a Multicore Microcontroller 

 

Figure 2-11 
Propeller-controlled 
LED Circuit 
 
The LED circuit’s 
input is now 
connected to a 
Propeller I/O pin 
instead of 3.3V or 
GND. 

 

 

Resistors are essential.  Always remember to use a resistor.  Without it, too much current 
will flow through the circuit, and it could damage any number of parts in your circuit, 
Propeller, or Activity Board.    

Turning the LED On/Off with a Program 

The example program makes the LED blink on and off one time per second.  It 
introduces several new programming techniques at once.  After running it, you will 
experiment with different parts of the program to better understand how it works.   

Example Program: LED-OnOff 

 Click SimpleIDE’s New Project button .  
 Name the new project LED-OnOff, and click Save. 
 Enter the LED-OnOff.c code into SimpleIDE.   
 Make sure your Activity Board is connected to your computer, and set the PWR 

switch back to 1. 

 Click SimpleIDE’s Run with Terminal button . 
 Verify that the LED blinks on and off once per second. 
 Disconnect power when you are done with the program. 
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/* LED-OnOff.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  print("The LED connected to P14 is blinking!\n"); 
 
  while(1)     
  { 
    high(14);           
    pause(500); 
    low(14); 
    pause(500);     
  }   
} 

 

 

Build your programming muscles – type it in!   
Experience shows that students learn better by typing in the example programs themselves, 
to save in the SimpleIDE > My Projects folder.  However, if you just can’t get an activity to 
work, you can find the example programs in the Learn > Examples > WAMM folder.  This 
can be helpful if you need to find out if the problem is in your code, or your circuit.  Be 
careful not to save changes to the examples for the Try This or Your Turn activities.  Use 
Save Project As, rename them, and save them in your My Projects folder. 

How LED-OnOff Works 

Lines of code or comments between /* and */ are ignored by the C compiler.  This lets 
you add the program name and instructions on how to use it.  Just make sure your 
comments are between /* and */. 
 
The line #include "simpletools.h" is a directive that makes SimpleIDE add a library 
named simpletools to your project.  Remember from the Propeller Brains for Your 
Inventions article that libraries are collections of functions — useful pre-written code that 
takes care of basic tasks — a big time saver.  This library has code that makes the high, 
low, pause, and many other functions do their jobs.  Simpletools also includes other 
libraries, such as simpletext that has code to make print do its job.  You will see 
simpletools.h included in every program in this tutorial. 
 
Remember that every program starts by executing the the first line of code inside of the 
int main()curly braces: { }.  Here, that is print("The LED connected to P15 is 
blinking!").  It’s a lot like print("Hello!") but with different text between the 
quotes.   
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Next comes while(1).  The while command repeats the code inside of its own curly 
braces.  Its syntax is: 
 
while(condition){one or more statements to repeat}   
 
As long as the condition is not zero, the while loop will keep repeating.  Since the while 
loop’s condition is set at 1, the four statements between its curly braces keep repeating in 
order, as shown in Figure 2-12.  

   
   
while(1) 
  { 
    high(14); 
    pause(500); 
    low(14); 
    pause(500);     
  }   

Figure 2-12 
An infinite while Loop 
 
The statements between the while 
loop’s opening { and closing } 
braces get executed over and over 
endlessly.  

 
The first statement in the while loop is high(14).  This makes the Propeller’s P14 I/O 
pin internally connect to 3.3V, like the left side of Figure 2-10.  This makes the LED light 
up.  You will see this called “sending a high signal” throughout this tutorial.   
 
The second statement is pause(500), which makes the Propeller processor executing 
this program do nothing for 500 milliseconds.  A millisecond is one thousandth of a 
second, so this pause(500) lasts one half of a second, keeping the LED lit. 
 
The third statement is low(14).  This makes the I/O pin internally connect to GND, like 
the right side of Figure 2-10.  This turns off the LED.  We’ll be calling that “sending a 
low signal.” 
 
The fourth statement keeps LED off for a half second; it is another pause(500).  That’s 
the last statement inside the curly braces, so the program execution returns to the first 
statement inside the braces.  
 
Since there is nothing in the code that can cause the while condition to change, these 
four statements get executed over and over again until the power turns off or runs out!  
This is an example of what’s called an endless loop or infinite loop. 
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More simpletools syntax  
If you want to see the syntax for the high, low, and pause functions, click the SimpleIDE 
Help menu and select Simple Library Reference.  When you get there, click the 
simpletools.h link under the Utility header.  On the Simpletools Library page, scroll down to 
see all of the functions available, including high, low, and pause.  We will dig deeper 
into function syntax later in this tutorial.  

Your Turn – Timing and Repetitions 

A parameter is a bit of information that a function needs to do its job.  Your code needs 
to provide a value that parameter, also known as an argument, each time the function is 
called.  For example, in pause(500), the value 500 is provided for (often phrased as 
“passed to”) the pause function’s time parameter.  By changing the value passed to the 
time parameter, you can change how long the LED stays on or off.  For example, if you 
changed both instances of pause(500) to pause(250), what do you think will happen?  
  

 Use SimpleIDE’s Save Project As button to save a copy of LED-OnOff. 
 Name it LED-OnOff-YourTurn1, and save it to My Projects.  
 Update the project name at the top of the code. 
 Change both instances of pause(500) to pause(250) and re-run the program 

using SimpleIDE’s Run with Terminal button.   
 
Did you correctly anticipate what would happen?  The LED should now blink twice as 
fast as it did before, completing two on/off cycles in about 1 second. 
 
The “on” time and “off” time do not have to be the same.  For example, let’s make the 
LED blink on and off once every three seconds, with the low time twice as long as the 
high time.  To do this, use pause(1000) after high(14)so that the LED stays on for one 
second.  Then, use pause(2000) after low(14) to keep the LED off for 2 seconds: 

   
while(1) 
  { 
    high(14); 
    pause(1000); 
    low(14); 
    pause(2000);     
  }   
 

 Save another copy as LED-OnOff-YourTurn2, and then update the arguments in 
the pause function calls as shown above. 
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A fun experiment is to see how short you can make the pauses and still see that the LED 
is flashing.  When the LED is flashing very fast, it looks like it’s just staying on, a 
phenomenon called persistence of vision.  
  
To test your own persistence of vision threshold:   
 
 Set your pause calls’ time values to 100.   
 Save a copy as LED-OnOff-YourTurn3 and re-run your program and check for 

flicker. 
 Reduce the value for both time values by 5 and try again. 
 Keep reducing time values until the LED appears to be on all the time with no 

flicker.  When you cross from flicker to solid you have reached the minimum 
time your eye can detect.  After persistence of vision kicks in the LED will be 
dimmer than normal, but it should not appear to flicker. 

 
One last thing to try is to just flash the LED once.  This is a way to look at the 
functionality of the while loop.  You can de-activate a line of code by placing two 
forward slashes // at the beginning of the line.  This is also called “commenting out” the 
line, and it is a very useful tool to test the effect of changes to your code while you are 
developing programs.  (Two forward slashes can also be placed at the end of the line of 
code, followed by notes about what that line does.  These comments will be ignored by 
the code compiler, but are very useful to other humans who might want to read and 
understand your code.) 
 
To de-activate the while loop, you will need to comment out three lines of code that 
make up its syntax: the while(1) itself, and the lines with its opening and closing curly 
braces { and }.  If you have been playing the persistence of vision game, you will also 
need to make your pause times longer again so you don’t miss the flash.    
 

// while(1) 
  //  { 
    high(14); 
    pause(1000); 
    low(14); 
    pause(2000);     
  // }   
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 Modify, save a copy as LED-OnOff-YourTurn4, and re-run the program using 
the code snippet above.   

 Explain what happened. Why did the LED only flash once? 
 

ACTIVITY #3: COUNTING AND REPEATING 
In the previous activity, the LED circuit either flashed on and off endlessly, or it flashed 
once and then stopped.  What if you want the LED to flash on and off exactly ten times?  
Computers (including the Propeller) are great at keeping running totals of how many 
times something happens.  Computers can also be programmed to make decisions based 
on a variety of conditions.  In this activity, you will program the Propeller to stop flashing 
the LED on and off after ten repetitions. 

Counting Parts and Test Circuit 

Continue using the example circuit shown in Figure 2-11 on page 42.   

Counting with a While Loop 

LED-OnOffTenTimes shows how just a few updates to the previous activity’s 
LED-OnOff program can use counting and comparing in the while loop’s condition to 
limit the light to ten blinks.  Counting takes two steps.  First, declare a variable to count 
the number of times the LED blinks.  This example uses int x = 1 to declare a variable 
named x and set it to 1.  Then, at the very end of the while loop, insert the line x = x + 
1.  Now, every time through the while loop, the value of x will increase by 1.  Inside the 
while loop’s condition, change 1 to x <= 10.  That means the while loop will only 
keep repeating while x is less than or equal to 10.  To help us see what the loop is doing, 
a print statement to display the value of x was added at the start of the while loop.   

Example Program: LED-OnOffTenTimes 

 Use SimpleIDE’s Open Project button to open LED-OnOff . 
 Use SimpleIDE’s Save Project As button and name a copy 

LED-OnOffTenTimes.  Don’t forget to update the project name at the top of the 
code! 

 Delete the line print("The LED connected to P14 is blinking!\n"). 
 Make the additions and changes shown below. 
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/* LED-OnOffTenTimes.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  int x = 1;                                  // <- Add 
  
  while(x <= 10)                              // <- Change 
  { 
    print("x = %d\n", x);                     // <- Add 
    high(14); 
    pause(500); 
    low(14); 
    pause(500);     
    x = x + 1;                                // <- Add 
  }   
} 

 
 Use the Run with Terminal button, and verify that the LED stops blinking after 

ten reps.  The blinks start quickly so begin watching right after you click on Run 
with Terminal. 

 Use Run with Terminal a second time and watch the SimpleIDE Terminal to 
verify that the value of x counts from 1 to 10.  

Easier Counting with a For Loop 

There’s a special kind of loop called a for loop that makes this job easier.  Instead of 
using three lines (to declare a variable, use while with a condition, and add to variable in 
the loop) you can do it all with just one line.  Try it! 

Example Program: LED-OnOffTenAgain 

 Use SimpleIDE’s Save Project As button to save LED-OnOffTenTimes as LED-
OnOffTenAgain.  

 Delete these two lines: int x = 1;  x = x + 1;  
 Change while(x <= 10) to for(int x = 1; x <= 10; x++) 
 Use the Run with Terminal button, and verify that the value of x counts from 1 

to 10 as the LED blinks 10 times.  
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/* LED-OnOffTenAgain.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  for(int x = 1; x <= 10; x++)                // <- Change  
  { 
    print("x = %d\n", x); 
    high(14); 
    pause(500); 
    low(14); 
    pause(500);     
  }   
} 

How LED-OnOffTenAgain Works 

This for loop has three parameters:  
 

1. A variable declaration and starting value. Here, the argument is int x = 1,  
2. A condition. Here, the argument is x <= 10; 
3. A variable operation. Here, the argument is x++ 

 
The third argument is something you might not have seen yet, x++.  The operator ++ 
means “add one to the variable” and its position after the x means “do the addition after it 
gets used in this instruction.”  It’s called the post-increment operator, and it is a shortcut 
to writing x = x + 1. 
 
 Try replacing x++ with x = x + 1.  
 Re-run the program and verify that it still works the same. 

 
The for loop depends on a variable to track how many times the LED has blinked on and 
off.  Recall from the Variables and Math lesson that a variable is a name you give to a 
section of microcontroller memory so your program “remembers” values and works with 
them.  We used the name x, but you could also have picked something more self-
explanatory, like blinkReps.   
 

http://learn.parallax.com/propeller-c-start-simple/variables-and-math
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Variable Name Rules:   
1. The name cannot be a word that is already used by the C language, like for, 

while, and main.  These words are called reserved words.  
2. The name cannot contain a space.   
3. Even though the name can contain letters, numbers, or underscores, it must begin 

with either a letter or an underscore. 
4. Give each variable a unique name.  (A good practice, but not technically necessary 

in certain circumstances — we will explore variable scope in Chapter 5.)   

 
The int in int x = 1; tells the C compiler that the for loop will use the letter x as a 
variable that can store an int variable’s worth of information. 
   

 

What’s an int?  An int is enough memory to store a number in the approximately negative 
2 billion to positive 2 billion range.  Here are some examples of C language variable types 
supported by the Propeller.  

Table 2-2: Variable Types  
Variable type Range of Values 

char -128 to 127 
unsigned char 0 to 255 

short -32768 to 32767 
unsigned short 0 to 65535 

int -2,147,483,648 to 2,147,483,647 

unsigned int 0 to 4,294,967,296 

float 
For numbers with decimal point that can 
range from very large to very small, with 

six digits of precision 

double Like float, but with ten digits of precision 
 

Your Turn – Other Ways to Count 

 In the LED-OnOffTenAgain, replace the statement:  
 
for(int x = 1; x <= 10; x++) 
     
…with this: 
         
for(int x = 1; x <= 20; x++) 
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 Save a copy of the program and name it LED-OnOffTenAgain-YourTurn1. Re-
run the program. What was different, and was it expected? 

 Save another copy as LED-OnOffTenAgain-YourTurn2.  Try a second 
modification to the for statement.  This time, change it to: 
 
for(int x = 1; x <= 20; x = x + 4)  
 

How many times did the LED flash?  What values displayed in the Debug Terminal?   
 
 Save a third copy as LED-OnOffTenAgain-YourTurn3.  This time, replace x = 

x + 4 with x += 4. 
 
Did you get the results you expected?  
 

ACTIVITY #4: BUILDING AND TESTING A SECOND LED CIRCUIT 
Indicator LEDs often tell a machine’s user many things.  Many devices need two, three, 
or more LEDs to tell the user if the machine is ready or not, if there is a malfunction, if 
it’s done with a task, and so on.   
 
In this activity, you will repeat the LED circuit test in Activity #1 for a second LED 
circuit.  Then, you will adjust the example program from Activity #2 to make sure the 
LED circuit is properly connected to the Propeller.  After that, you will modify the 
example program from Activity #2 to make the LEDs operate in tandem. 

Extra Parts Required 

In addition to the parts you used in Activities 1 and 2, you will need these parts: 
 
(1) LED – yellow 
(1) Resistor – 220 Ω (red-red-brown) 
(1) Jumper wire (black) 

Building and Testing the Second LED Circuit 

In Activity #1, you manually tested the first LED circuit to make sure it worked before 
connecting it to the Propeller.  Before connecting the second LED circuit to the Propeller, 
it’s important to test it too. 
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 Set your board’s PWR switch to 0. 
 Construct the second circuit as shown in Figure 2-13. 
 Make sure the leads of the different resistors are not touching each other. 
 Set your board’s PWR switch to 1. 

 
Did the LED circuit you just added turn on?  If yes, then continue.  If no, Activity #1 has 
some troubleshooting suggestions that you can repeat for this circuit. 
 

 

Figure 2-13 
Manually Test the 
Second LED 

 
 Turn off power, and then connect the second LED circuit’s resistor lead to P15 

as shown in Figure 2-14. 
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Figure 2-14 
Connect the Second 
LED to I/O Pin 15 

Using a Program to Test the Second LED Circuit 

In Activity #2, you used an example program with high, low, and pause statements to 
control the P14 LED circuit.  These statements can be modified to control the P15 LED 
circuit.  It is simply a matter of passing 15 instead of 14 to the high and low functions’ 
pin parameters.  

Example Program: LED-TestSecond  

 Use SimpleIDE’s Open Project button to open LED-OnOff.  
 Use SimpleIDE’s Save Project As button to save it as LED-TestSecond. 
 Change the values passed to the high and low pin parameters from 14 to 15.  
 Click SimpleIDE’s Run with Terminal button and verify that the LED in the 

circuit connected to P15 blinks. 
 
/* LED-TestSecond.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  print("The LED connected to P15 is blinking!\n"); 
 
  while(1) 
  { 
    high(15);                                 // <- Change 
    pause(500); 
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    low(15);                                  // <- Change 
    pause(500);     
  }   
} 

Controlling Both LEDs 

Yes, you can flash both LEDs at once!  One way you can do this is to use two high 
statements before the first pause statement, one for P14 and one for P15.  You will also 
need two low statements to turn both LEDs off.  It’s true that both LEDs will not turn on 
and off at exactly the same moment because one is turned on or off after the other, but the 
difference will be infinitesimal compared to how long it would take for the human eye to 
actually detect it. 

Example Program: LED-FlashBoth  

 If it’s not already open, open LED-TestSecond, and then use Save Project As to 
save it as LED-FlashBoth.  

 Add the high(14) and low(14) lines as shown below. 
 Click the Run with Terminal button. 
 Verify that both LEDs appear to flash on and off at the same time. 

 
/* LED-FlashBoth.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  print("The LEDs connected to P14 and P15 are blinking!\n"); 
 
  while(1) 
  { 
    high(15); 
    high(14);                                 // <- add 
    pause(500); 
    low(15); 
    low(14);                                  // <- add 
    pause(500);     
  }   
} 
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Your Turn – Alternate LEDs 

What if you want one LED to be on while the other LED is off, and vice versa?  Think 
about how you would need to change your code. If you thought of swapping the high 
and low statements that control one of the I/O pins, you thought right.  
  
 Modify LED-FlashBoth so that the statements in the while loop look like this: 

 
    high(15); 
    low(14);                                   // <- change 
    pause(500); 
    low(15); 
    high(14);                                  // <- change 
    pause(500); 
 

 Save a copy and name it LED-FlashBoth-YourTurn.  Run the modified code and 
verify that the lights are on alternately. 

 

ACTIVITY #5: CONTROL A BICOLOR LED WITH CURRENT DIRECTION 
The device shown in Figure 2-15 is a security system’s card reader for electronic key 
cards.  When key card with the right code is held near the device, the LED changes color 
from red to green, and a door unlocks.  This kind of LED is called a bicolor LED.  This 
activity answers two questions:  
 

1. How does the LED change color? 
2. How can you control a bicolor LED with the Propeller microcontroller? 
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Figure 2-15 
Bicolor LED in a Security 
Device   
 
When the door is locked, 
this bicolor LED glows 
red.  When the door is 
unlocked by an electronic 
key with the right code, 
the LED turns green. 

 

Introducing the Bicolor LED 

The bicolor LED’s schematic symbol and part drawing are shown in Figure 2-16.  This 
LED has a rounded dome and a cloudy white color.  (You may also have a part with a 
clear case and flat top – that’s a phototransistor, and we will use it later.) 
 

 

Figure 2-16 
Bicolor LED 
 
Schematic symbol (left) 
and part drawing (right). 

The bicolor LED is really just two LEDs in one package.  Figure 2-17 shows how you 
can apply voltage in one direction and the LED will glow green.  By disconnecting the 
LED and plugging it back in reversed, the LED will then glow red.  As with the other 
LEDs, if you connect both terminals of the circuit to GND, the LED will not emit light.  
Since current could be going either direction in your project, the leads are named 1 and 2 
rather than + and -.   
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Figure 2-17 
Bicolor LED and 
Applied Voltage 
 
Green (left), red 
(center) and no 
light (right) 

Bicolor LED Circuit Parts 

(1) LED – bicolor (plastic case is a cloudy white color).  
(1) Resistor – 220 Ω (red-red-brown) 
(1) Jumper wire (black) 

Building and Testing the Bicolor LED Circuit 

Figure 2-18 shows the manual test for the bicolor LED. 
 
 Set your board’s PWR switch to 0, and remove any parts from the last activity. 
 Build the circuit shown on the left side of Figure 2-18. 
 Set the PWR switch to 1, and verify that the bicolor LED is emitting green light. 
 Set PWR to 0 again. 
 Modify your circuit by turning the LED around so that its leads swap position, as 

shown in the right side of Figure 2-18.  
 Set PWR to 1, verify that the bicolor LED is now emitting red light. 
 Set PWR to 0 again. 
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Figure 2-18 
Manual Bicolor LED 
Test 
 
Bicolor LED green (left) 
and red (right). 
 
Your LED might be 
manufactured with the 
colors reversed. 

 
 

 

What if my bicolor LED’s colors are reversed?  If your bicolor LED glows red when it’s 
connected in the circuit that should make it glow green and vice-versa, your LED’s colors are 
reversed inside the case.  Just plug pin 1 in where the diagrams show pin 2, and pin 2 where 
the diagrams show pin 1.   

 
Controlling a bicolor LED with a microcontroller requires two I/O pins.  After you have 
manually verified that the bicolor LED works using the manual test, you can connect the 
circuit to the Propeller as shown in Figure 2-19. 
 
 Connect the bicolor LED circuit to the Propeller microcontroller as shown in 

Figure 2-19. 
 Double-check that the bare metal leads of the components are not accidentally 

touching above the breadboard. 
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Figure 2-19 
Bicolor LED Connected 
to Propeller 
 
Schematic (left) and 
wiring diagram (right). 

 

Propeller Bicolor LED Control 

Figure 2-20 shows how you can use P15 and P14 to control the current flow in the 
bicolor LED circuit.  The upper schematic shows how current flows through the green 
LED when P15 is internally connected to 3.3V and P14 is internally connected to GND.  
The green LED will let current flow through it when electrical pressure is applied as 
shown, but the red LED acts like a closed valve and does not let current through it.  
Therefore, only the bicolor LED glows green.   
 
The lower schematic shows what happens when P15 is instead set to GND and P14 is set 
to 3.3V.  The electrical pressure is now reversed.  The green LED shuts off and does not 
allow current through.  Meanwhile, the red LED turns on as current passes through the 
circuit in the opposite direction.   
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Figure 2-20 
Propeller Bicolor LED 
Test 
 
Current through green 
LED (above) and red 
LED (below). 

 
Figure 2-20 also shows the key to programming the Propeller to make the bicolor LED 
glow two different colors.  The upper schematic shows how to make the bicolor LED 
green using high(15) and low(14).  The lower schematic shows how to make the 
bicolor LED glow red by using low(15) and high(14).  To turn the LED off, connect 
both leads to GND using low(15) and low(14).   
 

 

The bicolor LED will also turn off if you send high signals to both P14 and P15.  Why?  
Because the electrical pressure (voltage) is the same at P14 and P15 if you set both I/O pins 
high (3.3 V).  So, the effect is the same as setting both P14 and P15 low (0 V = GND).  

Example Program: LED-TestBicolor  

 Set the PWR switch to 1. 
 Use SimpleIDE’s New Project button to create a project named LED-

TestBicolor. 
 Enter the code below and test with the Run with Terminal button.   
 Verify that the LED cycles through the red, green, and off states. 

 
/* LED-TestBicolor.c */ 
 
#include "simpletools.h" 

 

 



Lights On – Lights Off · Page 61 

 
int main() 
{ 
 
  print("Program running! \n"); 
 
  while(1) 
  { 
    print("Green \n"); 
    high(15); 
    low(14); 
    pause(1500); 
 
    print("Red \n"); 
    low(15); 
    high(14); 
    pause(1500); 
 
    print("Off \n"); 
    low(15); 
    low(14); 
    pause(1500); 
  } 
} 

Your Turn – Lights Display 

In Activity #3, a variable named x was used to control how many times an LED blinked.  
What happens if you use the value x to control the pause function’s time parameter while 
repeatedly changing the color of the bicolor LED?   
 
 Use the Save as Project button to create a copy of your code named LED-

TestBicolor-YourTurn.   
 Replace the code inside the while(1) loop with this:  

 
for(int x = 1; x <= 50; x++) 
  { 
    high(15); 
    low(14); 
    pause(x); 
   
    low(15); 
    high(14); 
    pause(x); 
  } 
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When you are done, your code should look like this: 
 
#include "simpletools.h" 
 
int main() 
{ 
 
  print("Program running! \n"); 
 
  while(1) 
  { 
    for(int x = 1; x <= 50; x++) 
    { 
      high(15); 
      low(14); 
      pause(x); 
     
      low(15); 
      high(14); 
      pause(x); 
    } 
  } 
} 
 

At the beginning of each pass through the for loop, the pause value (time parameter) is 
only one millisecond.  Each time through the for loop, the pause gets longer by one 
millisecond at a time until it gets to 50 milliseconds.  The while(1) causes the for loop 
to go through this process over and over again. 
  
 Run the modified program and observe the effect.  Did it do what you expected? 

 

SUMMARY 
This chapter introduced lots of new concepts, electronic components, and programming 
techniques: 
 

• How common devices use indicator lights. 
• What a resistor is, what its schematic symbol looks like, and how to decode its 

colored markings to determine its resistance value. 
• What an LED (light-emitting diode) is, and what its schematic symbol looks like. 
• What a bicolor LED is, and what its schematic symbol looks like. 
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• What a solderless breadboard is, and how to use it to make electrical connections 
between components for building a circuit. 

• How electrons move through a circuit to turn on an LED. 
• How to build an LED circuit and turn it on and off by manually connecting it to 

power. 
• How current direction/voltage polarity determine which color a bicolor LED will 

glow. 
• How to build an LED circuit connected to a microcontroller. 
• How to write programs to control regular and bidirectional LED circuits. 
• How to use the high, low, and pause functions from the simpletools library. 
• What a parameter is, and how to pass values to a function’s parameter. 
• How to use a while instruction to make a block of code repeat endlessly (an 

infinite loop), or only while an expression evaluates as true using a variable (a 
conditional loop). 

• How to use a for instruction to make a block of code repeat a certain number of 
times (a counted loop) by using a variable. 

• How to use the post-increment operator, as in x++. 
• How to use // at the front of a line of code to deactivate it, or at the end of a line 

of code to add human-readable comments. 
• Several types of C variable names and value ranges.  
• Basic rules for naming variables. 

Questions 

1. What is the name of this Greek letter: Ω,  and what measurement does Ω refer 
to? 

2. Which resistor would allow more current through the circuit, a 470 Ω resistor or 
a 1000 Ω resistor? 

3. How do you connect two wires using a breadboard?  Can you use a breadboard 
to connect four wires together? 

4. What do you always have to do before modifying a circuit that you built on a 
breadboard? 

5. How long would pause(10000) last? 
6. How would you cause a Propeller’s processor to do nothing for an entire 

minute? 
7. What are three different C variable types? 
8. Can a char variable hold the value 500? 
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9. What will the command high(7) do? 

Exercises 

1. Draw the schematic of an LED circuit like the one you worked with in Activity 
#2, but connect the circuit to P13 instead of P14. Explain how you would modify 
LED-OnOff on page 42 so that it will make your LED circuit flash on and off 
four times per second. 

2. Explain how to modify LED-OnOffTenTimes so that it makes the LED circuit 
flash on and off 5000 times before it stops.   

Project 

1. Make a 10-second countdown using one yellow LED and one bicolor LED.  
Make the bicolor LED start out red for 3 seconds.  After 3 seconds, change the 
bicolor LED to green.  When the bicolor LED changes to green, flash the yellow 
LED on and off once every second for ten seconds.  When the yellow LED is 
done flashing, the bicolor LED should switch back to red and stay that way for 
three seconds before turning off. 

Solutions 

Q1. Its name is omega, and it refers to the ohm, which measures how strongly 
something resists current flow.  

Q2. A 470 Ω resistor: higher values resist more strongly than lower values, 
therefore lower values allow more current to flow.   

Q3. To connect 2 wires, plug the 2 wires into the same 5-socket group.  You can 
connect 4 wires by plugging all 4 wires into the same 5-socket group.  

Q4. Disconnect the power by setting your board’s PWR switch to 0.  
Q5. 10 seconds. 
Q6. pause(60000)  
Q7. Any three of these would be correct: char, unsigned char, short, 

unsigned short, int, unsigned int, float, unsigned float.  
Q8. No.  A char variable only holds from -128 to 127, so the value 500 is too large.  

A short or int would work.   
Q9. high(7) will cause the Propeller to internally connect I/O pin P7 to 3.3V. 

 
E1. The pause(time) must be reduced to 500 ms / 4 = 125 ms, so pause(125).  

Propeller C will also accept pause(500/4).  To use I/O pin P13, high(14) 
and low(14) have been replaced with high(13) and low(13). 
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while(1) 
{ 
  high(13); 
  pause(125); 
  low(13); 
  pause(125); 
} 

 
E2. Change for(int x = 1; x <= 10; x++) to for(int x = 1; x <= 5000; 

x++). 
 
P1. The bicolor LED schematic, on the left, is unchanged from Figure 2-19 on page 

59.  The yellow LED schematic is based on Figure 2-11 on page 42.  For this 
project P14 was changed to P13, and a yellow LED was used instead of green. 

  

 

 

 
/* LED-P1-Solution.c 
  10 Second Countdown with Red, Yellow, Green LED 
  Red/Green:  Bicolor LED on P15, P14. Yellow: P13 */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  print("Program Running!"); 
 
  low(15);                              // Bicolor LED Red 
  high(14); 
  pause(3000);                          // ...for three seconds 
   
  high(15);                             // Bicolor LED Green 
  low(14); 
 
  for(int x = 1; x <= 10; x++)          // ...while yellow flashes 
  { 
    high(13);                           // Yellow LED on 
    pause(500); 
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    low(13);                            // Yellow LED off 
    pause(500); 
  } 
 
  low(15);                              // Bi Color LED Red 
  high(14); 
  pause(3000);                          // Bi Color LED Red 
  low(14);                              // Bi Color LED off 
} 
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Chapter 3: Digital Input – Pushbuttons 

FOUND ON CALCULATORS, HANDHELD GAMES, AND APPLICANCES 
How many devices with pushbuttons do you use on a daily basis?  Think about a 
computer, mouse, calculator, microwave oven, TV remote, handheld game, and cell 
phone.  In each device, there is a microcontroller scanning the pushbuttons and waiting 
for a circuit to change when you push a button.  When the microcontroller detects a 
change, it carries out whatever action you expect the pushbutton to trigger.  By the end of 
this chapter, you will have experience with designing pushbutton circuits and 
programming the Propeller to monitor them and take action when changes occur. 

RECEIVING VS. SENDING HIGH AND LOW SIGNALS 
In Chapter 2, you programmed the Propeller make its I/O pins send, or output, high and 
low signals. The LEDs turned on and off (or changed color) to display the state of these 
signals.  In this chapter, you will use a Propeller I/O pin as an input.  As an input, an I/O 
pin “listens” for high/low signals instead of sending them.  You will send these signals to 
the Propeller with a pushbutton circuit, and you will program the Propeller to recognize 
whether the pushbutton is pressed or not pressed. 
 

 

Other terms that mean send, high/low, and receive: Sending high/low signals is 
described in different ways.  You might see sending referred to as transmitting, controlling, 
or switching.  Instead of high/low, you might see it referred to as binary(1/0), TTL, CMOS, or 
Boolean signals.  Another term for receiving is sensing.  

 

ACTIVITY #1: TESTING A PUSHBUTTON WITH AN LED CIRCUIT 
If you can use a pushbutton to send a high or low signal to the Propeller, can you also 
control an LED with a pushbutton?  The answer is yes, and you will use it to test a 
pushbutton in this activity. 

Introducing the Pushbutton 

Figure 3-1 shows the schematic symbol and the part drawing of the pushbutton included 
in your kit.  It has four pins, connected in two pairs: 1,4 and 2,3.  
 
This means that connecting a wire to pin 1 of the pushbutton is the same as connecting it 
to pin 4.  The same rule applies with pins 2 and 3.  The reason the pushbutton doesn’t just 
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have two pins is because it needs stability and strength so it doesn’t bend or break when 
you push on it.  
 

1, 4

2, 3 2

1 4

3

 

Figure 3-1 
Normally Open Pushbutton 
 
Schematic symbol (left) and 
part drawing (right) 

 
This is a normally open pushbutton, and it looks like the left side of Figure 3-2 when it’s 
not pressed.  Notice there is a gap between the 1,4 and 2,3 terminals.  This gap makes it 
so that the 1,4 terminal cannot conduct current to the 2,3 terminal.  This is called an open 
circuit.  So, this pushbutton’s normal not-pressed state forms an open circuit, which gives 
us the name “normally open.” When the button is pressed, the gap between the 1,4 and 
2,3 terminals is bridged by conductive metal, as shown in Figure 3-3.  This forms a 
closed circuit, and current can then flow through the pushbutton. 
 

1, 4

2, 3

1, 4

2, 3

 

Figure 3-2 
Normally-Open Pushbutton 
 
Not pressed (left) and pressed (right) 

 
 

 

Figure 3-3 
Pressing the 
button bridges 
the 1,4 and 2,3 
terminals with 
conductive 
metal 
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Test Parts for the Pushbutton 

(1) LED – red, yellow, or green, your choice! 
(1) Resistor – 220 Ω (red-red-brown) 
(1) Pushbutton – normally open 
(2) Jumper wires 

Building the Pushbutton Test Circuit 

Figure 3-4 shows a circuit you can build to manually test the pushbutton. 
 

 

Always disconnect power from your board by setting the PWR switch to 0 before making 
any changes to your test circuit.  Unplugging the USB cable (which can supply power) and 
any external power supply will also disconnect power. 
Always reconnect power to your board before downloading a program to the Propeller, by 
setting the PWR switch to 1.  Of course, you must have your USB programming cable 
connected as well, and you should also reconnect any external supply you may have 
unplugged.  
IMPORTANT: From here onward, the instructions will no longer say “Disconnect power…” 
and “Reconnect power” between each circuit modification.  It is up to you to remember! 
WARNING SIGNS: When doing any circuit activities, if the LEDs below the PWR switch on 
the Activity Board flicker, go dim, or go out completely when you reconnect power, 
DISCONNECT POWER IMMEDIATELY and re-check your circuit.  It may mean that there 
is a short circuit from 3.3 V or 5 V to GND.  Fix any circuit errors before proceeding. 

 
 Build the circuit shown in Figure 3-4. 

 

    

Figure 3-4 
Circuit for pushbutton to 
turn on an LED 
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Testing the Pushbutton 

When the pushbutton is not pressed, the LED will be off.  If the wiring is correct, when 
the pushbutton is pressed, the LED should be on (emitting light).   
 
 Press the pushbutton down — you should hear or feel a little click. 
 Verify that when you hold down the pushbutton, the LED emits light, and when 

you let go of the pushbutton, the LED turns off.  

How the Pushbutton Circuit Works  

The left side of Figure 3-5 shows what happens when the pushbutton is not pressed.  The 
LED circuit is not connected to 3.3 V.  It is an open circuit that cannot conduct current.  
By pressing the pushbutton, as shown on the right side of the figure, you close the 
connection between the terminals with conductive metal. This makes a pathway for 
electrons to flow through the circuit, and so the LED emits light as a result.   
 

     

Figure 3-5 
Pushbutton Not Pressed, 
and Pressed 
 
Pushbutton not pressed: 
circuit open and light off 
(left) 
 
Pushbutton pressed: 
circuit closed and light on 
(right) 
 

Your Turn – Turn the LED off with a Pushbutton 

Figure 3-6 shows a different pushbutton and LED circuit.  In this case, when the 
pushbutton is not pressed, the LED stays on; when the button is pressed, the LED turns 
off.  When the pushbutton is not pressed, current flows through the LED and it emits 
light.  But when the pushbutton is pressed, conductive metal connects terminals 1,4 and 
2,3, and electricity will take the path of least resistance through the pushbutton instead of 
through the LED.   
 
 Build the circuit shown in Figure 3-6.   
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 Make sure the LED’s longer anode lead is in the same row with the wire coming 
from 3.3V, as marked with a (+) sign in the wiring diagram.  The LED’s shorter 
cathode lead (by the flat spot on the case) is in the same row with the resistor 
going to GND. 

 Now, turn on the PWR switch. The LED should turn on. 
 Press and hold down the pushbutton.  This should now make the LED turn off. 

 

    

Figure 3-6 
Circuit for Pushbutton to 
Turn Off an LED 
 

 

 

Can you really do that with the LED?  Up until now, a resistor has always connected the 
LED’s anode to either 3.3V or an I/O pin.  But now, the anode is connected directly to 3.3V, 
and the resistor is connecting the LED’s cathode to GND.  People often ask if this breaks 
any circuit rules. 
The answer is no!  The electrical pressure supplied by 3.3V and GND is 3.3 volts.  You 
might see the term voltage drop describing how much voltage to expect across each 
component’s leads.  The green LED will always have a voltage drop in the 2.1 V range, and 
the resistor will use the remaining 1.2 V, regardless of their order.   

 

ACTIVITY #2: READING A PUSHBUTTON WITH THE PROPELLER 
In this activity, you will connect a pushbutton circuit to a Propeller microcontroller I/O 
pin, and display whether or not the pushbutton is pressed.  You will do this by writing a C 
program that checks the state of the pushbutton and prints it in the SimpleIDE Terminal. 
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Parts for a Pushbutton Circuit 

(1) Pushbutton – normally open 
(1) Resistor – 220 Ω (red-red-brown) 
(1) Resistor – 10 kΩ (brown-black-orange) 
(1) Jumper wire (red) 

Building a Pushbutton Circuit for the Propeller Microcontroller 

Figure 3-7 shows a pushbutton circuit that is connected to Propeller I/O pin P3. 
 
 Build the circuit shown in Figure 3-7. 

 

    

Figure 3-7 
Pushbutton 
Circuit 
Connected to I/O 
Pin P3 
 
On the wiring 
diagram, the 
220 Ω resistor 
(red-red-brown) 
is connecting the 
pushbutton’s 
lower terminal to 
P3.   
 

 
The upper half of Figure 3-8 shows how the Propeller responds when the pushbutton is 
pressed.  The Propeller senses that 3.3 V is connected to P3, and responds by placing the 
number 1 in a part of its memory that stores information about its I/O pins.   
 
When the pushbutton is not pressed, the lower half of Figure 3-8 shows that the Propeller 
cannot sense 3.3 V, but it can sense GND through the 10 kΩ and 220 Ω resistors.  This 
causes it to store the number 0 in that same memory location.  We can use the simpletools 
library’s input function to check that memory location, and take a different action 
depending on if it’s storing a 0 or a 1. 
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Figure 3-8 
Propeller Reading a 
Pushbutton 
 
When the pushbutton is 
pressed, the Propeller 
reads a 1 (above).  When 
the pushbutton is not 
pressed, the Propeller 
reads a 0 (below). 

 

 

Binary and Circuits: The base-2 number system uses only the digits 1 and 0 to make 
numbers, and these binary values can be transmitted from one device to another.  The 
Propeller interprets 3.3 V as binary 1 and GND (0 V) as binary 0.  Likewise, when the 
Propeller sets an I/O pin to 3.3 V using high, it sends a binary 1.  When it sets an I/O pin to 
GND using low, it sends a binary 0.  This is a very common way of communicating binary 
numbers that is used by many computer chips and other devices.    

Example Program: Button-ReadState 

This next program uses the input function to check the pushbutton every ¼ second, and 
then display the function’s return value, which will be a 0 or 1.  Figure 3-9 shows the 
SimpleIDE Terminal while the program is running.  When the pushbutton is pressed, 
SimpleIDE Terminal displays the number 1, and when the pushbutton is not pressed, it 
displays the number 0.    
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Figure 3-9 
SimpleIDE Terminal 
Displaying 
Pushbutton States 
 
The SimpleIDE 
Terminal displays 1 
when the pushbutton 
is pressed and 0 
when it is not 
pressed. 

 
 Click the New Project button and name the project Button-ReadState. 
 Enter the Button-ReadState.c code into SimpleIDE. 
 Click the Run with Terminal button. 
 Verify that the SimpleIDE Terminal displays the value 0 when the pushbutton is 

not pressed, and the value 1 when pressed. 
 
/* Button-ReadState.c */ 
 
#include "simpletools.h" 
 
int main() 
{  
  int button;  
   
  while(1) 
  { 
    button = input(3); 
    print("button = %d\n", button); 
    pause(250); 
  } 
}       

How Button-ReadState Works 

The program contains an infinite while(1) loop.  Just above the loop, int button; 
declares a variable named button.  The first statement in the loop, button = 
input(3), translates to “check I/O pin P3, and assign its input state to the  variable 
named button.”  The input(3) function call checks the state of P3, and will return a 
value of 1 if a button is pressed, or 0 if it is not pressed.  So, a 0 or a 1 are the two 
possible values that could be assigned to button. 
 



Digital Input  – Pushbuttons · Page 75 

Next, print("button = %d\n", button) displays the string between the quotation 
marks in the SimpleIDE terminal.  The text “button = ”  is displayed just as appears in the 
string.  The %d flag means “right here, display the value that follows this string as a 
decimal integer value.”  In this case, the button variable comes after the string, so its 
value, which will either be 0 or 1, is printed next.  Finally, the \n formatter tells the 
print statement to put the cursor at the beginning of the next line. 
 
The last statement is pause(250), which makes the program wait for ¼ of a second 
before allowing the while(1) loop to repeat.  This makes the terminal display more 
readable.  Without it, the values would just race by. 

Your Turn – A Pushbutton with a Pull-up Resistor 

The circuit you just finished working with has a resistor connected to GND, called a pull-
down resistor because it pulls the voltage at P3 down to GND (0 volts) when the button is 
not pressed.  Figure 3-10 shows a pushbutton circuit that uses a pull-up resistor.  

    

Figure 3-10 
Modified Pushbutton 
Circuit 

This resistor pulls the voltage up to 3.3V (3.3 volts) when the button is not pressed.  
When the button is pressed, P3 detects GND.  So, the rules are now reversed.  When the 
button is not pressed, input(3) returns the number 1, and when the button is pressed, 
input(3) returns the number 0. 
 

 

The 220 Ω resistor is used in the pushbutton example circuits to protect the Propeller I/O 
pin.  Although it’s a good practice for prototyping, in many products this resistor is replaced 
with a wire (since wires cost less than resistors).       

 



Page 76 ⋅ What’s a Multicore Microcontroller 

 Modify your circuit as shown in Figure 3-10. 
 Re-run Button-ReadState with the Run with Terminal button. 
 Use the SimpleIDE Terminal to verify that input(3) returns 1 when the button 

is not pressed and 0 when the button is pressed. 
 

 

Active-low vs. Active-high: The pushbutton circuit in Figure 3-10 is called active-low 
because it sends the Propeller a low signal (GND) when the button is active (pressed).  The 
pushbutton circuit back in Figure 3-7 is called active-high because it sends a high signal 
(3.3 V) when the button is active (pressed).  The “active” direction will always be opposite 
the “pull” direction. 

 

ACTIVITY #3: PUSHBUTTON CONTROL OF AN LED CIRCUIT 
Many devices have pushbuttons to press for changing settings on a device, and LEDs to 
show you the status of the settings.  The example Figure 3-11 shows a zoomed-in view of 
a pushbutton and LED used to adjust the settings on a computer monitor.   
 

 

Figure 3-11 
Button and LED on a 
Computer Monitor 

The Propeller microcontroller can be programmed to make decisions based on what it 
senses.  Like Activity #1, this next activity will use a pushbutton to control an LED.  
However, instead of wiring the pushbutton to directly change the flow of current to the 
LED, we will connect both the LED and the pushbutton to Propeller I/O pins.  Then, your 
C program can use the input state of the pushbutton’s I/O pin in a decision to set the 
output state of the LED’s I/O pin.  Using a microcontroller this way opens up many more 
options than the simple button/LED interaction you’ve seen so far.  The next example 
program will rapidly flash the LED while the pushbutton is held down — something the 
Activity #1 circuits could not do. 

Pushbutton and LED Circuit Parts 

(1) Pushbutton – normally open 
(1) Resistor – 10 kΩ (brown-black-orange) 
(1) LED – red, yellow, or green, your choice! 
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(2) Resistor – 220 Ω (red-red-brown) 
(2) Jumper wires   

Building the Pushbutton and LED Circuits 

Figure 3-12 shows the active-high pushbutton circuit with pull-down resistor used in the 
beginning of the last activity, along with the LED circuit from Chapter 2, Activity #2. 
 
 Build the circuits shown in Figure 3-12. 

 

    

Figure 3-12 
Pushbutton and LED 
Circuit 

Programming Pushbutton Control 

The Propeller microcontroller can be programmed to make decisions using an 
if...else... statement.  Its syntax, paraphrased, is: 
 
If (condition is true) {execute this code block} else {execute this code block instead} 
 

 

A code block is a group of commands contained by opening and closing braces { }. 
A code block can be all on one line, or take up multiple lines.  

Example Program: Button-ControlOneLED 

 Use SimpleIDE’s New Project Button to create a new project and name it 
Button-ControlOneLED. 

 Enter the Button-ControlOneLED.c code into SimpleIDE. 
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 Click the Run with Terminal button. 
 Verify that the LED does not flash when you are not pressing the pushbutton. 
 Verify that the LED flashes on and off when you hold down the pushbutton. 

 
/* Button-ControlOneLED.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  int button; 
 
  while(1) 
  { 
    button = input(3); 
    print("button = %d\n", button); 
     
    if(button == 1) 
    { 
      high(14); 
      pause(50); 
      low(14); 
      pause(50); 
    } 
    else 
    { 
      pause(100); 
    } 
  } 
}    

How Button-ControlOneLED Works 

This program is a modified version of Button-ReadState from the previous activity.  
Everything stays the same up through button… and print inside the while(1) loop. 
But then, the pause(250) was deleted, and an if...else... statement was put in its 
place.  When code execution reaches this spot, it checks to see if (button == 1) is 
actually true.  If yes, the statements within its code block braces { } get executed: 
high(14); pause(50); low(14); and another pause(50);.  As a result, the light blinks 
on and off very quickly, and then the code execution goes back to the beginning of the 
while loop.  So, as long as you are holding the button down, the LED will flash rapidly.  
If you are not pressing the button, the if (button == 1) condition evaluates as false, 
and the code execution skips down to the else block where only { pause(100); } gets 
executed.  There is no code for blinking the LED in the else block, so it stays off. 
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Assign-equals (=) vs. Compare-equals (==)  
In the instruction button = input(3), the = operator assigns the value on the right to the 
variable on the left.  Another way to say it would be that the = operator sets the symbol on 
the left equal to the value on the right.  It is also called the assignment operator. 
In if(button == 1), the == operator performs a comparison to see if the variable on the 
left is equal to the value on the right.  It does not change the value of button.  It is simply 
asking a true-or-false question, and will return 1 if it is true, and 0 if it is false.  It also called 
the equality operator. 

 
You can make a detailed list of what a program should do, to either help you plan the 
program or to describe what it does.  This kind of list is called pseudo code, and the 
example below uses pseudo code to describe how Button-ControlOneLED works. 
 

• Do these commands  over and over again 
o Copy the 1/0 result of P3 input to a variable named button 
o Display the value of button in SimpleIDE Terminal 
o If the value of button is 1, Then  

 Turn the LED on  
 Wait for 50 ms 
 Turn the LED off 
 Wait for 50 ms 

o Else, (if the value of IN3 is not 1) 
 Do nothing, but wait for the same amount of time it would have 

taken to briefly flash the LED (1/10 of a second). 

Your Turn – Alternate Coding Approach 

Button-ControlOneLED-YourTurn shows another way to write code that does the same 
job.  Instead of if…else…, it just uses an if… statement.  Also, instead of copying the 
input(3) function’s return value to a variable, it uses input(3) and the compare-equals 
operator directly to decide whether or not to turn on the light.  If the button is pressed, 
if(input(3) == 1 high(14) turns the light on.  If the button is not pressed, it just 
leaves the light off.   
 
 Use SimpleIDE to create a project named Button-ControlOneLED-YourTurn 

and try this code.  It should do the same job. 
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/* Button-ControlOneLED-YourTurn.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  while(1) 
  { 
    print("button = %d\n", input(3)); 
     
    if(input(3) == 1) 
    high(14); 
 
    pause(50); 
    low(14); 
    pause(50); 
  } 
}    

 

 

An if… statement is just an if…else… statement without the else. 
If you have just one statement to conditionally execute, you don’t need braces { }. 
Conditional statements execute the next thing that follows them.  That could be a code 
block contained in braces { }, or it could be a single statement ending with a semicolon ; . 
 
These two pieces of code do the same job: set P14 high if the button is pressed.   
 
                      SAME 
if(input(3) == 1)              if(input(3) === 1) 
  high(14);                    { 
                                 high(14); 
                               } 
 
These next two pieces of code do different jobs.  On the left, P14 is set high if the button is 
pressed.  Then, it waits for 50 ms no matter what.  The one on the right will do both, but only 
if the button is pressed, since the high and pause statements are both inside the braces. 
 
                    NOT SAME 
if(input(3) == 1)              if(input(3) === 1) 
  high(14);                    { 
                                 high(14); 
pause(50)                        pause(50); 
                               } 

ACTIVITY #4: TWO PUSHBUTTONS CONTROLLING TWO LED CIRCUITS 
Now that you know how to use a microcontroller to monitor a pushbutton and control an 
LED based on the pushbutton’s state, let’s make things more interesting. In this activity, 
you will add a second pushbutton and a second LED to the circuits on your breadboard. 
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Pushbutton and LED Circuit Parts 

(2) Pushbuttons – normally open 
(2) Resistors – 10 kΩ (brown-black-orange) 
(4) Resistors – 220 Ω (red-red-brown) 
(2) LEDs – any color 
(4) Jumper wires (2 red, 2 black) 

Adding a Pushbutton and LED Circuit 

 Build the circuits shown in Figure 3-13 and Figure 3-14.  If you need help 
building the circuit shown in the schematic, use the wiring diagram in Figure 
3-14 as a guide. 

 

  

Figure 3-13 
Schematic for Two 
Pushbuttons and LEDs   
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Dots Indicate Connections 
There are three places where lines intersect in Figure 3-13, but only two of those 
intersections have dots.  When two lines intersect with a dot, it means they are electrically 
connected.  When building a circuit on the breadboard, leads connected by a dot are usually 
in the same 5-socket row. 
For example, the 10 kΩ resistor on the lower-right side of Figure 3-14 has one of its 
terminals connected to one of the P3 circuit’s pushbutton terminals and to one of its 220 Ω 
resistor terminals.  When one line crosses another, but there is no dot, it means the two 
wires DO NOT electrically connect.  The line that connects the P4 pushbutton to the 10 kΩ 
resistor does not connect to the P3 pushbutton circuit because there is no dot at that 
intersection.  

 

  

Figure 3-14 
Wiring Diagram for Two Pushbuttons 
and LEDs 

 
 Reopen the Button-ReadState project, and modify it so that it reads input(4) 

instead of input(3), and use it to test your second pushbutton circuit. 

Programming Pushbutton Control 

In the previous activity, you experimented with making decisions using if...else... 
and if… statements.  There is also such a thing as an if...else if...else... 
statement.  The else if part allows you to add additional conditions to test for, if the first 
if condition evaluates to false.  It works great for deciding which LED to flash on and 
off.  The next example program shows how it works.   
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Example Program: Button-ControlTwoLEDs  

 Make a new project and name it Button-ControlTwoLEDs. 
 Enter Button-ControlTwoLEDs into SimpleIDE. 
 Click the Run with Terminal button. 
 Verify that the P14 LED flashes while the P3 pushbutton is held down. 
 Also verify that the P15 LED flashes while the P4 pushbutton is held down. 

 
/* Button-ControlTwoLEDs.c */ 
 
#include "simpletools.h" 
 
int main() 
{ 
  int button, otherButton; 
 
  while(1) 
  { 
    button = input(3); 
    otherButton = input(4); 
 
    print("%c button = %d, otherButton = %d \n", HOME, button, otherButton); 
     
    if(button == 1) 
    { 
      high(14); 
      pause(50); 
      low(14); 
      pause(50); 
    } 
    else if(otherButton == 1) 
    { 
      high(15); 
      pause(50); 
      low(15); 
      pause(50); 
    } 
    else 
    { 
      pause(100); 
    } 
  } 
}    
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Figure 3-15 
SimpleIDE Terminal output of 
Button-ControlTwoLEDs 

How Button-ControlTwoLEDs Works 

The main function begins with declaring two int variables: button and otherbutton, 
just above a while(1) loop.  All the other instructions in the program are inside this 
infinite loop.  

   
  int button, otherButton; 
 
  while(1) 

 
Each time through the while loop, the two variables are assigned values from input 
function calls that check P3 and P4. 
 

button = input(3); 
otherButton = input(4); 

 
Next comes an expanded print statement, and it’s probably the trickiest line to 
understand. Note that it has three formatting flags in it, denoted by the % sign.  Each time 
the print statement sees a % flag, it displays the next item in the value list that comes 
after the string between the quotation marks.  The first formatting flag is %c, which means 
“display the character without any changes.”  The first item in the value list is HOME.  The 
HOME constant from the simpletools library is a value that sends SimpleIDE Terminal’s 
cursor to the top-left home position.  This allows this one print statement in the 
while(1) loop to keep reprinting in the same place each time through the loop, replacing 
what was there before with the most up-to date values.  
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print("%c button = %d, otherButton = %d \n", HOME, button, otherButton); 

 
 
 
 
After that, the print statement displays the text “button = ”.  Then, it sees another 
formatting flag, %d, for displaying a decimal integer value.  This is the second flag, so the 
next thing print will display is the decimal integer form of the value stored in button.  
Since we know button either stores 1 or 0, it’ll display either ‘1’ or ‘0’.  Then, the 
print statement displays, “otherButton = ”.  Finally, the third formatting flag is another 
%d, which prints the value of the otherButton variable in decimal integer form too.  
 
After checking the copying the button states to variables and displaying them, the 
program uses the current values of button and otherButton to decide what to do.  The 
first part is the same as the previous example program; it blinks the P14 light if the P3 
pushbutton is pressed.  But, if it’s not pressed, and if the P4 pushbutton is pressed, then 
the otherButton == 1 condition will be true, and the P15 light blinks.  If neither 
condition is true, then the else condition just pauses for 100 ms (1/10 second) before 
allowing the while loop to repeat. 
 

if(button == 1) 
{ 
  high(14); 
  pause(50); 
  low(14); 
  pause(50); 
} 
else if(otherButton == 1) 
{ 
  high(15); 
  pause(50); 
  low(15); 

First, HOME 
constant   moves 
cursor to top-left 

Decimal value of 
button variable 
is printed here 

Decimal value of 
otherButton 

variable is printed 
 

String Value list 
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  pause(50); 
} 
else 
{ 
  pause(100); 
} 

Your Turn – What about Pressing Both Pushbuttons? 

The example program has a flaw.  Try pressing both pushbuttons at once, and you’ll see 
the flaw.  You would expect both LEDs to flash on and off, but they don’t because only 
the first code block with a “true” condition in an if...else if...else... statement 
gets executed before the code leaves the decision making process behind and skips to 
whatever code follows.   
 
What the program needs is an additional condition to test if both buttons are pressed at 
the same time.  Fortunately, it is fair game to have more than one else if condition at a 
time.  Let’s modify the current program so it has four conditions: if...else if ... 
else if ...else. 
 
 Use the Save Project As button, and rename the project Button-

ControlTwoLEDs-YourTurn1. 
 Replace this if statement and code block: 

 
    if(button == 1) 
    { 
      high(14); 
      pause(50); 
      low(14); 
      pause(50); 
    } 
 
...with this if...else if... statement:  
 
    if(button == 1 && otherButton == 1) 
    { 
      high(14); 
      high(15); 
      pause(50); 
      low(14); 
      low(15); 
      pause(50); 
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    } 
    else if(button == 1) 
    { 
      high(14); 
      pause(50); 
      low(14); 
      pause(50); 
    } 
 

 Run your modified program and see if it handles both pushbutton and LED 
circuits as you would expect.   

 

 

Logical AND && and Logical OR || 
The && operator can be used in conditional statements like if, else if, and while to 
check if more than one condition is true.  All conditions with && have to be true for the 
conditional statement to be true.  It is called the logical-AND operator. 
The || operator can also be used in conditional statements, and at least one of the 
conditions must be true for the conditional statement to evaluate as true.  It is called the 
logical-OR operator. 

 
You can also modify the program so that the flashing LED stays on for different amounts 
of time.  For example, you can reduce the value passed to both pause function calls’ time 
parameters to 25, increase the pause for the P14 LED to 100, and increase the pause for 
the P15 LED to 200.  
 
 Use the Save Project As button, and rename the project Button-

ControlTwoLEDs-YourTurn2. 
 Modify the pause commands in the if and the two else if statements as 

discussed. 
 Run the modified program. 
 Observe the difference in the behavior of each light. 

A Simplified Approach 

In case you’re wondering if the Your Turn approach from the previous activity will work 
here, yes, it will.  The code is nice and compact too.   
 
 Use the Save Project As button and rename another copy of the project Button-

ControlTwoLEDs-YourTurn3, then try this in place of the if...else 
if...else...statement and code blocks: 
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    if(input(3) == 1) 
      high(14); 
 
    if(input(4) == 1) 
      high(15); 
 
    pause(50); 
    low(14); 
    low(15); 
    pause(50); 
 

 Run the modified code and verify that it works the same. 
 
Why not just use this code and forget about the example in the main activity?  Mainly 
because you’ll encounter both when looking at published code solutions for various 
projects you might work on.  So, knowing the rules of how to work with and without 
braces and using just if… or if...else if...else... will come in handy. 
 

ACTIVITY #5: REACTION TIMER TEST 
Imagine you’re an embedded systems engineer at a video game company.  The marketing 
department recommends that the next hand-held game controller should have a circuit 
and firmware code to test the player’s reaction time.  Your next task is to develop a proof 
of concept for the reaction timer test.   
 
The solution you will build and test in this activity is an example of how to solve this 
problem, but it’s definitely not the only solution.  Before continuing, take a moment to 
think about how you would design this reaction timer.   
 
The approach we are taking here is to turn on a bicolor LED, and time how long it takes 
for the player to release a pushbutton in response to seeing the LED change color. 

Reaction Timer Game Parts 

(1) LED – bicolor 
(2) Resistor – 220 Ω (red-red-brown) 
(1) Pushbutton – normally open 
(1) Resistor – 10 kΩ (brown-black-orange) 
(2) Jumper wires 
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Building the Reaction Timer Circuit 

Figure 3-16 shows a schematic and wiring diagram for a circuit that can be used with the 
Propeller to make a reaction timer game.   
 
 Build the circuit shown in Figure 3-16 on page 89. 
 Run LED-TestBicolor from Chapter 2, Activity #5 to test the bicolor LED circuit 

and make sure your wiring is correct. 
 If you just re-built the pushbutton circuit for this activity, run Button-ReadState 

from Activity #2 in this chapter to make sure your pushbutton is working 
properly.  

 Fix any circuit-building errors your tests uncover before continuing. 
 

    

Figure 3-16 
Reaction Timer Game 
Circuit 

Programming the Reaction Timer 

This next example program will leave the bicolor LED off until the game player presses 
and holds the pushbutton to start the game.  When the pushbutton is held down, the LED 
will turn red for a short period of time.  Then the LED will switch to green, and the 
player has to let go of the pushbutton as fast as he or she can.  The program then 
measures time it takes the player to release the pushbutton in reaction to the light turning 
green. 
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The example program also demonstrates how polling and counting work.  Polling is the 
process of checking something over and over again very quickly to see if it has changed.  
Counting is the process of adding a number to a variable each time something does (or 
does not) happen.   
 
In this program, polling is used twice.  Initially, the Propeller polls the pushbutton to see 
if it has been pressed yet, which starts the game.  Then, from the time the bicolor LED 
turns green the Propeller will start polling the pushbutton again every millisecond 
(1/1000 of a second) to see if it has been released.  Each time it polls and the pushbutton 
is not yet released, it will add 1 to a counting variable named timeCounter.  When it 
senses that the pushbutton is released, the program stops polling and sends a message to 
the SimpleIDE Terminal that displays the value of the timeCounter variable. 

Example Program: Button-ReactionTimer  

 Enter Button-ReactionTimer into SimpleIDE. 
 Click the Run with Terminal button. 
 Follow the prompts on the Debug Terminal (see Figure 3-17). 

 

  

Figure 3-17 
Reaction 
Timer Game 
Instructions in 
the Debug 
Terminal 

 
/* Button-ReactionTimer.c */ 
 
#include "simpletools.h"                     // Include library 
 
int main()                                   // Main function 
{ 



Digital Input  – Pushbuttons · Page 91 

  int timeCounter; 
 
  print("Press and hold the pushbutton\n");  // Display instructions 
  print("to make the light turn red \n\n"); 
  print("When the light turns green, let\n"); 
  print("go as fast as you can.\n\n"); 
 
  while(1)                                   // Main loop 
  { 
    while(input(3) == 0);                    // Wait for press 
 
    high(14);                                // Light red 
    low(15); 
 
    pause(1000);                             // Wait 1 second 
 
    low(14);                                 // Light green 
    high(15); 
 
    timeCounter = 0;                         // timeCounter var -> 0 
 
    do                                       // do 
    { 
      pause(1);                              // pause 1 second 
      timeCounter++;                         // Add 1 to timeCounter 
    } 
    while(input(3) == 1);                    // ...while pressed 
 
    low(15);                                 // Turn light off 
 
    print("Your time was %d ms. \n\n",       // Display timecounter 
           timeCounter); 
    print("To try again, hold the\n");       // Repeat instructions 
    print("button down again.\n\n"); 
  } 
}   

How Button-ReactionTimer Works 

Inside main, the program declares the int timeCounter variable, then makes print 
function calls that display instructions for the player. 

   
  int timeCounter; 
   
  print("Press and hold the pushbutton\n"); 
  print("to make the light turn red \n\n"); 
  print("When the light turns green, let\n"); 
  print("go as fast as you can.\n\n"); 
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Next comes nested while loops, one while loop is inside of the other.  The outer 
while(1) is followed immediately with while(input(3) == 0).  Notice that this 
inner, conditional loop actually has no code block below it.  This translates to “while the 
P3 pushbutton is not pressed, do nothing.”  This coding technique of an empty, 
conditional while loop is very handy when you want program execution to simply pause 
for an unknown period of time, polling until some external input occurs.  
 

  while(1) 
  { 
    while(input(3) == 0);  
  

When the player presses and holds down the pushbutton to start the game, 
while(input(3) == 0) finally evaluates to false, and code execution resumes to the 
lines below.   
 
Now that the player has pressed the button, the bicolor LED turns red with the now-
familiar high(14); low(15) function calls.  A pause(1000) keeps the LED red for 1 
second, and then low(14); high(15) reverses the current to turn the LED green. 
 

   
    high(14);                          // Light red 
    low(15); 
 
    pause(1000);                       // Wait 1 second 
 
    low(14);                           // Light green 
    high(15); 
 

 
As soon as the bicolor LED turns green, it’s time to start polling the pushbutton again, 
and counting the milliseconds until the player releases it.  The next line sets 
timeCounter equal to 0.  

 
    timeCounter = 0;                   // timeCounter var -> 0 

 
Immediately after that, a do...while(condition) loop starts repeating itself.  A 
do...while(condition) loop is like a while loop, but the condition test comes after 
the code block instead of before it to make sure the code inside the block gets executed at 
least once.  As long as while(input(3) == 1) evaluates as true, meaning the player is 
still holding down the pushbutton, the loop will repeat and add 1 to the timeCounter 
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variable with the ++ operator.  The pause(1) makes the loop repeat about 1000 times per 
second until the do...while loop evaluates as false when the pushbutton is released.  

 
    do 
    { 
      pause(1); 
      timeCounter++; 
    } 
    while(input(3) == 1); 
 

When the player releases the pushbutton, the code exits the do...while loop and the 
next line of code turns the bicolor LED off. 

 
  low(15) 
 

The game is now over, but the program is not.  The next three lines are print statements 
to display in the SimpleIDE Terminal.  The first one displays the value of timeCounter, 
so the player can see his or her reaction time in milliseconds.  The next two print 
statements invite the player to try again, and give instructions to press the button.   
 
    print("Your time was %d ms. \n\n", 
           timeCounter); 
    print("To try again, hold the\n"); 
    print("button down again.\n\n"); 
 
After this, the code reaches the outer while(1) loop’s closing brace }.  So, code 
execution returns the first instruction inside the while(1) loop’s opening brace {.  That 
puts us back at while(input(3) == 1), polling the pushbutton to see if anyone has 
pressed it to start a new game.   

Your Turn 

Imagine now that the marketing department gave your prototype to some game testers.  
When the game testers were done, the marketing department came back to you with 
details about two problems that have to be fixed before your prototype can be built into 
the game controller.  One can be fixed with code you already know. The other is trickier, 
and we’ve introduced some new concepts to solve it. 
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Problem 1: A player that lets go of the button before the light turns green gets an 
unreasonably good score (1 ms, since the code in the do...while loop gets executed 
at least once).  Your microcontroller needs to figure out if a player is cheating. 
 
This can be fixed with code that checks the value of timeCounter to decide whether to 
display the result or tell the user to try again and wait for the light to change before letting 
go of the button.  Here’s an example of some pseudo-code that describes it.   
 

• If the value of timeCounter is greater than 1 (timeCounter > 1 ) 
o Display the value of timeCounter in ms (just like in Button-

ReactionTimer)    
• Else, (if the value of timeCounter is 1 or less) 

o Display a message telling the player he or she has to wait until after the 
light turns green to let go of the button.  

• Display a “To play again...” message. (Unchanged from what’s in Button-
ReactionTimer) 

 
 Before continuing, stop and consider how you would write that code.   
 Save a copy as Button-ReactionTimer-YourTurn1.  Then try modifying the code, 

following the pseudo-code, to fix Problem 1. 
 
Here is an if…else… solution to the pseudo-code: 
 

    if(timeCounter > 1)                             // <- add 
    {                                               // <- add 
      print("Your time was %d ms. \n\n", 
             timeCounter); 
    }                                               // <- add 
    else                                            // <- add 
    {                                               // <- add 
      print("Wait for the light to change \n");     // <- add 
      print("before letting go of the button. \n"); // <- add 
      print("Try again. \n\n");                     // <- add 
    }                                               // <- add 
    print("To try again, hold the\n"); 
    print("button down again.\n\n"); 

 
 Try it!   
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Optional Tricky Topic – Pseudo-random Number, Scale, and Offset 

Problem 2: Players soon figure out that the delay from red to green is 1 second.  
After playing it several times, they get better at predicting when to let go, and their 
score no longer reflects their true reaction time.   
 
One solution would be to make the LED stay red for a random number of milliseconds 
between 500 and 1500 ms, instead of always pausing for 1 second.  But how?  
Fortunately, there is a function named rand() in the Standard C Library (called stdlib) 
which is already included by the simpletools library.  
 
The rand function returns a different pseudo-random number each time you call it. You 
can use a couple of math tricks to scale down and offset the value returned by rand into 
the desired range.  Then, you can assign this scaled & offset value to a variable, let’s call 
it randomVal, and then use pause(randomVal)in place of pause(1000) in the program.  
This will cause the LED to stay red for a different length of time each game, within the 
time range you desire.  Let’s try it first, and then look closer at how it works: 
 
 Save a new copy of Button-ReactionTimer as Button-ReactionTimer-

YourTurn2. 
 Add a second int variable named randomVal.   
 Then, replace pause(1000) with this: 

 
randomVal = 500 + rand() % 1001; 
print("randomVal = %d \n", randomVal); 
pause(randomVal); 

 
 Try the button game a few times, and notice that randomVal, indicating the red 

LED time, changes for each game.  
 

How it Works 

The line randomVal = 500 + rand() % 1001 takes care of the hard part, which is 
generating a value in the 500 to 1500 range using a trick with modulus operator % and the 
addition operator +.  There’s a lot going on in that one line of code, so let’s dissect it.  
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(1) First, rand() gets a pseudo-random value, which will be in the range of  0 to 
2,147,483,647.  (We can’t use this value range with pause as-is; it could make 
the LED red for more than 24 days!!) 

(2) The operation % 1001 gives you the remainder of rand() ÷ 1001.  This will 
always be a number in the 0 to 1000 range, effectively scaling down the value 
returned by rand. 

(3) 500 + offsets the scaled value range from 0-1000 to 500-1000. 
(4) = copies the scaled and offset result to the randomVal variable. 

 
After that, print("randomVal = %d \n", randomVal) displays the value, and then 
pause(randomVal) pauses for that random amount of time that’s somewhere in the 500 
to 1500 ms range.  It will be different each time. 
 

 

What’s an algorithm?  An algorithm is a sequence of mathematical operations.   
What’s pseudo-random?  Pseudo-random means that it seems random, but it isn’t really.  
Each time you start the program over again, you will get the same sequence of values.  An 
algorithm is used to create the sequence. 
What’s a seed?  A seed is a value that is used to start the pseudo-random sequence.  You 
always get the same sequence of random numbers when using the same seed value.  The 
default seed value is 1.  To change the seed value, to 23 for example, you would add 
srand(23) before the while(1) loop starts.   

 
SUMMARY 
This chapter introduced a new electrical component and many new circuit-building 
activities, programming concepts, and C language elements:  
 

• Introduced the normally open pushbutton and its schematic symbol. 
• What dots at line intersections mean in a circuit schematic. 
• How to build and test active-high and active-low pushbutton circuits, using pull-

down and pull-up resistors. 
• How to control an LED directly with a pushbutton. 
• How to use a microcontroller I/O pin as an input to monitor the state of a 

pushbutton circuit. 
• How to use the input() function to monitor the state of an I/O pin. 
• C operators And &&, OR ||, Modulus %, Assign-equals =, Compare-equals ==.  
• Decision-making with if and if...else if...else conditional statements. 
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• Polling with conditional while and do...while statements. 
• What the %c and %d formatting flags do in a print statement. 
• What the simpletools library’s HOME constant does in a print statement. 
• Generating pseudo-random numbers with the rand() function, and scaling and 

offsetting the return value to the desired range. 
• Building a reaction-timer game.  

Questions 

1. What is the difference between sending and receiving high and low signals with 
the Propeller?  

2. What does “normally open” mean in regards to a pushbutton?  
3. What happens between the terminals of a normally open pushbutton when you 

press it? 
4. What value does input(3) return when a pushbutton connects it to 3.3 V?  

What value does input(3) return when a pushbutton connects it to GND? 
5. What does int button = input(3); print("button = %d", button); 

do? 
6. What kind of statements will conditionally execute blocks of code based on 

conditions? 
7. What does the HOME control character do in the statement print("%c button = 

%d", HOME, button)? 

Exercises 

1. Explain how to modify Button-ReadState on page 74 so that it reads the 
pushbutton every second instead of every ¼ second. 

2. Explain how to modify Button-ReadState so that it reads a normally open 
pushbutton circuit with a pull-up resistor connected to I/O pin P6. 

Project 

1. Modify Button-ReactionTimer so that it is a two-player game. Add a second 
button wired to P4 for the second player. 

Solutions 

Q1. Sending uses the Propeller I/O pin as an output, whereas receiving uses the I/O 
pin as an input.  
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Q2. Normally open means the pushbutton's normal state (not pressed) forms an open 
circuit.   

Q3. When pressed, the gap between the terminals is bridged by a conductive metal.  
Current can then flow through the pushbutton.  

Q4. input(3) == 1 when pushbutton connects it to 3.3 V; input(3) == 0 when 
pushbutton connects it to GND. 

Q5. int button = input(3) gets declares an int variable named button, and 
then copies the 1/0 value input(3) returns to it.  print("button = %d", 
button); displays “button = ” followed by the characters that describe the 
decimal integer value of button.  If the button is pressed, it will display “button 
= 1”.  If the button is not pressed, it will display “button = 0”. 

Q6. Conditional statements like if...., if...else..., if...else if...else... 
, while, and do...while. 

Q7. The HOME control character sends the cursor to the top left position in the 
SimpleIDE Terminal.   

 
E1. The while(1) loop in the program repeats every ¼ second because of the 

pause(250) call.  To repeat every second, change the pause(250) (250 ms = 
0.25 s = ¼ s), to pause(1000) (1000 ms = 1 s). 
 
  while(1) 
  { 
    button = input(3); 
    print("button = %d\n", button); 
    pause(1000);                        // <- Change this 
  } 
 

E2. Replace input(3) with input(6), to read I/O pin P6.  The program only 
displays the pushbutton state, and does not use the value to make decisions; it 
does not matter whether the resistor is a pull-up or a pull-down.  The print call 
will display the button state either way. 
 
  while(1) 
  { 
    button = input(6);                  // <- Change this 
    print("button = %d\n", button); 
    pause(1000);           
  } 
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P1. First, add a button for the second player, wired to Propeller I/O pin P4.  The 
schematic is based on Figure 3-16 on page 89. 

 

 
 

Snippets from the solution program are included below, but keep in mind that 
solutions may be coded a variety of different ways.  However, most solutions 
will include the following modifications:   
 
Use two variables to keep track of two players’ times: 
 
  int timeCounterA, timeCounterB; 
 
Change instructions to reflect two pushbuttons: 
 
  print("Press and hold the pushbuttons\n"); 
  print("to make the light turn red \n\n"); 
 
Wait for both buttons to be pressed before turning LED red, by using the OR 
operator: 
 
  while(input(3) == 0 || input(4) == 0); 
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Make sure both players’ time counters are set to zero: 
 
  timeCounterA = 0; 
  timeCounterB = 0; 
 
Add logic to decide which player’s time is incremented: 
 
  pause(1); 
 
  if(input(3) == 1)  
  { 
    timeCounterA++; 
  } 
  if(input(4) == 1)  
  { 
    timeCounterB++; 
  } 
 
Wait for both buttons to be released to end timing, again using the OR operator: 
 
  while(input(3) == 1 || input(4) == 1);   // ...while pressed 
 
Change time display to show times of both players: 
 
  print("Player A Time: %d \n", 
         timeCounterA); 
  print("Player B Time: %d \n", 
         timeCounterB); 
 
Add logic to show which player had the faster reaction time: 
 
  if(timeCounterA < timeCounterB) 
  { 
    print("Player A is the winner!\n"); 
  } 
  else if(timeCounterA > timeCounterB) 
  { 
    print("Player B is the winner!\n"); 
  } 
  else 
  { 
    print("It's a tie!\n"); 
  } 
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The complete solution is shown below. 
 
/* Button-P1-Solution.c */ 
 
#include "simpletools.h"                     // Include library 
 
int main()                                   // Main function 
{ 
 
  int timeCounterA, timeCounterB;            // counter for each player 
 
  print("Press and hold the pushbuttons\n"); // Display instructions 
  print("to make the light turn red \n\n"); 
  print("When the light turns green, let\n"); 
  print("go as fast as you can.\n\n"); 
 
  while(1)                                   // Main loop 
  { 
    while(input(3) == 0 || input(4) == 0);   // Wait for both to press 
 
    high(14);                                // Light red 
    low(15); 
 
    int delay = 500; 
    delay += rand()%1500; 
    pause(delay);                             // Wait 1 second 
    // print("delay = %d\n", delay); 
 
    low(14);                                 // Light green 
    high(15); 
 
    timeCounterA = 0;                        // timeCounterA var -> 0 
    timeCounterB = 0;                        // timeCounterB var -> 0 
 
    do                                       // do 
    { 
      pause(1);                              // pause 1 second 
 
      if(input(3) == 1)  
      { 
        timeCounterA++;                      // Add 1 to timeCounter 
      } 
      if(input(4) == 1)  
      { 
        timeCounterB++;                      // Add 1 to timeCounter 
      } 
    } 
    while(input(3) == 1 || input(4) == 1);   // ...while either pressed 
 
    low(15);                                 // Turn light off 
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    print("Player A Time: %d \n",            // Display timecounterA 
           timeCounterA); 
    print("Player B Time: %d \n",            // Display timecounterB 
           timeCounterB); 
     
    if(timeCounterA < timeCounterB)          // Decide who wins 
    {                                        // ...and display 
      print("Player A is the winner!\n"); 
    } 
    else if(timeCounterA > timeCounterB) 
    { 
      print("Player B is the winner!\n"); 
    } 
    else 
    { 
      print("It's a tie!\n"); 
    } 
 
    print("To try again, hold the\n");       // Repeat instructions 
    print("button down again.\n\n"); 
  } 
}  
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Chapter 4: Control Position and Motion 

MICROCONTROLLED MOTION 
Microcontrollers move mechanical devices in objects you see every day.  If you have an 
inkjet printer, the print head is swept across the page by stepper motor controlled by a 
microcontroller.  The automatic doors at a store are controlled by microcontrollers, and 
the auto-eject feature in your DVD player is also controlled by a microcontroller.  Look 
around you now — can you spot more examples? 
 
Just about all microcontrolled motors receive sequences of high and low signals that 
resemble the ones you’ve been sending to LEDs.  The microcontroller has to send these 
signals much faster, sometimes so fast that the human eye cannot detect the switching.  
 
Some motors require lots of external circuitry in addition to a microcontroller.  Others 
require extra mechanical parts to fit into machinery.  The hobby servo that you will 
experiment with in this chapter is simplest, as it requires neither.  

INTRODUCING THE SERVO 
A standard hobby servo is a device that controls position. You can find them in just about 
any radio controlled (RC) car, boat or plane.  In RC cars, the servo holds the steering to 
control turn radius.  In an RC boat, it holds the rudder in position for turning in the water.  
RC planes may have several servos to position the different wing and tail flaps that 
control the plane’s trajectory.  In RC vehicles with gas powered engines, a servo moves 
the engine’s throttle lever to control how fast the engine runs.   
 
An example of an RC airplane and its radio controller are shown in Figure 4-1.  The 
hobbyist “flies” the airplane by manipulating thumb joysticks on the radio controller, 
which causes the servos on the plane to control the positions of the RC plane’s elevator 
flaps and rudder.  
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Figure 4-1 
Model Airplane and 
Radio Controller 

 
So, how does this work?  The radio controller converts the position of the joysticks into 
pulses of radio activity.  The time each pulse lasts indicates the position of one of the 
joysticks.  On the RC plane, a radio receiver converts these radio activity pulses to digital 
pulses (high/low signals) and sends them to the plane’s servos.  Each servo has circuitry 
inside it that converts these digital pulses to a position that the servo maintains.  The 
amount of time each pulse lasts is what tells the servo what position to maintain.  These 
control pulses only last a few thousandths of a second, and repeat around 40 to 50 times 
per second to make the servo maintain the position it holds.  Between pulses, the servo 
will hold its position against any outside force that tries to turn it. 
 
Figure 4-2 shows a drawing of a Parallax Standard Servo.  The plug (1) is used to connect 
the servo to a power source (5 V and GND) and a signal source (a Propeller I/O pin).  
The cable (2) has three wires, and it conducts 5 V, GND and the signal line (white) from 
the plug into the servo.  The horn (3) is the part of the servo that looks like a four-pointed 
star.  When the servo is running, the output shaft turns and holds the horn in different 
positions.  The Phillips screw (4) attaches the horn to the servo’s output shaft.  The case 
(5) contains the servo’s position-sensing and control circuits, a DC motor, and gears.  
These parts work together to take high/low signals from the Propeller and translate them 
into positions held by the servo horn. 
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Figure 4-2 
The Parallax Standard Servo  
 
(1) Plug 
(2) Cable 
(3) Screw attaching horn to 
output shaft Horn 
(4) Screw that attaches the horn 
to the servo’s output shaft 
(5) Case with mounting holes 

To turn to and hold a specific position, the servo needs to receive a short high-signal 
pulse.  The duration of the high pulse, between 500–2300 µs determines which position 
the output shaft will turn to.  The high pulse must be repeated every 20 ms for the servo 
to maintain the position against outside forces.  
 
Figure 4-3: Parallax Standard Servo Control Signal 
 
 High pulse duration 

sets servo axle position  
Pulse duration range: 

~ 500–2300 µs  

Low signal between pulses  
 

 

 
What’s a µs? This is the standard abbreviation for a microsecond, which is a millionth of a 
second.  µ is the Greek symbol Mu (typically pronounced mew). 

1 

2 

3 

5 

4 
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ACTIVITY #1: SAFELY CONNECTING THE SERVO 
Up to now, our Activity Board and breadboard circuits got all the power they needed 
from the computer’s USB port.  However, a servo may draw more power than a USB port 
can provide, and the Activity Board will shut itself down to prevent that from happening.   
 
In this activity, you will connect your Activity Board to an appropriate external power 
supply, and then connect the servo to the board.  You will still keep the USB connection 
for programming and communication, though we won’t be writing programs to control 
until the next activity.   
 

 

STOP: Before starting these activities, get an approved power supply with a 2.1 mm, 
center positive plug.  It should either be a 4 or 5 AA cell supply or 6-9 regulated VDC, 800 
mA (min) wall mount.   
CAUTION!: If you get a wall mount supply (other than Parallax part #750-00009 shown 
below), make sure to test the output with a voltmeter to verify that its actual output matches 
its rated range.  If its actual voltage is outside the 6-9 V range, don’t use it.  

 
 Obtain one of the external power supply options shown below. 
 Don’t plug it in yet! 

                          
Figure 4-4: Appropriate Power Supply Options 
Use one of the power supplies shown below available from www.parallax.com, or an 
equivalent. 
 

   
4-cell pack (#700-00038) 
plus four 1.5 V AA 
batteries 

5-cell pack (#753-00007) plus five 1.2 
V rechargeable or 1.5 V AA batteries 

7.5 V regulated, 1 A 
wall-mount supply 
with 2.1 mm center-
positive plug 
(#750-00009) 

 



Control Position and Motion · Page 107 

Servo and LED Circuit Parts 

(1) Parallax Standard Servo 
(1) Resistor – 220 Ω (red-red-brown) 
(1) LED – any color 
(1) 2.1 mm, center positive plug supply option from Figure 4-4. 
(1) Jumper wire (black) 
#1 Phillips-tip screwdriver 
 
The LED circuit is not required to help the servo operate.  It is just there to help you 
“see” the control signals. 
 

 

Use only a Parallax Standard Servo for the activities in this text!  Other servos may be 
designed to different specifications that might not be compatible with these activities.  

Building the Servo and LED Circuits 

These instructions are for all Propeller Activity Board Revisions.   
 
 Turn off the power as shown in Figure 4-5. 

 

 

Figure 4-5 
Disconnect Power  
 
Set 3-position switch to 0 
 

 
Figure 4-6 shows the servo header on the Propeller Activity Board.  Each larger set of 3 
pins is a servo port, with a Propeller I/O pin connection on top, a V+ connection in the 
middle, and a GND connection at the bottom.   
 

  

Figure 4-6 
Servo Header Jumpers Set to 5V  
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Each pair of servo ports has a smaller 3-pin power header to its left, along with a 
removable plastic jumper.  You can set the jumper to connect the middle pin to the VIN 
pin on top, or the 5V pin on the bottom.  Whichever one the jumper connects the middle 
pin to, that will be the power supplied to the V+ pins for the two servo ports to its right.    
 

 

Setting the jumper to 5V protects your Parallax Standard Servo.  The Parallax Standard 
Servo accepts 4–6 VDC.  By setting the power supply to 5V, your servo is protected from 
excess voltage, no matter which of the three power supply options you chose above.  

 
 Verify that the jumper is set to 5V as shown in Figure 4-6.  If it is instead set to 

VIN, lift the rectangular jumper up off of the pins it is currently on, and then 
press it on the two pins closest to the 5V label. 

 
Figure 4-7 shows the schematic of the circuit you will build on your Activity Board. 
 
 Build the circuit shown in Figure 4-7 and Figure 4-8.   
 Make sure you did not plug the servo in upside-down.  The white, red and black 

wires should line up as shown in Figure 4-8, with the white wire near the top 
edge of the board. 

 

    

Figure 4-7 
Servo and LED Indicator 
Schematic for Propeller 
Activity Board 
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Figure 4-8 
Servo and LED Indicator 
on Activity Board 

 

 

You are connecting two devices to one Propeller I/O Pin!   
Notice that there are sockets labeled P12–P15 along the left edge of the breadboard, and 
there are also servo ports labeled P12–P15.  A socket and port pin with the same number 
are connected to the same Propeller I/O pin.   
Here, we are taking advantage of that to “see” the high and low signals being sent to the 
servo.  But be careful!  In the future, make sure that you connect only one device to an I/O 
pin at a time unless you are absolutely sure they are fully compatible in your application 
circuit and program.  

 
 Connect your external supply to the Activity Board as shown in Figure 4-9. 

  

Figure 4-9 
Connect External Supply 
 

When you set the PWR switch to 1 it powers the entire board except for the servo ports.  
Setting it to 2 also supplies power to the servo headers.   
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 Supply power to the board and servo header by setting the PWR switch to 2 as 

shown in Figure 4-10.  Your servo may move a bit when you connect the power.  
If the board had a P14 blinking light program running from an earlier activity, 
the servo may also twitch when the light turns on/off.  If the servo "chatters", 
immediately turn off the power switch. 

 

 

Figure 4-10 
Power Turned on to Activity Board 
and Servo Header  
 

 
Throughout the rest of the tutorial, if you see instructions that read “Connect power to 
your board” move the PWR switch to position-2 if you are using the servo.  Likewise, if 
you see instructions in this chapter that read “Disconnect power from your board” move 
the 3-position switch to position-0. 
 
 Disconnect power from your board. 

 

ACTIVITY #2: TEST AND ADJUST RANGE OF MOTION 
A degree is an angle measurement denoted by the ° symbol.  Examples are shown in 
Figure 4-11 for 30°, 45°, 90°, 135°, and 180°.  Each degree of angle measurement 
represents 1/360th of a circle, so the 90° measurement is ¼ of a circle since 90 ÷ 360 = ¼.  
Likewise, 180° is ½ of a circle since 180 ÷ 360 = ½, and you can calculate similar 
fractions for the other degree measurements in the figure.      
 

   

Figure 4-11 
Examples of 
Degree Angle 
Measurements 
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The Parallax Standard Servo can make its horn hold positions anywhere within a 180° 
range.  Figure 4-12 shows examples of a servo with a loop of wire that has been threaded 
through two of the holes in its horn and then twist-tied.  The direction the twist tie points 
indicates the angle of the servo’s horn, and the figure shows examples of 0°, 45°, 90°, 
135°, and 180°.   
 

Figure 4-12: Servo Horn Position Examples 

 
 
Your servo horn’s range of motion and mechanical limits will probably be different from what’s 
shown here.  Instructions on how to adjust it to match this figure come after the first example 
program. 

 
In the factory, servo horn mounting can be somewhat random, so your servo horn 
positions will probably be different from the ones in Figure 4-12.  In fact, compared to 
Figure 4-12, your servo’s horn could be mounted anywhere in a +/- 45° range.  The servo 
in Figure 4-13 shows an example of a servo whose horn was mounted 20° clockwise 
from the one in Figure 4-12.  After you find the center of the servo horn’s range of 
motion, you can either use it as a 90° reference or mechanically adjust the servo’s horn so 
that it matches Figure 4-12 by following instructions later in this activity. 
 

Figure 4-13: Servo Horn Position Examples before Mechanical Adjustment 

 
 
This is an example of a horn that’s mounted on the servo’s output shaft about 20° 
counterclockwise of how it was set in Figure 4-12. 
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In these next steps, twist the servo horn slowly and do not force it!  The servo has 
built-in mechanical limits to prevent the horn from rotating outside its 180° range of motion.  
Twist the horn gently, and you’ll be able to feel the when it reaches one of its mechanical 
limits.  Don’t try to force it beyond those limits because it could strip the gears inside the 
servo. 

 
You can find the center of the servo’s range of motion by gently rotating the horn to find 
its clockwise and counterclockwise mechanical limits.  The half way position between 
these two limits is the center or 90° position.  The servo’s center position could fall 
anywhere in the region shown in Figure 4-14.   
 

The center of your servo horn’s range of motion should 
fall somewhere in this region 

 

Figure 4-14 
Range of Possible 
Center Positions 

 
 Verify that the power to your board is still disconnected. 
 Gently rotate the servo horn to find the servo’s clockwise and counterclockwise 

mechanical limits.  The servo’s horn will turn with very little twisting force until 
you reach these limits.  DO NOT TRY TO TWIST THE HORN PAST THESE 
LIMITS; only twist it far enough to find them. 

 Rotate the servo’s horn so that it is half way between the two limits.  This is 
approximately the servo’s “center” position.   
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 With the servo horn in its center position, thread a jumper wire through the horn 
and twist tie it so that it points upward into the region shown in Figure 4-14.   

 
Keep in mind the direction the twist tie is pointing in the figure is just an example; yours 
might point anywhere in the region.  Wherever it points when it’s in the center of its 
range of motion should be pretty close to the servo’s 90° position.  Again, this position 
can vary from one servo to the next.   

Test and Adjust the Servo’s 90° “Center” Position 

The servo’s 90° position is called its center position because the 90° point is in the 
“center” of the servo’s 180° range of motion.  You can use a screwdriver to remove and 
reposition the horn so that 90° makes the jumper wire twist tie point straight up —
Instructions for this are coming up in the Your Turn section.  But first, let’s find what 
your servo’s actual center position is: 
 
 Gently turn the servo to its clockwise limit. 
 Click SimpleIDE’s New Project button and name your project Servo-Center. 
 Enter Servo-Center.c into SimpleIDE. 
 Connect power (plug in external power and set PWR switch to 2). 
 Click SimpleIDE’s Load EEPROM button. 
 The P14 LED should glow dimly indicating that the Propeller is sending servo 

control signals over its P14 I/O pin. 
 The servo should automatically turn to its center position, and hold there 

indefinitely.  We can use this position to fine-tune the servo horn. 

Example Program: Servo-Center 
/* Servo-Center.c */ 
 
#include "simpletools.h"                      // Include simpletools header 
#include "servo.h"                            // Include servo header 
 
int main()                                    // main function 
{ 
  servo_angle(14, 900);                       // P14 servo to 90 degrees 
} 

 
As soon as the program loads, the P14 LED should glow dimly, indicating that the 
Propeller is transmitting the servo signal to P14.  The servo’s horn should rotate to its 
center position and stay there.  The servo “holds” this position, because standard servos 
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are designed to resist external forces that push against it.  That’s how the servo holds the 
RC car steering, boat rudder, or airplane control flap in place. 
 
 Make a note of your servo’s center position. 
 Apply very gentle twisting pressure to the horn like you did while rotating the 

servo to find its mechanical limits, just enough to feel its resistance to the force 
you are applying. 

 
If you disconnect power, you can rotate the servo away from its center position.  When 
you reconnect power, the program will restart, and servo will immediately move the horn 
back to its center position and hold it there. 
 
 Try it disconnected! 

How it Works – Servo-Center.c 

There’s a Simple Library named servo with functions for setting a servo’s position.  For 
access to its functions, just add #include "servo.h" to your program.  It’s best to keep 
all the #include statements together, so we added it right below #include 
"simpletools.h".   
 

#include "servo.h" 
 

 

For a full list of servo functions:  Check the Documentation servo Library.html page.  It’s 
in …Documents\SimpleIDE\Learn\Simple Libraries\Motor\Servo\.   
You can also access it from SimpleIDE by clicking Help and selecting Simple Library 
Reference.  Then, find and click the servo.h link. 

 
Since the program has #include "servo.h", it has access to all the servo library’s 
functions.  This program uses a function named servo_angle to set the servo to its 
center 90-degree position.  This function has two parameters, pin and degreeTenths.  The 
statement servo_angle(14, 900) makes the Propeller send signals for a servo 
connected to P14 to hold the 90-degree position.   
 

int main() 
{ 
  servo_angle(14, 900); 
} 
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The servo library automatically launches its servo control code into another Propeller 
cog (processor) as soon as your code makes its first servo_angle call.  The code 
running in the other cog sends a constant stream of signals to the servo that make it hold its 
position.  That’s why the servo continues to hold its position after the main program ends. 

Your Turn – Adjust Servo Horn to 90° Center 

Next, adjust your servo’s horn so that it makes the jumper wire twist-tie point straight up 
when Servo-Center.c is running, like it does in the right side of Figure 4-15.  This 
mechanical adjustment will simplify tracking the servo’s angles because each angle will 
resemble the ones in Figure 4-12 on page 111.   
 

 
You will need a #1 Phillips screwdriver for this adjustment.  

 

   

Figure 4-15 
Mechanical Servo 
Centering  
 
You can remove 
and reposition the 
servo horn on the 
output shaft with a 
small screwdriver.  
 
 

 
 Disconnect power from your board. 
 Remove the screw that attaches the servo’s horn to its output shaft, and then 

gently pull the horn away from the case to free it.  Your parts should resemble 
the left side of Figure 4-15. 

 Reconnect power to your board to run the Servo-Center.c program.  The program 
should make the servo hold its output shaft in the center position. 

Output 
shaft 
 

Horn 
 

Phillips 
Screw 
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 Slip the horn back onto the servo’s output shaft so that it makes the twist-tied 
wire point straight up like it does on the right side of Figure 4-15.   

 

 

Alignment Offset: It might not be possible to get it to line up perfectly because of the way 
the horn fits onto the output shaft, but it should be close.  You can then adjust the wire loop 
to compensate for this small offset and make the twist tie point straight up.  

 
 Disconnect power from your board. 
 Gently re-tighten the Phillips screw.  It only has to be firm, not tight.  The ridges 

of the servo shaft lock the rotation force.  The screw only holds the horn down 
onto those ridges.  Over-tightening will strip the threads and leave the servo 
useless. 

 Reconnect power so that the program makes the servo hold its center position 
again.  The twist tie should now point straight up (or almost straight up) 
indicating the 90° position. 

 

ACTIVITY #3: PROGRAM TO HOLD POSITIONS 
Animatronics uses electronics to animate props and special effects, and servos are a 
common tool in this field.  Figure 4-16 shows an example of a robotic hand animatronics 
project, with servos controlling each finger.  The program that controls the hand gestures 
has to make the servos hold positions for certain amounts of time for each gesture.  In the 
previous activity, our programs made the servo hold certain positions indefinitely.  This 
activity introduces how to write code that makes the servo hold certain positions for 
certain amounts of time. 
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Figure 4-16 
Animatronic Hand 
 
Five servos pull bicycle brake cables 
threaded through the fingers and 
thumb to make them flex.   
 
This gives the microcontrollers 
control over each finger.   
 
 

 
Let’s try a program that sets the servos to the three different positions shown in Figure 
4-17.  The program will hold each position for 2.5 seconds.  It may be difficult to see, but 
make sure to check the P14 signal LED’s brightness with each position.  It should be just 
a little dimmer at 0 degrees, and slightly brighter the further counterclockwise it turns.   
 

 Figure 4-17: Servo Test Positions 

              
 
 
 Click SimpleIDE’s New Project button and name your project Servo-Positions. 
 Enter Servo-Positions.c into SimpleIDE. 
 Connect power (plug in external power and set PWR switch to 2). 
 Click SimpleIDE’s Load EEPROM & Run button. 
 Verify that the servo holds three positions that are about 90-degrees apart.  
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 Verify that the P14 servo signal indicator LED is slightly brighter in the 180 
degree position and slightly dimmer in the 0 degree position. 

Example Program: Servo-Positions.c 
/* Servo-Positions.c */ 
 
#include "simpletools.h"                      // Include simpletools header 
#include "servo.h"                            // Include servo header 
 
int main()                                    // main function 
{ 
  servo_angle(14, 0);                         // P14 servo to 0 degrees 
  pause(2500);                                // ...for 2.5 seconds 
  servo_angle(14, 900);                       // P14 servo to 90 degrees 
  pause(2500);                                // ...for 2.5 seconds 
  servo_angle(14, 1800);                      // P14 servo to 180 degrees 
  pause(2500);                                // ...for 2.5 seconds 
  servo_stop();                               // Stop servo process 
} 

How it Works – Servo-Positions.c 

As mentioned earlier, the program uses #include "servo.h" to access to all the servo 
library’s functions.  This program uses a function named servo_angle to set the various 
servo positions.  This function has two parameters: pin and degreeTenths.   
 
The statement servo_angle(14, 0) sends signals that make the servo connected to P14 
hold the 0-degree position.  The pause(2500) statement makes the servo hold that 
position for 2.5 seconds.  Next, servo_angle(14, 900) makes the servo hold a new 
position, 90-degrees.  Another pause(2500) allows it to hold that position for another 
2.5 seconds before servo_angle(14, 1800) makes the servo hold the 180-degree 
position.   

 
  servo_angle(14, 0); 
  pause(2500); 
  servo_angle(14, 900); 
  pause(2500);  
  servo_angle(14, 1800); 
  pause(2500); 

 
Last, but not least, the servo library’s servo_stop() function tells the servo to stop 
holding any position by shutting down the processor that was running the code that sends 
control signals to the servo. 
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  servo_stop(); 
 

 
The servo library can control up to 14 servos.  If your project needs more than 14, you can 
include the servoAux library, which can control an additional 14 servos.  

Your Turn – Programs to Point the Servo in Different Directions 

Figure 4-18 shows a few servo_angle statements that tell the servo to hold certain 
major positions: 0°, 30, 45°, 90°, 135°, and 180°.   
 
 Use SimpleIDE’s Save Project As button, and re-name the project Servo-

Positions-YourTurn. 
 Modify the program so that it visits each of the positions shown in Figure 4-18.  

Pick a different amount of time from 1 second to 3 seconds for each hold time.  
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Figure 4-18: Servo Horn Positions  
Note that each one uses a different argument for the servo_angle function’s degreeTenths 
parameter 
 

 
 

ACTIVITY #4: CONTROLLING POSITION WITH YOUR COMPUTER 
Factory automation often involves microcontrollers communicating with larger 
computers.  The microcontrollers read sensors and transmit that data to the main 
computer.  The main computer interprets and analyzes the sensor data, and then sends 
position information back to the microcontroller.  The microcontroller might then update 
a conveyer belt’s speed, or a sorter’s position, or some other mechanical, motor-
controlled task.  The control system pattern is input, process, output. 
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In this activity, you will program the Propeller to interact through the SimpleIDE 
terminal.  The program will make the Propeller send messages to the SimpleIDE terminal 
with instructions to enter servo positions and hold times.  The Propeller program will also 
read the values you type and control the servo accordingly.   

Parts and Circuit 

Same as Activity #2 

Programming the Propeller to Receive Messages from SimpleIDE Terminal 

You can use the SimpleIDE Terminal to send messages from your computer to the 
Propeller as shown in Figure 4-19.  The Propeller has to be programmed to listen for the 
messages you send using the SimpleIDE Terminal, and it also has to store the data you 
send in one or more variables.   
 

  

Figure 4-19 
Sending Messages 
to the Propeller 
 
Click to the right of 
the prompt and type 
your answer. 

 
 Click SimpleIDE’s New Project button, and save as Servo-TerminalControl. 
 Click Run with Terminal. 
 Click to the right of the “Enter angle:” prompt and type a value in the 0–180 

range, then press Enter.  (Don’t enter a value larger than 180 here! We’ll get to 
that later.) 

 Repeat for hold time in seconds — use a small number because it’s the number 
of seconds you’ll have to wait — then press Enter again. 

 Verify that the servo holds the specified position for the amount of time before 
prompting you for a new position and time. 
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Example Program: Servo-TerminalControl 
/* Servo-TerminalControl.c */ 
 
#include "simpletools.h"                      // Include simpletools 
#include "servo.h" 
 
int main()                                    // Main function 
{ 
  int angle, time;                            // Variables 
 
  while(1)                                    // Main loop 
  { 
    print("Enter angle: ");                   // Prompt for angle 
    scan("%d", &angle);                       // Get angle 
 
    print("Enter time: ");                    // Prompt for time 
    scan("%d", &time);                        // Get time 
 
    angle *= 10;                              // Degrees -> degree tenths 
    time *= 1000;                             // Seconds -> milliseconds 
 
    print("Holding...\n\n");                  // Indicate holding 
 
    servo_angle(14, angle);                   // Set servo to position 
    pause(time);                              // For specified time 
  }   
} 

How it Works - Servo-TerminalControl 

Inside the main function, the first line declares a couple of int variables, angle and 
time.   
 

  int angle, time; 
 
Inside the while(1) loop a print statement displays the message "Enter angle: ". 
 

  print("Enter angle: "); 
 

Next we have a new function, scan.  It’s like print, but instead of sending info from 
Propeller to terminal, it makes the Propeller receive information from the Terminal.  Like 
print, the %d formatting flag specifies a decimal integer value, but this time, it’s going to 
get stored in the angle variable.   

 
  scan("%d", &angle); 
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One key difference between print and scan is that you have to put the & sign in front of 
the variable that gets the value with scan.  When we printed a value with print("%d", 
angle), we used the % symbol.  That’s because the print function is designed to send 
the value of the angle variable to SimpleIDE Terminal.  In contrast, the scan function 
needs to know the variable’s address in RAM, so scan("%d", &angle) passes the 
address of the angle variable with the & operator.  After it converts the characters you 
type into a decimal integer value, it writes that value to the memory set aside for the 
angle variable in the Propeller chip’s RAM. 
 

 

What’s the difference between a variable’s value and its address?  
Each variable stores a value at a certain location in the Propeller microcontroller’s RAM 
(random access memory), which has 32,768 bytes.  There’s the 0th byte, the 1st byte, 2nd 
byte, and so on, up to the 32,767th byte.  Each of these bytes can contain a value in the 0 to 
255 range (unsigned char) or -128 to 127 (char).  Four bytes together form an int variable, 
which can contain a value in the -2,147,483,648 to 2,147,483,647 range.   
Let’s say that the user types 135, causing scan to enter 135 in the angle variable and that 
variable occupies the 32,752th through 32,755th bytes in Propeller RAM.  Its address would 
be 32,752.  The variable’s value would be 135, but its address would be 32,752. 

 
The program repeats the same two calls to prompt for a time, and then gets the time 
value from SimpleIDE Terminal. 
 

    print("Enter time: "); 
    scan("%d", &time); 
 

The servo_angle call needs a value that describes the angle in terms of tenths of a 
degree.  So angle *= 10, which is the C language shorthand version of angle = angle 
* 10, changes the value angle stores from degrees to tenths of a degree.  So, if you 
typed in 135, the result would be 1350.  The time *= 1000 statement performs a similar 
operation on the time variable, converting the seconds value that was entered into 
thousandths of a second since it’s going to be used in the pause function.  If you entered 
3 for time, time it’ll be converted to 3000. 

 
    angle *= 10; 
    time *= 1000; 
 

The program is just about ready to put the servo in a new position for a new amount of 
time.  Just before that, this print statement displays the "Holding...\n\n" message. 
 

    print("Holding...\n\n"); 
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Now that we have an angle in tenths of a degree and a time in milliseconds, we can use 
those variables in servo_angle(14, angle) and pause(time).  The values stored by 
each variable get passed to the functions and they use those values to do their jobs, 
making the servo connected to P14 hold the 1350 tenth of a degree position for 3000 
milliseconds, for example. 

 
    servo_angle(14, angle); 
    pause(time); 

Your Turn – Setting Limits in Software 

Let’s imagine that this computer servo control system is one that has been developed for 
remote-control.  Perhaps a security guard will use this to open a shipping door monitored 
from a control room.  Maybe a college student will use it to control doors in a maze that 
mice navigate in search of food.  Maybe a researcher will use it to aim their high-
powered telescope at a certain constellation.  If you are designing the product for 
somebody else to use, the last thing you want is to give the user (security guard, college 
student, researcher) the ability to enter the wrong number that could damage the 
equipment or give unexpected—and possibly disastrous—results. 
 
While running Servo-TerminalControl, it is possible to make a mistake while typing the 
angle value into the SimpleIDE Terminal.  Let’s say the user accidentally typed 220 
instead of 20 for the angle, and pressed Enter.  The value 220 would cause the servo to try 
to turn to a 220-degree position, beyond its mechanical limits.  Although it won’t 
instantly break the servo, it’s certainly not good for the servo or its useful lifespan.   
 
A couple of if… statements just before the servo_angle call can prevent this problem. 
 
 Click SimpleIDE’s Save Project As button, and save as Servo-TerminalControl-

YourTurn. 
 Add the lines with the // <- add comments to your code between the 

print("Holding...\n\n") and servo_angle(14, angle) statements. 
 Try entering a value that’s out of range (like 200 or -10), and verify that it makes 

the correction before positioning the servo. 
 

print("Holding...\n\n"); 
 
if(angle > 1800) angle = 1800;         // <- add 
if(angle < 0) angle = 0;               // <- add 
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print("angle = %d degree tenths\n",    // <- add 
       angle);                         // <- add  
 
servo_angle(14, angle); 

 

ACTIVITY #5: CONVERTING POSITION TO MOTION 
In this activity, you will program the servo to change position at different rates.  By 
changing position by a few degrees at a time instead of all at once, you can make it seem 
that the servo horn is rotating more slowly.  It’s actually advancing positions 
incrementally, but the motor’s response takes the jitter out of those increment changes so 
that the horn “turns” instead of taking tiny steps.    

Programming a Rate of Change for Position 

The servo library has to send the servo a signal that repeats itself 50 times per second to 
make it hold any given position.  That’s why the library uses another cog so that the exact 
timing of the signals does not interrupt any other task the Propeller is performing.  Use 
your calculator to divide 50 into 1, and you’ll see that 1/50th of a second is 0.02 seconds.  
That’s 20 thousandths of a second, or 20 ms, which is the manufacturer's requirement for 
the Parallax Servo.  So this next example program makes the servo turn from 0 to 180 in 
steps of 6 every 20 ms.  Then, it returns twice as fast, in steps of 12 every 20 ms. 

Example Program: Servo-Velocities.c 

 Click SimpleIDE’s New Project button, and save as Servo-Velocities. 
 Enter Servo-Velocities.c into SimpleIDE. 
 Click the Load EEPROM and Run button.  Don't forget to set your power switch 

to 2. 
 Monitor the servo as it turns gradually from 0 to 180, then twice as quickly back 

to zero. 
 

/* Servo-Velocities.c */ 
 
#include "simpletools.h"                            // Header includes 
#include "servo.h" 
 
int main()                                          // main function 
{ 
  int angle;                                        // Declare angle variable 
 
  while(1)                                          // Main loop 
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  { 
    for(angle = 0; angle <= 1800; angle += 6)       // 0 to 180, steps of 6 
    { 
      servo_angle(14, angle); 
      pause(20); 
    } 
 
    for(angle = 180; angle > 0; angle -= 12)        // 180 to 0, steps of 3 
    { 
      servo_angle(14, angle); 
      pause(20); 
    } 
  } 
} 

How Servo-Velocities.c Works 

We only need one variable for this operation, an int variable named angle. 
 
int angle; 
 

A for… loop starts with angle = 0.  Each time through the loop, angle advances by 6.  
The servo_angle(14, angle) uses that angle value to position the servo, each time 
increasing by 6 tenths of a degree, for 20 ms (1/50th of a second).  This causes the servo 
to turn from 0 to 180 gradually. 

 
for(angle = 0; angle <= 1800; angle += 6) 
{ 
  servo_angle(14, angle); 
  pause(20); 
} 
 

The loop that turns the servo back from 180 to 0 subtracts 12 from angle each time 
through.  This makes it seem like it’s turning from 180 to 0 twice as fast. 

 
for(angle = 180; angle > 0; angle -= 12) 
{ 
  servo_angle(14, 0); 
  pause(20); 
} 



Control Position and Motion · Page 127 

Your Turn – Adjusting the Velocities 

You can change the += 6 and -= 12 to different values to customize the speed of the 
servo’s sweep and return.  There’s a limit to how far the servo can turn in 1/50th of a 
second, and you can test to find it. 
 
 Use SimpleIDE’s Save Project As button, re-name the copy Servo-Velocities-

YourTurn.   
 Try changing += 6 to += 3 and -= 12 to -=8.  Observe the changes; do they 

match what you expect? 
 Try increasing the sweep step size a little bit at a time until you start to notice 

that the servo doesn’t make it all the way to the end of its range of motion.  
That’s the indicator that your program is asking the servo to turn faster than its 
motor can keep up with. 

 

ACTIVITY #6: PUSHBUTTON-CONTROLLED SERVO 
In this chapter, you have written programs that make the servo go through a pre-recorded 
set of motions, and you have also controlled the servo with the SimpleIDE Terminal.  
Now, let’s program the Propeller to control the servo based on pushbutton inputs.  In this 
activity you will: 
 

• Build a circuit for a pushbutton servo control.  
• Program the Propeller to control the servo based on those pushbutton inputs. 

 
When you are done, you will be able to press and hold one button to get the Propeller to 
rotate the servo in one direction, and press and hold the other button to get the servo to 
rotate in the other direction.  When no buttons are pressed, the servo will hold whatever 
position it moved to last. 

Extra Parts for Pushbutton Servo Control 

The same parts from the previous activities in this chapter are still used.  In addition, you 
will need to gather the following parts for the pushbutton circuits:  
 
(2) Pushbuttons – normally open 
(2) Resistors – 10 kΩ (brown-black-orange) 
(2) Resistors – 220 Ω (red-red-brown) 
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(2) Jumper wires (red) 

Adding the Pushbutton Control Circuit 

Figure 4-20 shows the pushbutton circuits that you will use to control the servo.   
 
 Add this circuit to the servo+LED circuit that you have been using up to this 

point.  When you are done, your circuit should resemble Figure 4-21. 
 

     

Figure 4-20 
Pushbutton 
Circuits for Servo 
Control 
 

 

 
     

Figure 4-21 
Propeller Activity 
Board Servo, 
LED and 
Pushbutton 
Circuits 
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 First just test your pushbutton circuit independent of servo control. Test the 
pushbutton connected to P3 using the original version of Button-ReadState.c.  
The program and the instructions on how to use it begin on page 73. 

 Modify the program so that it reads P4. 
 Run the modified program to test the pushbutton connected to P4. 

Programming Pushbutton Servo Control 

if… statements inside a while loop can be used to increase or decrease the servo’s angle 
while the button is pressed.  In addition to checking if the button is pressed, the program 
also needs if… statements to make sure they have not exceeded the servo’s range of 
motion.  The solution for this is recycled from Activity #4’s Your Turn section. 

Example Program: Servo-ButtonControl.c 

This example program makes the servo’s horn rotate counterclockwise when the P4 
pushbutton is pressed.  The servo’s horn will keep rotating so long as the P4 pushbutton 
is held down and the value of angle is smaller than 1800.  When the P3 pushbutton is 
pressed, the servo horn rotates clockwise.  The servo also is limited in its clockwise 
motion because the angle variable is not allowed to go below 0.  The SimpleIDE 
Terminal displays the value of angle while the program is running.   
 
 Click SimpleIDE’s New Project button, and save as Servo-ButtonControl. 
 Enter Servo-ButtonControl.c into SimpleIDE. 
 Click Run with Terminal. 
 Verify that the servo turns counterclockwise (until 180-degrees) when you press 

and hold the pushbutton connected to P4.   
 Verify that the servo turns clockwise (down to 0-degrees) when you press and 

hold the P3 pushbutton.   
 
/* Servo-ButtonControl.c */ 
 
#include "simpletools.h"                      // Include simple tools 
#include "servo.h" 
 
int main()                                    // Main function 
{ 
  int angle = 900;                            // Servo angle variable 
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  while(1)                                    // Main loop 
  { 
    if(input(4) == 1)                         // P4 button pressed? 
      angle += 18;                             // ...increase angle 
     
    if(input(3) == 1)                         // P3 button pressed? 
      angle -= 18;                             // ...decrease angle 
 
    if(angle > 1800) angle = 1800;            // Limit angle 
    if(angle < 0) angle = 0; 
 
    print("%c angle = %d %c",                 // Display angle 
           HOME, angle, CLREOL); 
 
    servo_angle(14, angle);                   // Set servo to position 
 
    pause(20);                                // Wait 1/50th second 
  }   
} 

How it Works – Servo-ButtonControl 

At the start of the main function, an int variable named angle is declared and initialized 
to 900.  This should start the servo at 90 degrees. 

 
int angle = 900; 
 

In the while(1) loop, if the P4 pushbutton is pressed, the number 18 gets added to the 
angle variable.  If the P3 button is pressed, the number 18 gets subtracted from angle. 

 
if(input(4) == 1) 
  angle += 18; 
     
if(input(3) == 1) 
  angle -= 18; 
 

This is the code from the Activity #4 Your Turn section that prevents the servo from 
turning outside its mechanical limits by changing the angle variable’s value to 1800 if it 
tries to exceed it, or to 0 if it tries to drop below it. 

 
if(angle > 1800) angle = 1800; 
if(angle < 0) angle = 0; 
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With only 1/50th of a second pause between updates, this program keeps the angle 
variable information on a single line.  Otherwise, it would scroll too fast and not be 
readable.   

 
print("%c angle = %d %c", 
       HOME, angle, CLREOL); 
 

At this point, the angle variable has been adjusted if one of the buttons is pressed and its 
value limited to stay within the servo’s mechanical limits.  So this statement sets the 
servo connected to P14 to the position dictated by the angle variable’s value, which is 
the position in 10ths of a degree from 0 to 1800.   

 
servo_angle(14, angle); 
 

The servo library only updates the servo position 50 times per second, so the program 
should wait for 20 ms (1/50th of a second) before allowing the while loop to repeat. 

 
pause(20); 

Your Turn – Speed and Limit Adjustments 

You can change the 18s in these statements to larger values to make the servo respond 
more quickly, or smaller values to make the servo respond more slowly. 
 

if(input(4) == 1) 
  angle += 18; 
     
if(input(3) == 1) 
  angle -= 18; 
 

You can also limit the servos’ range of motion by decreasing the 1800 values 
(counterclockwise limit) and/or increasing the 0 values.  Make sure to adjust both 1800s 
and both 0s. 

 
if(angle > 1800) angle = 1800; 
if(angle < 0) angle = 0; 
 

 Click SimpleIDE’s Save Project As button, and save as Servo-ButtonControl-
YourTurn. 

 Try it! 
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SUMMARY  
This chapter introduced microcontrolled motion with the Parallax Standard Servo, 
including the following: 
 

• What a servo is, and the parts of a servo. 
• What servos are used for in a variety of industries and devices. 
• Servo control signals that are required to set and hold a servo’s position. 
• How to safely supply power to a Parallax Standard Servo via a Propeller Activity 

Board. 
• How to use the functions in the servo.h library to control the servo’s position 

with functions such as servo_angle and servo_stop. 
• How to use the SimpleIDE terminal and the scan function to send values to a 

program during run time. 
• The difference between a variable’s value and a variable’s address. 
• How to use if(condition…) statements to set limits in software, so the 

program does not attempt to push the servo beyond its mechanical limits. 
• How to build a circuit that uses the Propeller microcontroller to control a servo 

with pushbuttons. 

Questions 

1. What are the five external parts on a servo?  What are they used for? 
2. Is an LED circuit required to make a servo work? 
3. What command controls the angle the servo’s horn gets turned to?  What are its 

parameters? 
4. What function can you use to control the amount of time that a servo holds a 

particular position? 
5. How do you use the SimpleIDE Terminal to send messages to the Propeller?  

What function was used to make the Propeller receive messages from the 
SimpleIDE Terminal? 

Exercises 

1. Write code that positions the servo at 60 degrees for 3 seconds, then at 120 
degrees for 2 seconds. 

2. Write a code block that sweeps the value of angle controlling a servo’s position 
from 700, to 800, then back to 700, in increments of (a) 1, (b) 4.   
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Project 

1. Modify ServoVelocities so that the P3 pushbutton functions as a “kill switch”, 
causing the windshield wiper motion to cease.  Hints:  You can use code that 
says if(condition) break; to a code block to “break out” of it before all the 
loop’s repetitions are done.  (1) Declare a variable named button before the 
while loop starts and initialize it to zero.  (2) Read the P3 button inside each 
for… loop and save its state to a variable named button.  Example: button = 
input(3).  (3) Add  if(button == 1) break;  to each for… loop.  (4) Also 
add if(button == 1) break; after each for… loop so that you can get out of 
the while loop too.  (5) If the code exits the while loop, it should execute a 
servo_stop(); call before the main function runs out of commands and ends.  
This will stop the cog running the servo control code and release control of the 
servo so that you can manually turn it again.   

Solutions 

Q1. Plug – connects servo to power and signal sources; 2) Cable – conducts power 
and signals from plug into the servo;  3) Horn – the moving part of the servo; 4) 
Screw – attaches servo’s horn to the output shaft; 5) Case – contains DC motor, 
gears, and control circuits.  

Q2. No, the LED just helps us see what's going on with the control signals. 
Q3. The function is servo_angle, and its parameters are pin (I/O pin number) and 

degreeTenths (position).   
Q4. The pause function. 
Q5. Click the SimpleIDE Terminal and start typing.  Use the scan(“%d”, 

&variableName) to pass the address of the variable you want scan to fill with 
the result you typed into the terminal.  

 
E1. A couple if... statements did the job in this chapter.  Example: if(angle > 

1800) angle = 1800. 
 

servo_angle(14, 600); 
pause(3000); 
servo_angle(14, 1200); 
pause(2000); 

 

 

E2. a) Increments of 1 
 

for(angle = 700; angle <= 800; angle++) 
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{ 
servo_angle(14, angle); 
pause(20); 
} 
for(angle = 800; angle > 700; angle--) 
{ 
servo_angle(14, angle); 
pause(20); 
} 

 
b) Increments of 4 

 
for(angle = 700; angle <= 800; angle += 4) 
{ 
servo_angle(14, angle); 
pause(20); 
} 
for(angle = 800; angle > 700; angle -= 4) 
{ 
servo_angle(14, angle); 
pause(20); 
} 

 
P1. There are many possible solutions, here is one.   

 
/* Servo-P1-Solution.c */ 
 
#include "simpletools.h"                            // Header includes 
#include "servo.h" 
 
int main()                                          // main function 
{ 
  int angle;                                        // Declare angle variable 
  int button = 0;                                   // <- Add 
 
  while(1)                                          // Main loop 
  { 
    for(angle = 0; angle <= 1800; angle += 6)       // 0 to 180, steps of 6 
    {  
      servo_angle(14, angle); 
      pause(20); 
      button = input(3);                            // <- Add 
      if(button == 1) break;                        // <- Add 
    } 
    if(button == 1) break;                          // <- Add 
 
    for(angle = 180; angle > 0; angle -= 12)        // 180 to 0, steps of 3 
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    { 
      servo_angle(14, angle); 
      pause(20); 
      button = input(3);                            // <- Add 
      if(button == 1) break;                        // <- Add 
    } 
    if(button == 1) break;                          // <- Add 
 
  } 
 
  servo_stop();                                     // <- Add 
 
} 
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Chapter 5: Write Multicore Code 
 
Multicore isn’t just for code tucked away in libraries like servo.h.  You can also use it in 
your programs to make different processors (cogs) pay attention to different tasks at the 
same time.  With multiprocessing, your program do things like have one processor focus 
on a repetitive task requiring high speed and precision, while another processor focuses 
on a different task without interruption.  That different task might be waiting for input 
signals, repeat at a different rate, or whatever else is needed.  The best part is that code 
for each task can exchange information by simply updating and checking certain 
variables.   
 

 

Figure 5-1 
Multiprocessing is like 
teamwork 

 
The previous chapter introduced you to multiprocessing with the terminal-controlled 
servo position example.  The servo needed to receive precisely timed signals every 20 
milliseconds.  A library took care of that in another cog.  Meanwhile, the cog running the 
main function could wait patiently for the next servo position to be typed in without 
having to repeatedly take breaks every 20 ms to send the next servo control signal.   
 
In this chapter, you will write a variety of multicore programs that make more than one 
processor execute different parts of your program at the same time.  The parts of your 
program that processors will execute are called functions, which are some of the most 
widely used C language building blocks.  Functions tucked away in libraries that you 
have been using already include high, low, pause, print, etc., but now you’ll write 
your own.  This chapter also introduces global variables (you’ve been using local 
variables up until now), and explains the difference with a term called variable scope.  It 
also shows how to add global variables to your programs, and what you need to do so that 
those variables can be accessed by functions running in different processors.      
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INTRODUCING THE FUNCTION 
Up to now, the example programs have used functions that were already defined within 
some library. All your code needed to do was #include the function’s library, such as 
simpletools.h and servo.h, and then call the function with arguments to pass to its 
parameters as needed.  
 
Now, let’s see how to make custom functions right in your program.  Figure 5-2 shows an 
example of a function definition you can add to your program.  This function contains 
two print statements that send messages to the SimpleIDE Terminal — these will let 
you know that code in the function is getting executed.  The “curly” braces { } contain 
the two statements that make up the function’s code block.   
 
The first line is the function prototype, and it typically contains three elements in this 
order: a return value, a function name, and a parameter list.  This function’s name is 
hello.  In this case, hello does not send any information back when it is done 
executing, so the term void is used instead of a return value.  The hello function does 
not need to receive any values (arguments) to do its job, so its parameter list is just 
(void) inside parentheses.    
 
Figure 5-2: Function Definition for Hello Function 

 
 
Figure 5-3 shows a code example with two functions, named main and hello.  Yes, 
main is also a function, a special one since programs start executing with the first 
statement in main.  The hello function was added below the main function.   
 

hello function 

function 
prototype 

code block 
contained by 
curly braces 

statement(s) 
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Inside main, we have the hello()function call.  It tells the program to go find the hello 
function, execute all of its statements, and come back (return) when done.  After the 
function call is done, code execution resumes where it left off, at the statement that 
comes right after the hello call in main.   
 
The forward declaration is a “heads-up” statement for the C compiler that it might find a 
call to a function named hello before it ever sees the function itself.   
 
Figure 5-3: How to Call a Function in Your Code 

 
 

ACTIVITY #1: TEST THE MULTI-HELLOFUNCTION 
Judging from Figure 5-3, we should expect the program to print “In main”, then “In hello 
function” followed by “Back in main.”  In other words, the SimpleIDE Terminal output 
should resemble Figure 5-4.  Let’s check and see.  

function call 

return 

Forward 
declaration 
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Figure 5-4 
SimpleIDE 
Terminal Output 
from the Figure 
5-3 program. 

Example Program: Multi-HelloFunction 

 Click SimpleIDE’s New Project button, name the project Multi-HelloFunction, 
and save it to My Projects.   

 Enter the Multi-HelloFunction code into SimpleIDE.   
 Click SimpleIDE’s Run with Terminal button. 
 Verify that your output resembles Figure 5-4. 

 
/* Multi-HelloFunction.c */ 
 
#include "simpletools.h"                      // Library include 
 
void hello(void);                             // Forward declaration 
 
int main()                                    // Main function 
{ 
  print("In main.\n\n");                      // First message 
 
  hello();                                    // Call hello (2 messages) 
 
  print("Back in main.\n");                   // Fourth message 
} 
 
void hello(void)                              // Function definition 
{                                             // Opening code block brace 
  print("In hello\n");                        // Second message 
  print("function.\n\n");                     // Third message 
}        // Closing code block brace 
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How it Works 

After the #include for simpletools, and before the main function, we need a forward 
declaration for the hello function: void hello(void);.  It’s just like the first line in 
the hello function definition, but it’s followed by a semicolon instead of the entire code 
block.  It lets the C compiler know there will be calls to this custom function coming up. 
 
The void before hello means this function does not return a value.  The (void)after 
hello means this function does not require any parameters. 
 

#include "simpletools.h" 
 
void hello(void); 
 

Inside the main function, we have a print statement that displays "In main.\n\n" in the 
SimpleIDE Terminal.  The second statement is a hello function call.  This tells the 
program, “Go find the function named hello, execute its code, and come back when 
done.”  After the hello function is done, the main function prints, "Back in main.\n" 
before running out of code and ending the program. 
 

int main() 
{ 
  print("In main.\n\n"); 
 
  hello(); 
 
  print("Back in main.\n"); 
} 

 
When the main function got to the hello function call, it skipped to the function 
definition, executed the two statements in its code block, and then returned. 
 

void hello(void) 
{ 
  print("In hello\n"); 
  print("function.\n\n"); 
} 
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Forward Declarations – Get in the Habit   
If you put all of your custom function definitions before the main function, forward 
declarations are not necessary. However, many programmers find code easier to follow 
when it begins with forward declarations before main, and function definitions after main.   
You might forget to add a forward declaration and discover that your code still runs.  Why? 
The PropGCC compiler is “forgiving” — it can figure out what to do if a forward declaration is 
missing from a single-core program*.  But, forward declarations are absolutely required for 
running our upcoming multi-core Propeller C programs, so it is best to get into the habit of 
using them to keep your coding options open.   
Compilers for other devices and other C-related programming languages might not be so 
forgiving if you forget forward declarations, so again, best to get in the habit now. 
*Forgetting a forward declaration does generate a compiler warning. To view all warnings, 
see SimpleIDE Help. 

Your Turn – Multiple Hello Calls 

A key advantage to functions is that they allow you to create reusable blocks of code.  
Here is an example that calls hello a second time. 
 
 Save a copy as Multi-HelloFunction-YourTurn1, and update the main function 

to match the example below.  What do you think the code will do now? 
 Click Run with Terminal.  Were you right? If so, great!  If not, look at the code 

carefully and make sure you’re clear on what’s happening before moving on. 
  

int main() 
{ 
  print("In main.\n\n"); 
 
  hello(); 
  hello();                   // <- add 
 
  print("Back in main.\n"); 
} 

 
 You can even do things like add a loop to your main function that calls hello 

repeatedly.  Save a new copy as Multi-HelloFunction-YourTurn2 and try 
replacing the two hello calls with this loop: 

 
for(int i = 0; i < 4; i++) 
{ 
  hello(); 
} 
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ACTIVITY #2: PARAMETERS AND RETURN VALUES 
Take a look at Figure 5-5.  Here, a function named add has different features that the 
hello function above didn’t have.  You probably guessed that add adds two numbers 
together.  But, how does it get those numbers?  And what does it do with the answer? 
 
In Figure 5-5, arrows show how two arguments from the add function call in main are 
passed to the actual add function’s parameters: 2 is passed to a, and 3 is passed to b.  
Inside add, the first statement declares an int variable named c, and assigns it the result 
of a + b.  Next is return c, which means that the function will send the value stored in 
c (5 in this example) back to the call in main.   That result gets stored in a value named 
sum. After the add call, a print statement lets us see the value of the sum variable.  
 

  

Figure 5-5 
Function with Parameters 
and Return Value 

 

Parameter options:  Parameters can receive both values and expressions as arguments.  
For example, int x = 2, y = 3; int sum = add(x, y) is a valid function call too. 
Return value tricks: In this example, the add function’s return value was stored in the sum 
variable.  Then, sum was used in the next instruction.  However, you can place a function 
call right inside the instruction or expression where you’d like the return value to be used.  
For example, if(add(a, b) > 5)…, and for(int i = 0; i < add(2, 3), 
i++)… all contain valid function calls.  
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Let’s make sure this program works as expected. 

Example Program: Multi-TestFunction 

 Create a New Project, name it Multi-TestFunction, and save it to My Projects. 
 Enter the Multi-TestFunction.c code into SimpleIDE.   
 Click SimpleIDE’s Run with Terminal button. 
 Verify that the output of the unmodified code matches Figure 5-6. 
 Try passing different integer values, and see if the results are correct each time. 

 
/* Multi-TestFunction.c */ 
 
#include "simpletools.h" 
 
int add(int a, int b); 
 
int main() 
{ 
  int sum = add(2, 3); 
 
  print("sum = %d\n", sum); 
} 
 
int add(int a, int b) 
{ 
  int c = a + b; 
  return c; 
} 

 

 

Figure 5-6 
SimpleIDE 
Terminal Output 
from the Add 
Function. 

How It Works 

Unlike the simple hello function in the last example, the add function requires two 
parameters and returns a value.  In its function prototype, int to the left of add means it 
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returns an int value when it’s done.  The two-item parameter list to the right of add 
means it needs to receive two integer values as arguments from each function call.   

 
#include "simpletools.h" 
 
int add(int a, int b); 

 
The main function starts with the function call int sum = add(2, 3).  The add(2, 3) 
part of this statement sends the values 2 and 3 to the add function. Then, the add function 
does the math and sends back the answer with return c.  Back in the function call, the 
int sum = part stores the answer in a variable named sum.  Then, the main function 
prints "sum = ", followed by the value of sum, and a newline character (just in case you 
want to add a statement that prints something on the next line). 
 

int main() 
{ 
  int sum = add(2, 3); 
 
  print("sum = %d\n", sum); 
} 

 
When the main function executes add(2, 3), it passes the value 2 to the add function’s 
a parameter and 3 to its b parameter.  Now the add function has two variables loaded 
with values, so it is ready to execute int c = a + b for a result of 5.  The return c 
statement sends the value of 5 that c stores back to the function call in main.      
 

int add(int a, int b) 
{ 
  int c = a + b; 
  return c; 
} 

 

 

Another way to think about a return value:  
Before the call, we have: 
int val = add(2, 3); 

When add returns its value, it’s helpful to imagine that the function call becomes that return 
value. 
int val = 5;   
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Try This – One Program, More Functions 

Let’s try putting a subtract function in a copy of Multi-TestFunction.c.   
 
 Save a copy of the Multi-TestFunction as Multi-TestFunction-TryThis. 
 Make a second function below the add function, named subtract, with two int 

parameters a and b, and an int return value 
 Make the subtract function’s operation int c = a – b, that returns c.  

 
int subtract(int a, int b) 
{ 
  int c = a - b; 
  return c; 
} 

 
 Update the forward declarations to include a subtract function prototype. 

 
int subtract(int a, int b); 

 

 In main, add a function call to subtract that stores the return value in an int 
variable named difference. 
 

int difference = subtract(2, 3); 
 
 Make another print statement to display difference. 

 
print("val difference = %d\n", difference); 

 
 Run the code and verify that it works as you expect. Debug, rinse, repeat! 

Your Turn – A Function That Repeats 

Do you remember the simple hello function from Activity #1?  To make “Hello!” print  
again, you had to call the hello function again. A for loop inside main is one way to 
call a function repeatedly.  Another way is to put the for loop inside the function itself, 
and add a parameter to specify how many times the loop should repeat. Let’s try it. 
 
 Save a copy of the Multi-TestFunction as Multi-TestFunction-YourTurn. 
 Enter the Multi-TestFunction-YourTurn code into SimpleIDE. 
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 Click SimpleIDE’s Run with Terminal button and verify that SimpleIDE 
Terminal displays six “Hello!” messages. 

 
/* Multi-TestFunction-YourTurn.c */ 
 
#include "simpletools.h" 
 
void hellos(int reps); 
 
int main() 
{ 
  hellos(6); 
} 
 
void hellos(int reps) 
{ 
  for(int i = 0; i < reps; i++) 
  { 
    print("Hello!\n"); 
  } 
} 

 

ACTIVITY #3: VARIABLE SCOPE 
C language has a feature called variable scope that allows you to control what sections of 
code can access a variable to check its value (read it) or modify it (write to it).  Scope is 
determined by where the variable is declared.  There are two things to think about: code 
blocks, and position within the block. 
 
Up to now, all the example programs contained only local variables. A local variable can 
only be used inside the code block where it was declared, by code that comes after the 
declaration. Variables must be declared before they can be used, so they are often placed 
right after the opening curly brace of a code block. The code block could be for the main 
function, a custom function, or even for a conditional loop such as while(1).    
 
A global variable can be used by any code within the application. Global variables must 
be declared outside of any code block, including the main function.  They are often 
placed right after any #include statements.   
 
In this activity, you will experiment with variables of different scope.  Upcoming 
activities will then use global variables to exchange information between functions 
running in different Propeller cores at the same time. 
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Local Scope Examples 

In previous chapters, program variables were declared right after the opening curly brace 
of the main() function, above the rest of the code in main().  In those programs, the 
variables could be used in any code that came after them inside of main(), including 
inside other code blocks that were nested within main().  That’s a pretty broad scope, 
though still local to main().  
 
You may have noticed an exception, in for loops, like this one:  

 
  for(int x = 1; x <= 10; x++)   
  { 
    print("x = %d\n", x); 
  }  
 

Here, an int variable x is declared right inside the for statement, and is then used again 
inside the for code block.  This x variable is local to this for loop; as if it only exists 
while this instruction is being executed.   
 
If you were to also declare another int x; elsewhere within main, the for loop itself 
would not use that value for x.  The x local to this for loop does not read nor modify any 
variables with the same name that are declared outside of the loop.   
 
It sounds confusing, but it’s easier to see with an example. 

Example Program: Multi-LocalScope 

 Click SimpleIDE’s New Project button.  Name the project Multi-LocalScope, 
and save it to My Projects. 

 Enter the Multi-LocalScope.c code into SimpleIDE.   
 Click SimpleIDE’s Run with Terminal button. 
 Check your terminal output against Figure 5-7.   

 
/* Multi-LocalScope.c */ 
 
#include "simpletools.h"                       // Include simple tools 
 
int main()                                     // Main function 
{ 
  int x = 19;                                  // x local to main  
   
  print("x within main = %d\n", x);            // print val of x local to main 
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  pause(300);                                  // pause for serial terminal  
  
  for(int x = 1; x <= 3; x++)                  // x local to for loop    
  { 
    print("x within for loop = %d\n", x);      // print val of x local to for 
    pause(300);                                // pause for serial terminal 
  }  
   
  print("x within main = %d!\n", x);           // print val of x local to main   
   
} 

 

 

Figure 5-7 
SimpleIDE 
Terminal Output 
for Local 
Variables 

How it Works 

The variable declaration int x = 19; is right at the top of the main function’s code 
block. So, it is local to the main function, and can be used anywhere within it.  Next, a 
print statement displays the value of x in the SimpleIDE Terminal. 

 
int main()                                 
{ 
  int x = 19;                            
   
  print("x within main = %d\n", x);           
  pause(300);     
 

After a short pause, a for loop declares a new variable named x right inside its 
statement. Since this x was declared right here, it is local to the for loop.  Each time 
through the loop, the value of this x is printed to the SimpleIDE terminal and 
incremented by 1. 

 
  for(int x = 1; x <= 3; x++)                       
  { 
    print("x within for loop = %d\n", x);       
    pause(300);                                
  }  
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When the for loop is finished, the next line of code re-prints the value of the original x 
that was declared in main. This x is still equal to 19, since the for loop declared and used 
its own local variable x, ignoring the other. The x declared in main is unaffected by the 
for loop. 

   
  print("x within main = %d!\n", x);     
   
} 

Try This – Just One X 

What do you think would happen if the for loop did not declare a new int x variable in 
its statement so that it was local to just itself? By deleting a single term in the program, 
you can find out. 
 
 Save a copy of the program as Multi-LocalScope-TryThis. 
 Delete just the int in for(int x = 1; x <= 3; x++) 
 Run the modified program. Its SimpleIDE terminal output should look like 

Figure 5-8. 
 
Now, you can see that because the for loop is no longer declaring its own int x, it is re-
using the original x declared in main.  The for statement does reset x to 1, and the loop 
increments it three times. So, when x is printed for the last time from the main function, 
its value is now 4. 
  

 

Figure 5-8 
SimpleIDE 
Terminal Output 
for Local 
Variables 

 
These last two examples proved that, technically, a variable name can be re-used in a 
program as long as each instance has a different scope.  However, these examples also 
made it clear that it can be very confusing to read and edit code where the same name is 
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re-used for different local variables, and very easy to make a mistake that can lead to 
unexpected outcomes.   
 
Many programmers prefer to give each variable in an application a unique name, 
regardless of its scope, to make code more readable.  Still, it is quite common to re-use i 
(short for index) as a local variable in for loops. 

Global Scope Examples 

If you declare a variable outside of any functions, such as where the #include 
statements are, it will be global in scope. When a variable is global, all functions in the 
application can check its value and modify it. 

Example Program: Multi-LocalVsGlobal 

This next program underscores the difference between local and global variables by 
performing operations on variables with differing levels of scope in two different 
functions.  All the functions are still running in the same cog.   
 

 

Figure 5-9 
Local vs. Global 
Output 

 
 Click SimpleIDE’s New Project button.  Name the project Multi-LocalVsGlobal, 

and save it to My Projects. 
 Enter the Multi-LocalVsGlobal.c code into SimpleIDE.   
 Click SimpleIDE’s Run with Terminal button. 
 Check your terminal output against Figure 5-9.   
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/* Multi-LocalVsGlobal.c */ 
 
#include "simpletools.h"                      // Library include 
 
void myFunction();                            // Forward declaration 
 
int globalVar;                                // Global variable declaration 
 
int main()                                    // Main function 
{ 
  globalVar = 10;                             // Set global  
  int localVar = 3;                           // Declare & set local to main 
 
  print("In main.\n");                        // Display where we are 
  print("globalVar = %d, localVar = %d\n\n",  // Display variable values 
         globalVar, localVar);                 
 
  myFunction();                               // Call myFunction 
 
  print("Back in main.\n");                   // Display where we are again 
  print("globalVar = %d, localVar = %d\n\n",  // Display values yet again 
         globalVar, localVar);                 
} 
 
void myFunction()                             // Function, arbitrarily named 
{ 
  globalVar = 20;                             // Modify global variable 
  int localVar = 6;                           // Declare & set new localVar 
  print("In myFunction.\n");                  // Display where we are 
  print("globalVar = %d, localVar = %d\n\n",  // Display variable values again 
         globalVar, localVar);                 
} 

How it Works 

Right after including simpletools and the myFunction forward declaration, we have 
int globalVar.  Since this declaration is outside of any function, it is global. 
 

#include "simpletools.h" 
 
void myFunction();  
 
int globalVar; 

 
The main function starts by setting globalVar to 10.  Then, it declares and sets 
localVar to 3.  Since localVar is declared inside a function, the main function in this 
case, code inside main can check and modify its value, but code in other functions 
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cannot.  Next, two print statements display the “In Main…” message and the values of 
both variables. 
 

int main()   
{ 
  globalVar = 10;   
  int localVar = 3;  
 
  print("In main.\n");  
  print("globalVar = %d, localVar = %d\n\n", 
         globalVar, localVar);                 

 
The next thing that happens in main is the myFunction() call, so let’s look at that code. 
 

  myFunction();  
 

In myFunction, globalVar gets set to 20. A second local variable named localVar is 
declared—and so is only visible to this function—and set to 6.  Two print statements 
prove that the myFunction code is getting executed by displaying the updated value of 
globalVar along with the value of this second localVar.  Then, the function runs out of 
code and returns. 

 
void myFunction() 
{ 
  globalVar = 20;   
  int localVar = 6; 
  print("In myFunction.\n");   
  print("globalVar = %d, localVar = %d\n\n",  
         globalVar, localVar);                 
} 

 
Back in main the values get printed again.  This time, globalVar is 20 because it’s a 
global variable that myFunction changed from 10 to 20.  However, localVar is back to 
3.  That’s because this localVar is part of the main function.  The other instance of 
localVar in myFunction was set to 6, but it didn’t change this instance because it was 
local to myFunction, not main. 
 

  print("Back in main.\n");  
  print("globalVar = %d, localVar = %d\n\n",  
         globalVar, localVar);    
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Your Turn – Add a Global Variable and Operation 

Global variables can interact with local variables. Let’s add a second global variable to 
the project, and use it to store the value of globalVar * localVar inside myFunction.  
 
 Use SimpleIDE’s Save Project As button, rename the project to Multi-

LocalVsGlobal-YourTurn, and Save to the My Projects folder. 
 Add a second global variable to the project, named globalxLocal. 
 Inside myFunction, just above the print statements, add a statement that 

multiplies globalVar and localVar, and stores the result in globalxLocal. 
 Expand the second print statement to display the value of globalxLocal. 
 Click SimpleIDE’s Run with Terminal button and verify the result; 

globalxLocal should equal 120. 
  

ACTIVITY #4: RUN FUNCTIONS IN OTHER PROCESSORS (COGS) 
The Propeller chip has eight processors, called cogs or sometimes cores.  Each cog has its 
own number, 0 through 7.  When a program starts, the main function automatically runs 
in cog 0, leaving seven other cogs available to run other functions in your program.  In 
this activity, you will experiment with a program that uses another cog to run a function 
that blinks an LED.  You will also expand the program to make a second cog blink a 
second LED at a different rate. The main function in cog 0 will also be put to work, so 
that three different processes are running simultaneously. 
 
Figure 5-10 shows how two functions in the simpletools library, cog_run and cog_end, 
can be used to start a function in another cog, and stop it again.  The first one uses 
cog_run to start the blink function in the next available cog.  The second statement 
pauses for 3 seconds.   While cog 0 is busy executing the pause function, cog 1 starts 
running the blink function, switching P26 on/off repeatedly.  The third statement in the 
main function shuts down the cog running the blink function to make the LED stop 
blinking.  
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Figure 5-10: Function Example    

 
Note that the cog_run function has two parameters:  
 

1. The name of the function that will run in the new cog. (This gives the cog_run 
function the address in program memory where the named function resides.) 

2. A number of int variables to set aside for the new cog to perform its 
computations 

 
In Figure 5-10, the blink inside cog = cog_run(blink, 128) provides the blink 
function’s address. Then, 128 is the number of int variables to set aside for the cog’s 
computations.  This block of memory cog_run creates is called stack space. 
 

cog 0 

cog 1 
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The cog_run function returns the memory address for where it set aside the stack space 
and recorded the ID number of the cog it launched.  The example program set up a global 
pointer variable especially for storing this memory addresses with int *cog.  The * in 
front of the variable name tells the C compiler that that variable “points to” an address in 
memory (instead of just storing a value).   
 
The cog = part of cog = cog_run(blink, 128) copies the memory address cog_run 
returns to the cog pointer variable.  At the end of the main function, cog_end(cog) takes 
the memory address stored by that cog pointer variable and uses it to stop the cog.  This 
also frees the 128 int stack space for other uses. 
 

 

*cog is a global variable.  
In this case, the main function used cog_run to run the blink function in another cog and 
cog_end to end it.  Since int *cog is a global declaration, any function could use 
cog_end(cog) to end the blink function.   

Test Cog-Launching Code 

Let’s try the program from Figure 5-10.   

Example Program: Multi-CogRun 

 Click SimpleIDE’s New Project button.  Set the File name to Multi-CogRun and 
Save. 

 Enter the Multi-CogRun.c code into SimpleIDE.   
 Click SimpleIDE’s Load RAM & Run button. 
 Verify that the P26 LED blinks for 3 seconds, and then stops. 

 
/* Multi-CogRun.c */ 
 
#include "simpletools.h"                      // Library include 
 
void blink();                                 // Forward declaration 
 
int *cog;                                     // Pointer for cog data 
 
int main()                                    // Main function 
{ 
  cog = cog_run(blink, 128);                  // Run blink in other cog 
  pause(3000);                                // ...for 3 seconds 
  cog_end(cog);                               // then stop the cog 
} 
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void blink()                                  // Blink function for other cog 
{ 
  while(1)                                    // Endless loop for other cog 
  { 
    high(26);                                 // P26 LED on 
    pause(100);                               // ...for 0.1 seconds 
    low(26);                                  // P26 LED off 
    pause(100);                               // ...for 0.1 seconds 
  } 
} 

How it Works 

In addition to now-familiar functions like high, low, and pause, simpletools library also 
has cog_run for starting functions in other cogs and cog_end for stopping them. 
 

#include "simpletools.h" 
 
A forward declaration for the blink function is necessary, since blink is defined below 
the main function.  This way the compiler knows to expect it before it sees the first 
reference to it in the code.   
 

void blink(); 
 
Next, int *cog declares an int pointer variable named cog.  Unlike regular int 
variables, int pointer variables store memory addresses instead of values.  In this case, 
the cog pointer variable will store a memory address that gets returned from the cog_run 
function call.  The cog_end function will use the address stored in cog to stop that cog.  
 

int *cog; 
 
Inside the main function, cog = cog_run(blink, 128) is what makes the blink 
function run in the next available cog. The first argument cog_run needs is the function’s 
name without any parentheses next to it; this actually provides the starting memory 
address of the blink function.    The second argument cog_run needs is a number of int 
variables to set aside as stack space for the new cog to use; here, 128 int sized pieces of 
memory are allocated.  This is a recommended number for prototyping that you will see 
in many of this book’s example programs. 
 

int main() 
{ 
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  cog = cog_run(blink, 128); 
  pause(3000); 
  cog_end(cog); 
} 

 
Now, the cog = part of cog = cog_run(blink, 128) is put to use.  The cog_run 
function call returns the starting address of a memory block that holds the ID number of 
the cog that was launched as well as the stack space.  This address gets stored in the cog 
pointer variable. So now the blink function is running in a new cog, while the first cog is 
executing a 3 second delay from pause(3000).  After that, the cog_end(cog) function 
call uses the address stored in cog to shut down the cog running the blink function.   
 
Functions launched by cog_run have three requirements: an empty parameter list, void 
return type, and infinite loop structure. The infinite loop prevents it from running out of 
code and shutting itself down without releasing its stack space for re-use.  That’s a job for 
cog_end.   
 

void blink() 
{ 
  while(1) 
  { 
    high(26); 
    pause(100); 
    low(26); 
    pause(100); 
  } 
} 

Recap and More Details for cog_run and cog_end 

cog_run - For launching another processor (cog) and running a function that has a void 
return type and an empty parameter list.  If the function does not self-terminate with a 
cog_end, the statements in its code block must be inside an infinite loop.   
 
int *cogPointer; 
...  
cogPointer = cog_run(functionName, stackSize); 
 
cogPointer is an optional pointer variable for storing the address where the cog’s number 
and stack space are set aside.  A program can use it to stop the cog and recover stack 
space later with cog_end.  Note: If all the cogs are already in use, cog_run will return -1.   
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functionName is the name of the function that gets run in another cog.  The function’s 
name without parentheses returns the function’s address in memory, which is what 
cog_run needs to make another cog start executing the function’s code.   
 
stackSize is the number of int variables to set aside for the function’s local variables and 
function calls.  Use 128 for prototyping.  It’s probably more than needed, but stack that is 
too small can cause program bugs.  
 
In general, the number of int variables needed for stackSize increases by 1 for each 
local variable declared in functionName, 2 for each call to other functions, and 1 for 
each function parameter and return value.  When you have finished expanding and 
refining a function running in another cog, try the program Cog Stack Usage Test.side 
from …Learn\Examples\Multicore.  After adding test code that exercises all of the 
features of the function(s) running in the other cog, this program can tell you how much 
stack space is actually used so you can reduce the size if desired. 
 
cog_end – Uses cogPointer as a process identifier to stop a cog that was started by 
cog_run. This frees the cog and the stack space for other uses.   
 

cog_end(cogPointer); 
 

 

Other functions for starting and stopping cogs  
The propeller.h library has additional functions for advanced ways to start and stop 
processes that run in other cogs.  Libraries will often use these other functions to support 
assembly code and higher-speed code execution.  Advanced tutorials that demonstrate the 
use of some of these functions are available on learn.parallax.com.  

Try This – Add Another Function and Run it in Another Cog   

Let’s expand the example program so that it blinks the P27 LED at a different rate, using 
another cog.  The process is fairly simple: just add a second function and pass it to 
cog_run.  Your code will also need a second forward declaration for that function and a 
second cog pointer variable for shutting the cog back down. 
 
 Save a copy as Multi-CogRun-TryThis in your My Projects folder.   
 Add a second forward declaration for a blink2 function, and declare a second 

pointer variable named cog2. 
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void blink();  
void blink2();         //<-add 
 
int *cog; 
int *cog2;              //<-add 
   

 Inside the main function, add a second cog_run function call start blink2, and a 
second cog_end function call to stop it. 
 
int main()                                      
{ 
  cog = cog_run(blink, 128); 
  cog2 = cog_run(blink2, 128);   //<-add 
  pause(3000); 
  cog_end(cog); 
  cog_end(cog2);                 //<-add 
  

 Add the blink2 function definition at the end of the program. 
 
void blink2()        //<-add from here... 
{  
  while(1) 
  { 
   high(27); 
   pause(223); 
   low(27); 
   pause(223);     
  }   
}                    //...to here 
 

 Click SimpleIDE’s Load EEPROM & Run button and verify that the P26 and 
P27 LEDs blink at different rates for 3 seconds.    

Your Turn – Keep the First Cog Busy 

The main function executed by cog 0 doesn’t really need to sit around and do nothing 
while the other cogs are blinking LEDs.  The pause call was just for the sake of example, 
so let’s at least make it count while the other cogs blink lights. 
 
 Use SimpleIDE’s Save Project As button, and name it Multi-CogRun-YourTurn.  

Replace the pause(3000) statement with the code below.   
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 Click SimpleIDE’s Run with Terminal button and verify that both lights blink at 
different rates while the main function displays a 3-second up-count in the 
SimpleIDE Terminal. 

 
  
  // pause(3000);                      // <- remove 
  for(int i = 0; i < 12; i++)          // <- add 
  {                                    // <- add 
    print("i = %d\n", i);              // <- add 
    pause(250);                        // <- add 
  }                                    // <- add 

 
Now you have a glimpse of the power of the Propeller multiprocessing.  With it, your 
programs can do many time-sensitive tasks at once, without conflict. Instead of just 
blinking LEDs, these cogs could be driving a servo, or playing audio files.  The Propeller 
microcontroller’s multicore architecture simplifies or solves many problems common to 
single-core microcontrollers. Next, we’ll make the cores work together.  
  

ACTIVITY #5 SHARING GLOBAL VARIABLES BETWEEN COGS 
Picture a robot with two servo-driven arms, each controlled by its own cog, and a sensor 
to find the distance to an object.  All three cogs might need to communicate with each 
other in order to determine the servo position needed for each arm to reach the object.   
 
The previous activity didn’t provide a way for one cog to influence or exchange 
information with another cog once it is running.  For that, we use global variables, which 
were introduced in Activity #3.  This activity shows how to use global variables 
exchange information between functions running in different cogs.    

Global Variables Shared by Cogs Need to be Volatile 

A global variable for cogs to share must be preceded with the keyword volatile to 
prevent code optimization. 

 
volatile int globalVar; 
 

The compiler can optimize code by removing unnecessary parts to make it execute faster 
and/or take less memory.  For example, if the compiler sees a function that uses a 
variable but does not change it, it might remove code that re-check the variable's value 
before printing it.   
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In our multicore system, what the compiler might not see yet is that another function 
running in another cog could change that variable’s value.  The volatile modifier 
marks a variable as "subject to change" so the compiler won't try to optimize any code 
that uses it. 

Example Program: Multi-InfoExchange 

This next program declares a global volatile int variable named t (an abbreviation for 
time) that will allow the main function to control the blink function’s LED on/off rate.  
The main function sets the value of t, which the blink function uses to set its pause 
times between high/low statements.     
 
 Click SimpleIDE’s New Project button.  Name the project Multi-InfoExchange, 

and save to My Projects. 
 Enter the Multi-InfoExchange.c code into SimpleIDE.   
 Click SimpleIDE’s Load RAM & Run button. 
 Verify that the LED blinks at one rate for 2 seconds, and then at twice that rate 

for another two seconds, and then stops. 
 
/* Multi-InfoExchange.c */ 
 
#include "simpletools.h"                      // Library include 
 
void blink();                                 // Forward declaration 
 
int *cog;                                     // Pointer for cog data 
volatile int t;                               // Declare t for both cogs 
 
int main()                                    // Main function 
{ 
  t = 100;                                    // Set value of t to 100 
  cog = cog_run(blink, 128);                  // Run blink in other cog 
  pause(2000);                                // Let run for 2 s 
  t = 50;                                     // Update value of t 
  pause(2000);                                // New rate for 2 s 
  cog_end(cog);                               // Stop the cog 
} 
 
void blink()                                  // Function for other cog 
{ 
  while(1)                                    // Endless loop 
  { 
    high(26);                                 // LED on 
    pause(t);                                 // ...for t ms 
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    low(26);                                  // LED off 
    pause(t);                                 // ...for t ms 
  } 
} 

How it Works 

This program starts with declarations that are by now familiar: including the simpletools 
library, a forward declaration for the blink function, and a pointer variable declaration 
that cog_run and cog_end will use.    
 

#include "simpletools.h" 
 
void blink();  
 
int *cog; 

 
The t variable is also declared globally (outside any functions) so that one function can 
change its value, and a different function will be affected by that change.  This global 
variable has to be volatile because different cogs are executing different functions that 
use it.  Again, the volatile modifier prevents the C compiler from making 
optimizations that could cause one function running in one cog to miss a change to t 
made by another function running in another cog.   
 

volatile int t;  
 
The main function starts by setting the value of t to 100, and then runs the blink 
function in another cog.  The blink function uses t as an argument in its pause calls, so 
the light will stay on/off for 100 ms initially.  Meanwhile, the main function in cog 0 
executes pause(2000).  After the 2-second delay, cog 0 changes t to 50.  Since t is 
global, it’s the same t value that the blink function uses in cog 1.  So, this cuts the 
blink function’s pause times in half, doubling the LED’s on/off rate. Back in main, after 
another pause(2000), the main function stops that cog 1with cog_end(cog) so the 
light stops blinking.   
 

int main() 
{ 
  t = 100; 
  int *cog = cog_run(blink, 128); 
  pause(2000); 
  t = 50; 
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  pause(2000); 
  cog_end(cog); 
} 

 

 

When the main function runs out of commands, cog 0 also shuts down.  With no cogs 
running, the Propeller enters a low power consumption mode and waits to be restarted.  The 
Propeller can be restarted by loading a program, pressing/releasing the RST button, or 
turning the power off and back on.   

 
This blink function uses the global, volatile variable t as the argument in its pause 
function calls.  This allows functions running in other cogs to control the pause times, 
and therefore the LED blink rate, by changing the value of t.   
 

void blink() 
{ 
  while(1) 
  { 
    high(26); 
    pause(t); 
    low(26); 
    pause(t); 
  } 
} 

Try This – Make One Function Monitor Another’s Activity 

We just used a volatile global variable to let a function in one cog control the behavior of 
a different function in a different cog.  Global volatile variables can also be used to let 
one function monitor another function running in a different cog.   
 
In this example, you’ll add a global variable named reps and make the blink function 
add 1 to it with each while loop repetition.  Then, main can check the and display the 
value of reps to find out how many times the light has blinked, even though a different 
cog running a different function is modifying it, as shown in Figure 5-11.  
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Figure 5-11 
SimpleIDE 
Terminal Output 
Multi-
InfoExchange-
TryThis. 

 
 Save As a copy of the project and name it Multi-InfoExchange-TryThis. 
 Add a second volatile global variable named reps.  

 
volatile int reps = 0;        // <-add 
 

 Add two print statements to display the value of reps, one after each 
pause(2000). 
 
print("reps = %d\n", reps); // <-add 
 

 Add a statement to post-increment the value of reps at the beginning of the 
blink function’s while(1) loop. 
 
void blink()                                    
{ 
  while(1)                                      
  { 
    reps++;                   // <-add   
 

 Examine the code, and consider how many times the light should blink with 
100 ms pauses over 2 seconds, and then 50 ms pauses over 2 more seconds.   

 Click SimpleIDE’s Run with Terminal button and check the number of reps.  
Did it work as you expected? 

  

ACTIVITY #6: SELF-TERMINATING COGS 
Recall that functions started by cog_run must either consist of an infinite loop, or be 
self-terminating.  Up to this point, the functions we’ve started with cog_run had infinite 
loops, and the same function that ran them also ended them.  A function that runs in 
another cog can also end itself.  This can be useful if some process only needs to run until 
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it has completed a list of important tasks.  If the function that gets run can then tell its 
own cog to end, then the code in the function that launched it can just move on to other 
tasks without worrying about ending the process it launched.   
 
Along with a self-terminating code example, this activity also demonstrates how to print 
messages from a function that another cog is running.  If you ran Multi-InfoExchange-
TryThis from Page 163, you already know the easiest way to display activity from 
another cog.  Just share the info with a volatile variable and print it from the main 
function.  The other option is to print it straight from the function the other cog is 
running.  It’s trickier than you might think because unexpected things happen when more 
than one cog controls the SimpleIDE Terminal’s communication lines.  Because of this, a 
function run by one cog has to close the connection with SimpleIDE terminal before the 
function running in another cog can open it.   

Making a Cog Self-Terminate 

Making another cog self-terminate is pretty simple.  Just add a cog_end call to the 
function that is running in another cog, and it will shut itself down when it’s done.  Yes, 
the function would automatically stop executing if it ran out of code, but that does not 
free up the cog or the stack space for re-use — cog_end does that. 

Example Program: Cog Self-Terminates 

The now familiar blink function in this example program has been modified to self-
terminate after 20 repetitions (counting from 0 to 19).  Before blink starts repeating, it 
sets a blinkStatus global variable to 1.  It also sets blinkStatus to 0 just before it 
self-terminates.  The main function keeps on displaying the blinkStatus and 
blinkReps variables.  As you can see in Figure 5-12, blinkStatus changes to 0 after 
the 19th repetition.  Since the cog also ends, the P26 light stops blinking and blinkReps 
stops increasing. 
 
 Click SimpleIDE’s New Project button.  Then set the File name to Multi-

CogEnd and Save. 
 Enter the Multi-CogEnd.c code into SimpleIDE.   
 Click SimpleIDE’s Run with Terminal button. 
 Make sure the blink function terminates the cog running it by verifying that: the 

light stops blinking, blinkStatus changes from 1 to 0, and blinkReps never 
makes it past 20. 
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Figure 5-12 
Main function in 
cog 0 indicates 
when blink 
function in cog 1 
self-terminates. 

 
/* Multi-CogEnd.c */ 
 
#include "simpletools.h"                      // Library include 
 
void blink();                                 // Forward declaration 
 
int *cog;                                     // Pointer for cog data 
 
volatile int blinkReps, blinkStatus;          // Shared variables 
              
int main()                                    // Main function 
{ 
  cog = cog_run(blink, 128);                  // Run blink in other cog 
 
  while(1)                                    // Endless loop 
  { 
    print("blinkStatus = %d, ", blinkStatus); // Display blinkStatus 
    print("blinkReps = %d\n", blinkReps);     // Display blinkReps    
    pause(200);                               // Wait 1/5 s before repeat 
  }     
} 
 
void blink()                                  // Blink function for other cog 
{ 
  blinkStatus = 1;                            // Set blinkStatus to 1 
  blinkReps = 0;                              // Set blinkReps to 0 
  while(blinkReps < 20)                       // Blink 20 repetitions  
  { 
    high(26);                                 // P26 LED on 
    pause(100);                               // ...for 0.1 seconds 
    low(26);                                  // P26 LED off 
    pause(100);                               // ...for 0.1 seconds 
    blinkReps++;                              // Add 1 to blinkReps 
  } 
  blinkStatus = 0;                            // Tell other cogs blink ending 
  cog_end(cog);                               // Cog self terminates 
} 
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How It Works 

In addition to the now familiar simpletools library include, blink forward declaration 
and *cog pointer variable, we have two volatile variables named blinkReps and 
blinkStatus.  The blink function will modify these values and the main function will 
print them in SimpleIDE Terminal.   

 
#include "simpletools.h" 
 
void blink(); 
 
int *cog; 
 
volatile int blinkReps, blinkStatus;              
 

As usual, the first thing the main function does is use cog_run to run the blink function 
in another cog.  Then, it goes into an endless while loop that repeatedly displays values 
the blink function modifies. 

 
int main() 
{ 
  cog = cog_run(blink, 128); 
 
  while(1) 
  { 
    print("blinkStatus = %d, ", blinkStatus); 
    print("blinkReps = %d\n", blinkReps);  
    pause(200);  
  }     
} 
 

This blink function repeats 20-times, then self-terminates.  The first thing the blink 
function does is set blinkStatus to 1 to let other functions in other cogs know that it’s 
running.  Then, it sets blinkReps to 0, and enters a loop that repeats until blinkReps 
reaches 20.  Since the last statement in the loop adds 1 to blinkReps, it’ll reach 20 after 
20 repetitions.  After finishing the loop, it sets blinkStatus back to 0 to let other 
functions in other cogs know it’s done.  Then, it self-terminates with cog_end(cog).   

 
void blink() 
{ 
  blinkStatus = 1; 
  blinkReps = 0; 
  while(blinkReps < 20)  
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  { 
    high(26);  
    pause(100);  
    low(26);  
    pause(100);  
    blinkReps++; 
  } 
  blinkStatus = 0;  
  cog_end(cog);  
} 

 

 

Wait a minute, *cog is used in functions run by two different cogs.   
Why isn’t it volatile?  It’s an exception to the rule.  When this int pointer variable was 
tested as a return value for cog_run and parameter for cog_end, it is not optimized out.  
The only tricky situation might happen if a while loop monitors its value.  For example, 
while(cog > 0) might wait endlessly in one cog even though another changed it to 0.  If 
you suspect that has happened in your code, you can use volatile int *cog to fix that 
problem.  The code would run, but the C compiler will display a warning that the volatile 
qualifier was discarded.  To see such warnings, click the Show Build Status button near the 
bottom-center of the SimpleIDE window. 

ACTIVITY #7: PRINTING AND TERMINATING FROM A LAUNCHED COG 
If you ran Multi-InfoExchange-TryThis, you saw that is easy to display activity from 
another cog: just share the info with a volatile variable and print it from the main 
function.  The other option is to print it straight from the function running the other cog. 
It’s trickier than you might think, because unexpected things happen when more than one 
cog controls the SimpleIDE Terminal’s communication lines.  Because of this, the main 
function must close the connection with SimpleIDE terminal before a function running in 
another cog can open it. 
 
The simpletools library includes another library, called simpletext.  The simpletext 
library has print, scan, and a variety of other functions for communicating with the 
SimpleIDE Terminal and other devices.  It has a simpleterm_close() function for 
stopping terminal communication in one cog, and a simpleterm_open() function for 
starting it in another.   
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The Propeller can easily hold multiple serial communication sessions with multiple 
devices.  The tricky part is having multiple cogs take turns talking with a single device, in 
this case the SimpleIDE Terminal.  First, cog 0 has to release the P30 pin that transmits 
messages to the computer’s RX line before cog 1 can take over and control it.   

Example Program: Multi-CogPrint 

Figure 5-13 shows how the Multi-CogPrint example program starts by printing a message 
from main (run by cog 0).  Then, it prints a number of messages from blink (run by cog 
1).  After blink is done counting from 0 to 4 (and 5 light blinks), it starts printing from 
main (cog 0) again.  
 

 

Figure 5-13 
Example of 
printing from 
different cogs. 

 
 Enter the Multi-CogPrint.c code into SimpleIDE.   
 Click SimpleIDE’s Run with Terminal button. 
 Verify that the terminal behaves as shown in Figure 5-13, counting while the 

light blinks. 
 
/* Multi-CogPrint.c */ 
 
#include "simpletools.h"                      // Library include 
 
void blink();                                 // Forward declaration 
 
int *cog;                                     // Pointer for cog data 
 
volatile int blinkReps, blinkStatus;          // Shared global variables 
              
int main()                                    // Main function 
{ 
  print("Printing from main.\n");             // Message from main 
  simpleterm_close();                         // Close terminal COM in cog 0 
  cog = cog_run(blink, 128);                  // Run blink in other cog 
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  while(blinkStatus == 0);                    // Wait for cog 1 to start 
  while(blinkStatus == 1);                    // Wait for cog 1 to finish 
  simpleterm_open();                          // Safe to reopen terminal COM 
  print("Printing from main again.\n");       // Message from main 
} 
 
void blink()                                  // Blink function for other cog 
{ 
  blinkStatus = 1;                            // Set blinkStatus to 1 
  simpleterm_open();                          // Open terminal COM in cog 1  
  print("Printing from blink.\n");            // Messages from blink 
  blinkReps = 0;                              // Set blinkReps to 0 
  while(blinkReps < 5)                        // Blink 5 repetitions  
  { 
    print("blinkReps = %d\n", blinkReps);     // Display blinkReps    
    high(26);                                 // P26 LED on 
    pause(100);                               // ...for 0.1 seconds 
    low(26);                                  // P26 LED off 
    pause(100);                               // ...for 0.1 seconds 
    blinkReps++;                              // Add 1 to blinkReps 
  } 
  simpleterm_close();                         // Close termianl COM in cog 1 
  blinkStatus = 0;                            // Tell other cogs blink ending 
  cog_end(cog);                               // Cog self terminates 
} 

How it Works 

The program starts with the familiar forward declaration for the blink function, and a 
pointer variable named cog for launching it. Next come two volatile global variables for 
sharing data between cogs: blinkReps and blinkStatus.  

 
void blink();                                   
 
int *cog;                                       
 
volatile int blinkReps, blinkStatus; 
 

The main function begins with a print statement, from the main function running in cog 
0.  Next comes simpleterm_close, which releases the serial terminal connection so it 
can be opened from a function running in a different cog, such as blink. Next the 
cog_run call starts the blink function in cog 1. 

 
  print("Printing from main.\n");               
  simpleterm_close();                          
  cog = cog_run(blink, 128);          
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The next two instructions in main are conditional loops that are controlled by the value of 
blinkStatus, which is being changed by the blink function running in another cog. 
The first loop, while(blinkStatus == 0); translates to “stay here and keep checking 
the value of blinkStatus as long as it is equal to zero.”  Once blinkStatus changes 
from 0 to 1, code execution moves on to the next line: while(blinkStatus == 1)and 
code execution loops here until blinkStatus changes back to zero. Only then does 
simpleTerm_open re-establish the terminal connection to cog 0, just in time for a final 
print statement. 

 
  while(blinkStatus == 0);                      
  while(blinkStatus == 1);                      
  simpleterm_open();                            
  print("Printing from main again.\n");         
} 
 

Since the rule is to only allow one cog to send messages to SimpleIDE terminal at any 
given time, the code needs to make sure that cog 0 does not try to re-open the serial 
terminal while the blink function is still using it in cog 1.  That’s where the 
blinkStatus variable comes in. 

 
The first think the blink function does is set blinkStatus to 1, which makes the main 
function stay in that first conditional loop.  Then, blink uses simpleterm_open to open 
the connection with the SimpleIDE terminal in this cog.  This allows the text to be seen in 
the print command that follows. 

 
void blink() 
{ 
  blinkStatus = 1;                 
  simpleterm_open();  
  print("Printing from blink.\n"); 
  blinkReps = 0;                   
  while(blinkReps < 5)            
  { 
    print("blinkReps = %d\n", blinkReps);  
    high(26);                             
    pause(100);                           
    low(26);                              
    pause(100);                           
    blinkReps++;                          
  } 
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After blinkReps gets to 5 and the loop is finished, the blink function uses 
simpleterm_close to release control over the serial connection.  Only then does it set 
blinkStatus back to 0, which allows the program execution back in main to exit its 
second while(1) loop.  The last thing the blink function does is shut itself down with 
cog_end(cog). By using simpleterm_close() and cog_end(cog), this cog has 
properly released all of its resources for re-use. 

 
  simpleterm_close();                     
  blinkStatus = 0;                           
  cog_end(cog); 
} 

 

 

A Semaphore Variable   
The blinkStatus variable is an example of a semaphore.  A semaphore variable is used 
to prevent more than one processor from using a given resource at the same time. 

Try This – Test Volatile 

With one small change to Multi-CogPrint.c, you can examine a bug that happens by 
forgetting to use volatile when declaring global variables that cogs will share. 
 
 Click SimpleIDE’s Save Project As button, and rename the project Multi-

CogPrint-TryThis. 
 Remove the volatile modifier from the volatile int blinkReps, 

blinkStatus; statement.   
 Click the Run with Terminal button. 
 Find the item missing from the display.  Can you guess what happened? 

 
Figure 5-14 shows what’s missing.  Compare it to Figure 5-13 and you’ll see that it 
doesn’t say, “Printing from main again.”   
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Figure 5-14 
Forgetting 
volatile causes 
the program to 
get stuck 

 
The reason it doesn’t say “Printing from main again.” is because the main function gets 
stuck in the while loops that wait for blinkStatus to change from 0 to 1 and back to 0 
again.   
 

  while(blinkStatus == 0);                
  while(blinkStatus == 1);                

 
The first while loop waits for the blink function to change blinkStatus from 0 to 1.  
The C compiler doesn’t know that blink is running in another processor.  Because the 
variable is no longer volatile, the compiler thinks that main would have to call the 
blink function for that variable to change.  So, it removed code to repeatedly recheck the 
value of blinkStatus from while(blinkStatus == 0);.  As a result, the main 
function will think blinkStatus is still 0 even after the blink function running in 
another cog changes it to 1.   
 
That’s why it’s important to declare variables that are used by more than one function in 
more than one cog as volatile. 
 

SUMMARY 
This chapter introduced some common C language programming techniques, including 
function writing and setting variable scope.  It then applied those concepts in programs 
that utilized the Propeller microcontroller’s multiprocessing design to make different 
processors (cogs) execute code in different functions at the same time.   
 
Key concepts: 

• A function and its components: definition, return type, name, parameter list, and 
code block with statements. 
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• Function forward declaration, call and return. 
• Function parameter passing and return value. 
• Using a function named cog_run to run a function in another cog by passing 

function pointer and stack size as parameters.  Using a function named cog_end 
to end the cog’s execution of code in that function. 

• Running more than one additional function in more than one available cog. 
• Variable scope: local vs. global variables. 
• Using global variables with the volatile keyword to make functions in 

different cogs monitor and control each other. 
• Stopping a cog from the main routine, and also from the launched cog. 
• Printing from multiple cogs by opening and closing their access to the terminal. 

Questions 

1. In this function prototype, what is its name, parameters, and return type?  
float addfloat(float a, float b); 

2. What is a forward declaration?  Where does it go in programs? 
3. What’s the difference between a function call and return? 
4. What’s the difference between a parameter and a return value? 
5. What function can your code use to launch a cog, and what information does it 

need?  What information does it return and how can your code use it? 
6. What kind of variable do you need for cogs to exchange information? 
7. If a variable is declared inside a function, what is its scope? 

Exercises 

1. Write a function named blinker for launching into another cog, that allows 
another function to determine which LED blinks along with both high and low 
times and monitors the number of times the light has blinked.  Assume your 
global variables are pin, tHigh, tLow, and reps. 

2. Write the variable declarations and function prototype for blinker. 
3. Write a call to launch blinker.  Stay safe, set the stack to 128.  Use a pointer 

int variable named myCog, and write a call to end blinker using myCog. 

Project 

1. Write an application that allows you to configure the blinker function from the 
main function.  Have your application initialize tHigh to 50 and tLow to 200.  It 
should ask for the LED pin once, and then repeatedly ask for tHigh and tLow.   
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Solutions 

Q1. Name is addfloat, return type is float, and parameters are float a and 
float b.  

Q2. A forward declaration tells the C compiler to expect a function with that 
prototype later in the program.  It is normally added before any executable 
functions.   

Q3. A function call tells the program to find the function, execute its code, and come 
back when done.  The return is simply the part where the code “returns” to the 
function call and continues executing code from there. 

Q4. A parameter gets passed to a function by a function call.  A return value gets 
passed back by the function. 

Q5. cog_run can launch a cog given the address of the function to launch 
functionName, and a number of int size slots to set aside for the cog’s stack 
space.  cog_run returns a pointer to the place in memory where it stores the cog 
number and stack space.  This value can be used later by cog_end stop the 
process to recover the cog and stack space for other uses. 

Q6. A global variable that has been declared volatile. 
Q7. Local. 

 
E1.  

void blinker() 
{ 
  while(1) 
  { 
    reps++; 
    high(pin); 
    pause(tHigh); 
    low(pin); 
    pause(tLow); 
  } 
} 

 
E2. volatile int pin, tHigh, tLow, reps; 
E3.  

int *myCog; 
... 
myCog = cog_run(blinker, 64); 
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... 
cog_end(myCog); 
 

P1.  
/* Multi-P1-Solution.c */ 
 
#include "simpletools.h"                      // Library include 
 
void blinker();                               // Forward declaration 
 
int myCog; 
 
volatile int pin, tHigh, tLow, reps;          // Cog share variables 
 
int main()                                    // Main function 
{ 
  print("Enter pin: ");                       // Get pin 
  scan("%d", &pin); 
 
  tHigh = 50;                                 // Initialize t values 
  tLow  =200; 
 
  myCog = cog_run(blinker, 64);               // Run blink in other cog 
 
  int tHighTemp, tLowTemp;                    // Temporary variables 
 
  while(1)                                    // Main loop 
  { 
    print("Enter tHigh: ");                   // Get high time 
    scan("%d", &tHighTemp); 
    print("Enter tLow: ");                    // Get low time 
    scan("%d", &tLowTemp); 
 
    tHigh = tHighTemp;                        // Update blinker cog. 
    tLow = tLowTemp; 
  } 
} 
 
void blinker()                                // Function for other cog 
{ 
  while(1)                                    // Endless loop 
  { 
    reps++; 
    high(pin);                                // LED on 
    pause(tHigh);                             // ...for tHigh ms 
    low(pin);                                 // LED off 
    pause(tLow);                              // ...for t ms 
  } 
} 
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Chapter 6: Measure Voltage and Position 
 
Control knobs are used in all kinds of equipment.  Think of adjustable lighting: twist a 
knob in one direction and the lights get brighter, twist it in the other direction, and the 
lights get dimmer.  Think of machines that have control knobs for fine-tuning the position 
of cutting blades and guiding surfaces.  Think of audio equipment, where turning a knob 
adjusts how music and voices sound.  Can you see any more examples from where you 
are right now?  
 
Figure 6-1 shows a control knob on a speaker that adjusts volume.  Turning the knob 
adjusts a circuit inside the speaker, which in turn changes the audio volume.   
 

   

Figure 6-1 
Volume Adjustment on a 
Speaker 

 

THE VARIABLE RESISTOR – A POTENTIOMETER 
The device under many control knobs is a variable resistor called a potentiometer, often 
abbreviated as a “pot.”  They are also used inside equipment where you may not see 
them, such as joysticks and even inside the servo you used in Chapter 4.  Figure 6-2 
shows a picture of some common potentiometers.  Notice that they all have three pins.   
 

   

Figure 6-2 
A Few Potentiometer 
Examples 
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Figure 6-3 shows the schematic symbol and part drawing of the potentiometer you will 
use in this chapter.  Terminals A and B are connected to a 10 kΩ resistive element.  
Terminal W is called the wiper terminal, and it is connected to a wire that touches the 
resistive element somewhere between its ends.   
 

 

Figure 6-3 
Potentiometer Schematic Symbol 
and Part Drawing 

Figure 6-4 shows how the wiper on a potentiometer works.  As you adjust the control 
knob on top of the potentiometer, the wiper terminal contacts the resistive element at 
different places.  Turning the knob clockwise moves the wiper closer to terminal A.  This 
decreases the resistance between the wiper and terminal A, and increases the resistance 
between the wiper and terminal B.  Turning the knob counterclockwise decreases the 
resistance between the wiper and terminal B, and increases the resistance between the 
wiper and terminal A. 

 

Figure 6-4 
Adjusting the Potentiometer’s Wiper 
Terminal 

 

ACTIVITY #1: SET VOLTAGES WITH TWO RESISTORS 
A potentiometer works like two resistors in a row with a wire ‘tap’ between them.  
Turning the control knob essentially changes the value each of the resistors.  So, let’s use 
actual resistors and a wire to get a better idea of how the circuit inside a potentiometer 
works.   
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Voltage Divider Circuit 

When voltage is applied to two resistors in series (connected end-to-end), the values of 
the resistors determine the voltage that appears between them.  The circuit for setting 
voltage like this is called a voltage divider.  The equation for finding the voltage at point 
VO between the two resistors is shown in Figure 2-10, along with the circuit.  
 

    

Figure 6-5 
Voltage Divider Circuit 
and Equation, using 
3.3 V supply on the 
Propeller Activity Board 

 
This equation is really easy to use.  Let’s say you’ve got two 1 kΩ resistors; that would 
mean RA = 1000 and RB = 1000.  So, let’s substitute the 1000 for RA and RB and see 
what happens. 
 

     

V 1.65
0.5V3.3

10001000
1000V3.3VO

=
×=

+
×=

 

 
In this case, voltage VO between the resistors is 1.65 V, which is half the voltage applied 
across both. 
 
So, what would happen if you made RB 2 kΩ and left RA at 1 kΩ? 
 

     

V 2.2
0.66...V3.3

20001000
2000V3.3VO

=
×=

+
×=

 

BA

B
O RR

RV3.3V
+

×=



Page 180 ⋅ What’s a Multicore Microcontroller 

What would happen if you swap resistors so RA = 2 kΩ and RA = 1 kΩ? 
 

     

V 1.1
0.33...V3.3

10002000
1000V3.3VO

=
×=

+
×=

 

 
Now imagine substituting the potentiometer for the 2-resistor circuit, with terminal A 
connected to 3.3 volts and terminal B connected to GND.  The wiper divides the 
potentiometer’s resistive material into two sections, which you can think of as RA and RB.  
Moving the wiper would change the resistors’ values, making one resistor larger and one 
smaller, and thus changing the value at VO (though RA + RB would always equal 10 kΩ).  

Voltage Divider Parts 

(2) Resistors – 1 kΩ (brown-black-red) 
(1) Resistor – 2 kΩ (red-black-red) 

First Voltage Divider Circuit 

The Propeller Activity board has four sockets for measuring voltage, labeled A/D0, 
A/D1, A/D2, and A/D3.   
 

 

 
Where are the A/D and D/A 
sockets? They are the six 
sockets right below the 
breadboard by the Activity 
Board’s lower-right plated 
mounting hole.  

 
A/D stands for analog to digital.  Like most natural phenomena, actual voltage values 
vary continuously.  However, in the electronics world, digital values tend to take discrete 
steps.  The A/D converter chip on the Activity Board converts the analog voltage value 
received into a digital measurement that the Propeller chip can work with: a number of 
4096ths of 5 V.  The A/D converter rounds down to the nearest 4096th.  For example, if it 
receives a voltage somewhere between 1351/4096 and 1352/4096 of 5 V, it will round 
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down to an even 1351 before passing the value to the Propeller microcontroller.  These 
digital measurements are called quantized values, meaning rounded to discrete steps. 
 
 Connect the voltage divider shown in Figure 6-6. 

 

  

Figure 6-6 
Voltage Divider 
Schematic and 
Wiring Diagram  

Example Program: Volts-DividerVoltage 

We will be using a Simple Library named abvolts that was written specifically for the 
A/D and D/A hardware on the Propeller Activity Board.  The functions in abvolts can 
take the quantized value from the A/D chip and convert it to an easy-to-read voltage 
value; for example, 1351 becomes 1.649 V.  Let’s try it, verifying our previous 1.65 V 
calculation for the voltage divider between two 1 kΩ resistors in series.   
 
Don’t expect the output to be exactly 1.65 V! Yours may be a bit off, as is the example in 
Figure 6-7 shows.  Back in Chapter 2, we introduced the tolerance color band on the 
resistor, with a gold band indicating that it’s good to 5%.  Since 5% of 1000 is 50, a 1 kΩ 
resistor with a 5% tolerance could actually measure between 950 and 1050 Ω.  Putting 
these numbers back into our voltage divider equation shows that our measurement could 
be as low as 1.57 V or as high as 1.73 V.   
 
Other contributors to inexact values include the tolerance of the 5 V voltage regulator on 
your Propeller Activity Board, and and the rounding operation that the A/D converter 
performs. 
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Figure 6-7 
Measured 
Voltage 

 
 Click SimpleIDE’s New Project button, save the project as Volts-DividerVoltage 

and save it to My Projects. 
 Enter the Volts-DividerVoltage.c code into SimpleIDE.   
 Reconnect power to your Activity Board. 
 Click SimpleIDE’s Run with Terminal button. 
 Verify that your measurement is close to 1.65 V, plus or minus 0.15 V. 

 
/* Volts-DividerVoltage.c */ 
 
#include "simpletools.h"                      // Library includes 
#include "abvolts.h"                          // Must include to use abvolts 
 
int main()                                    // Main function 
{ 
  float volts = ad_volts(3);                  // Get A/D3 volts 
 
  print("A/D3 = %1.3f V\n", volts);           // Display result 
 
  print("\nDone!");                           // Announce program done 
} 

How Volts-DividerVoltage Works 

In addition to simpletools.h, a second #include statement adds the library abvolts.h.  It 
gives the program access to the ad_volts function. 
 

#include "simpletools.h" 
#include "abvolts.h" 
 

Inside main, the first function call is to ad_volts. This function returns a float variable 
value, and its parameter requires an A/D socket number, 0–3.  
 

int main() 
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{ 
  float volts = ad_volts(3); 

 
This call makes the Propeller fetch the quantized voltage value from the AD3 socket, 
which is in terms of 4096ths of 5 V (even though our circuit is connected to 3.3V).  The 
function returns a floating-point decimal value in volts, which is why the function call 
began with float volts.   
 
The value of volts is then sent for display on SimpleIDE Terminal with print("A/D3 = 
%1.3f V\n", volts).  You may not have seen the %1.3f formatting flag before.  It’s a 
variation of %f (display floating point flag) that allows you to specify the number of 
digits to the left and right of the decimal point.  In this case, it displays the floating point 
volts variable with 1 digit to the left and 3 to the right. 

 
  print("A/D3 = %1.3f V\n", volts); 

 
Since this is the first program we’ve run in a while that hasn’t used a loop, the “Done!” 
message provides a cue not to expect any more output. 
 

  print("\nDone!"); 
} 
 

 

Your Turn – Different Voltage Dividers 

Okay, so we’ve verified that two resistors of the same size will give you half the voltage 
at VO.  Next, let’s verify the 1.1 V and 2.2 V dividers. 

  

 Modify the circuits using the schematics in Figure 6-8, with the aid of the wiring 
diagrams if needed. Remember to turn off power when changing circuits. 

 Use the Run with Terminal button to re-run Volts-DividerVoltage and verify 
each circuit’s voltage. 

 

Leading with zeroes or spaces, your choice.  The example above only needed to print 
one digit to the left of the decimal, and so it used %1.3f.  For larger number ranges, you 
can specify more digits, and whether to pad smaller values with spaces or zeroes. For 
example, %3.2f in a print statement accommodates three digits to the left of the decimal 
point, and it will pad a value like 1.23 with two leading spaces before the 1.  If you instead 
want it to pad with leading zeroes, use %03.2f. This will print the value 1.23 like this: 
001.23.    
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Figure 6-8 
Two More Voltage 
Divider Circuits  

ACTIVITY #2: READ THE POSITION WITH THE PROPELLER 
Figure 6-9 shows a conceptual drawing inside of the potentiometer, as if the control knob 
were transparent.  A semicircular resistive element connects to the A and B terminals.  
The wiper is a contact that swivels with the knob while maintaining electrical contact 
with a second lead connected to the W terminal.  Each time you turn the knob to a new 
position, you make the wiper touch a new point on the resistive element.  The wiper 
contact creates two resistors in series: one from B to W and the other from W to A.  So, if 
you connect 3.3 V to B, and GND to A, you can connect W to A/D3, and cause the 
voltage divider to vary as you twist the knob.  Let’s try it.     
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Figure 6-9 
Concept 
Drawing —
Inside the 
Potentiometer 

Potentiometer Parts 

(1) Potentiometer – 10 kΩ 
(3) Jumper wires – red, black, and blue  

Potentiometer Circuit 

Figure 6-10 shows a schematic and wiring diagram for a potentiometer voltage output 
circuit.  This circuit should allow you to turn the knob from its clockwise limit to its 
counterclockwise limit, for voltage measurements ranging from about 0 V to just less 
than 3.3 V.     
 
 Build the circuit shown in Figure 6-10. 

 

Wiper contact 
with resistive 

element 

Wiper moves with knob 

Wiper 
contact 
with W 

terminal 
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Figure 6-10 
Potentiometer 
Schematic and Wiring 
Diagram  

Potentiometer Test Code 

The voltage measurement will display on the same line and refresh 5 times per second, 
similar to Figure 6-11.  As you twist the potentiometer’s knob, make sure to apply some 
downward pressure to make it maintain contact with the breadboard sockets.   
 

 

Figure 6-11 
Potentiometer 
Voltage Display 

Example Program: Volts-Monitor 

 Click SimpleIDE’s New Project button, name the project Volts-Monitor, and 
save it to My Projects.  

 Enter the Volts-Monitor.c code into SimpleIDE.   
 Click SimpleIDE’s Run with Terminal button. 
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 Turn the control knob all the way clockwise and verify that the voltage is close 
to 0 V, since the current is going through the full length of the potentiometer’s 
resistive element. 

 Gradually turn the knob counterclockwise, and monitor the voltage.  Does it 
gradually increase to almost 3.3 V at about the time it reaches its 
counterclockwise limit?  There is very little resistive element between the wiper 
and the A lead which goes to 3.3 volts 

 

 

Make sure to apply a little downward pressure to keep the potentiometer seated on the 
breadboard as you twist its knob. (Using pliers to make a very, very gentle 1/4 turn twist in 
the thin part of each lead will help the potentiometer stay in the breadboard sockets, but do 
this at your own risk to your potentiometer!) 

 
/* Volts-Monitor.c */ 
 
#include "simpletools.h"                      // Library includes 
#include "abvolts.h" 
 
int main()                                    // Main function 
{ 
  float volts;  
   
  while(1) 
  { 
    volts = ad_volts(3);                      // Get A/D3 volts 
    print("%c A/D3 = %1.3f V ",               // Display result 
           HOME,     volts); 
    pause(200);                               // 200 ms pause 
  } 
} 

How it Works 

The main routine starts by declaring a floating-point variable named volts. 
 

int main() 
{ 
  float volts; 
 

Each time through the while(1) loop, volts = ad_volts(3) measures and stores the 
voltage applied to the A/D3 socket, this time by the potentiometer, in volts.  Next, the 
statement print("%c A/D3 = %1.3f V ", HOME, volts) sends the cursor to the 
SimpleIDE Terminal’s top-left home position with the first %c and HOME.  Then, %1.3f 
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and volts displays the volts variable with 1 character to the left of the decimal point, 
and three to the right.   
 

  while(1) 
  { 
    volts = ad_volts(3); 
    print("%c A/D3 = %1.3f V", 
           HOME,     volts); 
    pause(200); 
  } 
} 

 

 

Why isn’t there a CLREOL at the end? We used to need CLREOL when overprinting the 
same line while displaying a number with a variable number of digits.  That was because a 2 
digit number displayed after a 3 digit number would not overprint the last digit.  CLREOL 
used to clear all the text to the right, but it just isn’t needed when the number of digits 
displayed never changes.   
%1.3f displays 1 digit, a decimal point, and 3 more digits, every time. 

Try This – Display Actual A/D Values 

As mentioned earlier, the Activity Board’s A/D converter chip outputs measured voltage 
as a number of 4096ths of 5 V.  This next example uses a function named ad_in to get 
those raw measurements.  Since your potentiometer is only wired to display up to 3.3 V, 
we can expect values from 0 to about 2703.  That’s because 3.3 x 4096 / 5 = 2703. 

   
  int volts;                               // <-change here     
  
  while(1) 
  { 
    volts = ad_in(3);                      // <-change here     
    print("%c A/D3 = %4d 4096ths of 5 V ", // <-change here                     
           HOME,     volts); 
    pause(200); 
  } 

  

 Use SimpleIDE’s Save Project As button to save a copy of the project in Your 
My Projects folder.  Name it Volts-Monitor-TryThis. 

 Modify it as shown above to get the raw A/D converter value and display it. 
 Verify that your measurement range is now 0…2703 (instead of 0.0…3.29). 
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Your Turn - Casting a Variable 

The ad_volts function receives an integer value (int) from the ADC, but returns the 
voltage as a floating-point decimal value (float). How does it do that? 
 
In C language, you can cast a value as it is copied from one type of variable (such as int) 
to another type of variable (such as float) as needed for operations. The statement 
float fvolts = (float) volts casts the value stored by the int variable volts to 
the float type while copying it to fvolts. Then, the value can be printed with the 
floating-point formatter %1.3f.  
 

float fvolts = (float) volts; 
fvolts = fvolts * 5.0 / 4096.0; 
print("\n fvolts = %1.3f V", fvolts);  

 
 Save another copy of your program as Volts-Monitor-YourTurn. 
 Declare a float variable named fvolts. 
 Add the above code to the while loop so that it displays both the integer and 

floating point measurements. 
 

ACTIVITY #3: CALIBRATE D/A OUTPUTS 
The D/A sockets are the counterparts to the A/D sockets — they are for setting voltages 
instead of measuring them.  Each D/A socket has an LED indicator that gets brighter with 
higher voltages and dimmer with lower voltages.  In this activity, you will calibrate your 
board’s D/A voltage outputs, write programs to set their voltages, and measure and 
compare calibrated and un-calibrated voltage output levels. 

Additional Parts 

(2) Jumper Wires 

D/A Calibration Setup 

Figure 6-12 shows where to add the jumper wires.  Make sure to use one jumper wire to 
connect D/A0 to A/D0 and the other to connect D/A1 to A/D1. 
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Figure 6-12 
Pot Circuit with Jumper 
wires added: D/A0 to 
A/D0 and DA/1 to AD/1  

 

D/A Calibration 

The abvolts library includes functions such as da_out and da_volts to make D/A0 and 
D/A1 maintain a given voltage level between 0 V to just less than 3.3 V.  This is in 
contrast to A/D inputs that can measure from 0 to just less than 5 V.  Second, output 
voltages are set in terms of 256ths of 3.3 V.  The A/D converter reports measurements as 
4096ths of 5 V.  Third, a one-time calibration is needed for best results with the 
da_volts function.  In contrast, the A/D has built-in voltage references, so it does not 
need calibration. 
 
The one-time calibration uses a function named da_setupScale to measure D/A voltage 
outputs with the A/D inputs.  The function uses differences between the expected and 
measured output levels to set up a scale factor for improving the accuracy of the D/A 
voltage outputs.  The da_setupScale function saves these scale factors in a portion of 
the Activity Board’s EEPROM that is reserved for the abvolts library.  After the 
calibration, programs can call a function named ab_useScale to fetch the scale factors 
from EEPROM and apply them to improve da_volts outputs. 
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What is EEPROM Memory?    
EEPROM stands for Electrically Erasable Programmable Read-Only Memory.  It keeps its 
values even when you turn power off; turn it back on and all the information is still there.  In 
contrast, RAM (Random Access Memory) loses all its values when you shut down power, or 
even when you press and release the Activity Board’s RST button. 
How does the Propeller use EEPROM?    
The Propeller Activity Board has a 64 KB EEPROM.  It’s the little black chip just to the left of 
the Propeller.  The upper-case K means it can store the nearest power of 2, which is 
216 = 65,536 bytes.  

                                  
 
Half of this EEPROM (the first or “lower” 32 KB = 32,768 bytes) is dedicated to storing 
program images when you use SimpleIDE’s Load EEPROM & Run button.  After a reset, the 
Propeller will wake up and detect that a computer is not trying to load a program, so it goes 
and gets the program from EEPROM memory. 
How do libraries use EEPROM?    
Our example Propeller programs get stored in lower EEPROM, leaving the “upper” 32,768th 
through 65,535th bytes for data storage.  The Propeller C Tutorials’ Simple Libraries store 
Activity Board related calibration data using the highest addresses, starting at the 65,535th 
byte and working downward as libraries are added. Examples include compass, abdrive (for 
the Propeller ActivityBot), and abvolts calibration values.  The abvolts library was added to 
the Simple Libraries most recently, so it occupies the lowest addresses, from the 63,400th 
byte to the 63,416th bytes.   
How can you use EEPROM?    
You will also use EEPROM to store data later in this tutorial.  To make sure your values 
don’t roll over any calibration data, we’ll use the 32,768th byte—the lowest byte in upper 
EEPROM—and work our way upward.  We’ll restrict the amount of data so that it doesn’t roll 
over the 63,400th byte.  For storing more data than that, we could switch to SD cards for 
data storage. In the future, it is good practice to check each library’s documentation for 
upper EEPROM usage to prevent conflicts. 

Example Program: Volts-CalibrateDA 

Running the next program should give you a message with scale factors resembling those 
shown in Figure 6-13, with values very close to 1.0.  This message indicates that your 
scale factors have been determined and saved to the Activity Board’s upper EEPROM 
memory, for use in later programs. 
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Figure 6-13 
Scale Factors 
from 
da_setupScale 
Function 

 
If you see the “Error!” message in Figure 6-14 instead, it might mean that there’s a 
wiring mistake.  It could also mean that the USB port isn’t supplying enough power, 
which can happen with an un-powered USB hub.  It can also happen with pre-USB 2.0 
ports.  Plugging in an external power supply can help rule out USB port supply problems.  
 

 

Figure 6-14 
Error Message  
from 
da_setupScale 
Function 
 

 
 Click SimpleIDE’s New Project button, name the project Volts-CalibrateDA, 

and save to My Projects. 
 Enter the Volts-CalibrateDA.c code into SimpleIDE.   
 Reconnect power to your Activity Board (PWR switch to 1 and USB cable 

connected). 
 Click SimpleIDE’s Run with Terminal button. 
 If you get the message displaying the scale factors, you’re ready to move on. 
 If you get the error message, double-check your wiring.  If your wiring is 

correct, try plugging in an external power supply to the Activity Board’s 6-9 V 
power jack.  Power supply options are in Figure 4-4 on page 106. 
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/* Volts-CalibrateDA.c */ 
 
#include "simpletools.h"                      // Library includes 
#include "abvolts.h" 
 
int main()                                    // Main function 
{ 
  da_setupScale();                            // Calibration function 
 
  print("Done!");                             // Done message 
} 

How it Works 

Instead of a dedicated D/A chip, the Activity Board relies on some simple circuits and the 
Propeller microcontroller’s signaling ability to set voltages.  The da_volts function 
causes the Propeller to send rapid sequences of high/low signals to D/A conversion 
circuits on the Activity Board.   
 
Like the resistors, the various parts in the D/A circuits have tolerances that affect its 
ability to supply exactly 3.3 V when a Propeller I/O pin sends it a high signal, hence the 
need for calibration.  For example, if the high output of these conversion circuits is only 
3.2 V instead of 3.3 V, all the D/A conversions will be 3.2/3.3 of what they should be.  
The da_volts function could correct this by multiplying whatever voltage it’s supposed 
to supply by 3.3 / 3.2, which could be called a scale factor or scalar. 
 
When your code calls the da_setupScale function, it figures out the scale factor that is 
needed to correct the da_volts output on your particular board.  It does this by sending 
high signals to P26 and P27, which are the I/O pins that send signals to the D/A0 and 
D/A1 sockets.  Since you connected D/A0 to A/D0 and D/A1 to A/D1 with wires, 
da_setupScale measures the voltages and divides them into 3.3 V to calculate the scale 
factors, which get stored in the Activity Board’s EEPROM memory.   
 

int main()  
{ 
  da_setupScale(); 
 
  print("Done!"); 
} 

 
After doing this, you can call da_useScale at the beginning of any program that 
includes the abvolts library.  Then, da_useScale will fetch those scale factors from 



Page 194 ⋅ What’s a Multicore Microcontroller 

upper EEPROM and copy them to variables that da_volts automatically uses to correct 
its output.   

Test the D/A with the A/D 

This next program tests the scale correction by prompting you to type in voltage values, 
like those shown in Figure 6-15.  The measured values should be very close to the 
requested values. 
 

 

Figure 6-15 
Voltage 
Measurements 
with useScale 

Example Program: Volts-DAConversion 

 Click SimpleIDE’s New Project button, name the project Volts-DAConversion, 
and save it in My Projects. 

 Enter the Volts-DAConversion.c code into SimpleIDE.   
 Click SimpleIDE’s Run with Terminal button. 
 Try entering 1.0, 2.0, and 3.0 as test values.   
 Verify that the SimpleIDE Terminal displays voltsIn values that are very close 

to what you typed. 
 Also, monitor the P26 LED.  It should get brighter after you enter a larger 

voltages and dimmer as you enter smaller voltages. 
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/* Volts-DAConversion.c */ 
 
#include "simpletools.h"                      // Library includes 
#include "abvolts.h" 
 
int main()                                    // Main function 
{ 
  da_useScale();                              // Get scale factors 
 
  print("For 0.0 to 3.2 V D/A,\n");           // User instructions    
  print("type your numbers as #.##\n"); 
  print("Then, press Enter.\n\n");        
 
  float voltsOut, voltsIn;                    // Voltage variables 
 
  while(1) 
  { 
    print("Enter D/A0 volts: ");              // Get voltage 
    scan("%f\n", &voltsOut); 
 
    da_volts(0, voltsOut);                    // Set volts 
 
    voltsIn = ad_volts(0);                    // Measure volts 
    
    print("voltsIn = %1.3f\n", voltsIn);      // Display measurement 
  } 
} 

How it Works 

The da_useScale function tells the abvolts library to use the scale factors saved earlier 
by da_setupScale. 
 

  da_useScale(); 
 
These are just instructions for how to enter the D/A values and what range to use.   
 

  print("For 0.0 to 3.2 V D/A,\n"); 
  print("type your numbers as #.##\n"); 
  print("Then, press Enter.\n\n");        

 
Next, floating point variables for D/A (voltsOut) and A/D (voltsIn) are declared. 
 

  float voltsOut, voltsIn; 
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At the beginning of the while loop, a print statement prompts you to enter a voltage  
Then,  a scan statement fetches the value you entered into the SimpleIDE Terminal and 
stores it in voltsOut.  Note that the scan statement uses the %f modifier to make sure 
what you entered is captured as floating point value. 
 

  while(1) 
  { 
    print("Enter D/A0 volts: ");  
    scan("%f\n", &voltsOut); 

 
The da_volts(0, voltsOut) statement sets the D/A0 pin to the floating point value of 
voltsOut.  If it were instead da_volts(1, voltsOut), it would set the D/A1 channel. 
 

    da_volts(0, voltsOut); 
 
The voltsIn = ad_volts(0) statement measures the volts that D/A0 applies to A/D0 
with the wire you connected at the start of this activity. The last print statement displays 
the measured value, for you to compare with the value you entered. 
 

    voltsIn = ad_volts(0); 
    
    print("voltsIn = %1.3f\n", voltsIn); 
  } 
} 

Your Turn – Try it Without da_useScale 

Without da_useScale, you may notice slightly larger differences between your 
requested and measured voltages.  The largest difference in error will typically be 
noticeable at 3.0 V. 

 

 Click SimpleIDE’s Save Project As button, rename the project Volts-
DAConversion-YourTurn, and save it in My Projects. 

 Comment out the da_useScale function call (add // to its left), then re-run 
your code.   

 Repeat your test with 1.00, 2.00, and 3.00 V.   
 You are now done with the calibration, so you can remove the jumper wires that 

connect D/A0 to A/D0 and D/A1 to A/D1. 
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ACTIVITY #4: POTENTIOMETER CONTROLLED LED 
At this point, we have two new ingredients: measuring knob position (input) and 
controlling light brightness (output).  Let’s put them together with a program that 
measures knob position and uses it to control light brightness.    

Example Program: Volts-ControlLED 

 Click SimpleIDE’s New Project button, set the File name to Volts-ControlLED 
and Save. 

 Enter the Volts-ControlLED.c code into SimpleIDE.   
 Remove all jumpers between the D/A and A/D sockets, but keep the 

potentiometer circuit of Figure 6-10.  The output circuit is the built-in P26 LED. 
 Reconnect power to your Activity Board (PWR switch to 1 and USB cable 

connected). 
 Click SimpleIDE’s Run with Terminal button. 
 Turn the pot all the way clockwise to turn off the LED. 
 Gradually turn the pot counterclockwise.  The light should get brighter as you 

turn it further toward its counterclockwise limit. 
 
/* Volts-ControlLED.c */ 
 
#include "simpletools.h"                      // Library includes 
#include "abvolts.h" 
 
int main()                                    // Main function 
{ 
  float volts; 
 
  print("Use knob to control P26 light.");    // User prompt 
 
  while(1) 
  { 
    volts = ad_volts(3);                      // Measure potentiometer 
    da_volts(0, volts);                       // Set volts & light 
  } 
} 

How it Works 

As was done before, the main function begins by declaring the floating-point variable 
volts. 

int main()                         
{ 
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  float volts; 
 
All the while loop has to do is repeatedly check the potentiometer’s wiper voltage with 
ad_volts(3), and then feed that result to da_volts(0, volts).  That sets the voltage 
at D/A0 as well as the P26 LED brightness. 
 

  while(1) 
  { 
    volts = ad_volts(3); 
    da_volts(0, volts); 
  } 

 
Note that da_useScale was not used here.  There isn’t really any point in this 
application because human detection of led brightness is relative.  Nobody’s going to 
look at the LED and say, “Hey, that’s a hundredth of a volt too dim!”  

Your Turn – Control Both LEDs 

Just for fun, you can add a single line of code to make the potentiometer control the P27 
LED as well.  Can you see what you would need to do to make the P27 LED do the 
opposite of the P26 LED as you turn the potentometer’s control knob? 
 
 Save the project as Volts-ControlLED-YourTurn. 
 Add a second da_volts function call below the first: 

 
 da_volts(1, (3.3-volts)); 
 

 Run the program and twist the potentiometer’s control knob again. The P27 LED 
should get brighter as the P26 LED gets dimmer, and vice versa. 

 

ACTIVITY #5: MEASURE INPUT, SCALE VALUE, SET OUTPUT  
The last activity was an example of using an input device to control an output device, 
with the Propeller microcontroller in the middle making it happen.  It was a relatively 
straightforward example, since we were measuring a varying-voltage input to control a 
voltage output.  Furthermore, the abvolts library and on-board circuits did a lot of the 
work for us.  
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But, what if you want to use the potentiometer—or some other analog input device—with 
something that requires a different kind of control signal?  To do that, you often need to 
use a little math to write a program that takes your input device’s measurements and 
translates them into meaningful values for your output device.  Here we’ll provide you 
with those math tools, so you can put them to use in Activity 6. 
 
Remember how the ad_in function reports measurements as a number of 4096ths of 5 
V?  There’s an equivalent da_out function for setting voltage output, and its daVal 
parameter requires a number of 256ths of 3.3 V.  We are going to use ad_in and da_out 
to repeat the last activity, sharpening those coding and math tools along the way. 
 
From the ad_in function you’re going to have an input range of 0…2703 for 0 to 3.3 V.  
The code will need to scale the input value to the da_out function’s output range of 
0…256 for 0 to 3.3 V. 
 
 Before continuing, grab a pencil and paper and see if you can write some code 

that you think will convert a measurement in the A/D’s range to an output in the 
D/A’s range.  

 
This is an example of a y = mx problem.  The value x is the raw A/D measurement from 
ad_in The value m is what we need to multiply it by to get y values that fall in the right 
range for the parameter da_out uses to set the D/A output.  We need to solve for the 
value of m, using two corresponding x and y values.  Since we know that 2703 
corresponds to a 3.3 V input and 256 corresponds to a 3.3 V output, we can use them to 
solve for m.   
 

       

2703
256m

x
y  m

 
x
xm

x
y
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=

=

=

=

 

 
Let’s try a piece of code that uses the value of m to make the conversion.  It lets you twist 
the knob to control LED brightness and displays the x input and y output values. Note 
that if you verify this display with a calculator, you’ll get about 9.47 instead of the 9 



Page 200 ⋅ What’s a Multicore Microcontroller 

shown in Figure 6-16.  Keep in mind that int calculations always round division results 
downward. 
 

 

Figure 6-16 
Scale 
Verification 
Display  

 
 Use SimpleIDE’s Save Project As button to save a copy of Volts-ControlLED.  

Name it Volts-ControlScaled, and save it in My Projects. 
 Delete the float volts variable declaration, and replace it with two int 

variables, x and y.   
 Remove the print statement above the while(1) loop. 
 Update the while(1) loop to match the one below. 

 
  while(1) 
  { 
    x = ad_in (3);                 // Measure potentiometer 
    print("%c x = %4d\n ",         // Print input value (x) 
           HOME,    x); 
 
    y = x * 256 / 2703;            // Scale value        
    print(" y = %4d\n ", y);       // Print output value (y) 
  
    da_out(0, y);                  // Set volts & light 
    
    pause(200);                    // Slow data for terminal 
  } 
 

 Double-check your updates to the % flags in the print functions.  We are now 
working with 4-digit int values, so instead of using %1.3f, we are using %4d. 
 

 

Leading spaces or zeroes, again it is your choice. %4d displays leading spaces in 
decimal integers with less than 4 digits so that it occupies a total of four characters.  If you 
want to display leading zeroes instead, use %04d. 
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 Use Run with Terminal and verify that you have light control. 
 Monitor the SimpleIDE terminal to view the x input and scaled y output values. 

Operations Rules for INT Variables 

Be aware that with int variables, operations do not always give the same results as with 
algebra.  The four rules to keep in mind are: 
 

1) Integer division always rounds down.  So 4 / 10 = 0, and 12 / 10 = 1.   
2) Operators have precedence.  *, /, and % have higher precedence than + and -, 

meaning that a statement will execute all the *, /, and % operators first, and then 
go back and finish the + and – operators. 

3) Parentheses can override precedence.  z = (a + b) * x; will add a to b 
before multiplying the result by x. 

4) Operators at the same level of precedence get executed from left to right.  
 

 

Integer Remainders and the % Operator — In integer calculations, 4 / 10 is really 0 with a 
remainder of 4, and 12 / 10 is really 1 with a remainder of 2.  For the remainder, you can use 
the modulus % operator: 4 % 10 = 4, and 12 % 10 = 2. 

Try This – Int Order of Operations 

Given int x, y; the statement y = x * 256 / 2703 applies the above rules for int 
variable operations correctly.  Because of Rule 1, the statement has to start with a value 
that can be larger than 2703 before dividing.  Rule 2 means that the * operator gets 
executed first because it’s leftmost.  So x gets multiplied by 256 so it can be larger than 
2703.  Then the / operator gets executed second, for a meaningful result.  
 
 Enter Volts-ControlScaled-TryThis1 into SimpleIDE. 

 
/*  Volts-ControlScaled-TryThis1.c  */ 
 
#include "simpletools.h"                      // Include simple tools 
 
int main()                                    // Main function 
{ 
  int x = 10; 
  int y; 
   
  y = x * 256 / 2703; 
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  print("x = %d\n", x); 
  print("y = %d\n", y); 
}    

 
 Try a few different values for x, between and including 10 and 2703, and then 

Run with Terminal.  You will see the corresponding scaled value of y in the 
SimpleIDE terminal. 

 

 

Figure 6-17 
Modified “x” 
Value Scale 
Display  

 
 Use SimpleIDE’s Save Project As button to save another copy as Volts-

ControlScaled-TryThis2. 
 Change the formula to y = 256 / 2703 * x. 
 Retry different values for x, including 10 and 2073.  Now, what do you see in the 

SimpleIDE Terminal? 
 

 

Figure 6-18 
Scale Display 
After Modifying 
Operator Order 

 
Since operators are evaluated from left to right, 256 / 2703 gets executed first, and that 
result is always 0.  So y ends up always being 0 * x, for a result of 0 no matter what.   
 

ACTIVITY #6: POTENTIOMETER CONTROLLED SERVO 
As mentioned in Chapter 4, a hobby servo is a device that controls position, and you can 
find them in just about any radio controlled (RC) car, boat or plane.  In RC cars, the servo 
holds the steering to control how sharply the car turns.  In an RC boat, it holds the rudder 
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in position for turns.  RC planes typically have several servos that position the different 
flaps to control the plane’s motion.  In RC vehicles with gas powered engines, another 
servo moves the engine’s throttle lever to control how fast the engine runs.  An example 
of an RC airplane and its radio controller are shown in Figure 6-19.  The hobbyist “flies” 
the airplane by manipulating thumb joysticks on the radio controller which, via the radio 
link, causes the servos on the plane to control the positions of the RC plane’s elevator 
flaps and rudder. When there is external force like air pressure against the servo it will 
actively work to hold the position it was sent.  
 

   

Figure 6-19 
Model Airplane and 
Radio Controller 

 
Thumb joysticks like the one in Figure 6-20 are commonly found in both RC and video 
game controllers.  Each joystick typically has two potentiometers that allow the 
electronics inside the controller to report the joystick’s position.  One potentiometer 
rotates with the joystick’s horizontal motion (left/right), and the other rotates with the 
joystick’s vertical motion (forward/backward).  In the case of the RC controller, a 
microcontroller inside monitors each potentiometer’s output voltage and uses as radio to 
relay that information to the plane, where an onboard controller receives those radio 
signals and converts them to signals that control the various servos. 
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Figure 6-20 
Potentiometers Inside 
the Parallax Thumb 
Joystick Module 

 
In this activity, you will use your potentiometer, which is similar to the ones found in 
thumb joysticks, to control a servo’s position.  As you turn the potentiometer’s knob, the 
servo’s horn will mirror this motion.   
 

 

With four A/D inputs, your Propeller Activity Board application could easily monitor two 
joysticks (horizontal and vertical for each).   

Potentiometer Controlled Servo Parts 

(1) Potentiometer – 10 kΩ 
(1) Parallax Standard Servo 
(1) 2.1 mm, center positive plug supply option from Chapter 4, Activity #1. 
(1) Jumper wire (black) 
(1) Potentiometer – 10 kΩ  
(3) Jumper wires – 1 red, 1 black, 1 blue  

Potentiometer and Servo Circuits 

This activity will use two circuits that you have already built individually: the 
potentiometer circuit from the activity you just finished and the servo circuit from 
Chapter 4.   
 

Vertical 
potentiometer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Horizontal 
potentiometer 
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Circuit Safety First! Before connecting the servo, set the Activity Board’s PWR switch to 0. 
Make sure to plug in the servo the right direction, with the white wire nearest the top edge of 
the board. The USB cable will not power a servo – you must use supply external power 
supply (See Figure 4-4 on page 92 for power supply options.)  When you turn power back 
on, make sure to set the PWR switch to 2. 

 
 Leave your potentiometer A/D circuit from Activity #2 on your prototyping area. 
 Add your servo circuit from Chapter 4, Activity #1 as shown in Figure 6-21. 

Remember to connect your external power supply to the Activity Board’s 6-9 V 
jack! (See Figure 4-4 on page 106 for power supply options.) 
 
 

 
 

 

Figure 6-21 
Pot & Servo Circuits  
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Potentiometer Servo Control 

Here, we can take the potentiometer’s output (approximately 0 to 2703) and scale it to the 
servo_angle function’s input range of (0 to 1800).  We’ll need a new value of m for 
this: 
 

     

2703
1800m

x
y  m

mx y 

=

=

=
 

 
Since we’ll be using int variables, we have to make sure to use y = x * m(numerator) / 
m(denominator).  The result is: 
 

x = ad_in(3); 
y = x * 1800 / 2703; 

Example Program: Volts-ServoControl 

 Enter and run this program, then twist the potentiometer’s knob and verify that 
the servo’s movements echo the potentiometer’s movements.  (Make sure to 
push the pot onto the breadboard to maintain electrical contact.  If you don’t, the 
servo might seem twitchy or jittery.) 

 
/* Volts-ServoControl.c */ 
 
#include "simpletools.h"                      // Library includes 
#include "abvolts.h" 
#include "servo.h" 
 
int main()                                    // Main function 
{ 
  print("Twist knob to control servo.");      // User prompt 
 
  while(1) 
  { 
    int x = ad_in(3);                         // Measure potentiometer 
 
    int y = x * 1800 / 2703;                  // Scale value 
 
    servo_angle(14, y);                       // Set degreeTenths to y 
  } 
} 
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How it Works 

Since this code controls a servo, it needs access to be able to access the servo functions.  
So remember to add the servo library with #include "servo.h". 
 

#include "simpletools.h" 
#include "abvolts.h" 
#include "servo.h" 

 
Inside the while(1) loop, the code assigns the raw A/D pot voltage measurement to a 
new variable named x with int x = ad_in(3).  Then it takes the x value, which is in 
the 0…2703 range, and calculates a scaled y value that fits in the 0…1800 range with 
int y = x * 1800 / 2703.  Then servo_angle(14, y) uses this value to control the 
servo’s position. 
 

    int x = ad_in(3); 
 
    int y = x * 1800 / 2703; 
 
    servo_angle(14, y); 
 

Try This – Scale and Offset 

Let’s say we want the full range of potentiometer motion to only move the servo from 45º 
to 135º.  Now, we have a y = mx + b problem.  In this case, solving for b is pretty easy 
because we know that y should be 450 when x is 0.  (Keep in mind that m × 0 = 0.)   
 

     

450b
b0m450

b mx  y 

=
+×=

+=
 

 
Next, solve for m with known values of y and x, like x = 2703 (for max 3.3 V input 
voltage) and y = 1350 (for 135 degrees on the servo). 
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This means the equation the code needs to implement is: 
 
      450x

2703
900y +=  

 
Remember that integer values need to be multiplied by the numerator first, before 
dividing by the denominator.  So the code we think will make the scale is: 
 

int y = x * 900 / 2703 + 450; 
 
Let’s test that with the Terminal before adding potentiometer code: 
 
 Click New Project, name the project Volts-ServoControl-TryThis, and save it to 

My Projects. 
 Type this code into SimpleIDE. 

 
/* Volts-ServoControl-TryThis.c */ 
 
#include "simpletools.h"                      // Library includes 
 
int main()                                    // Main function 
{ 
  print("Enter values in 0...2703 range\n");       
  print("Verify results in 450...1350 range\n\n"); 
 
  while(1) 
  { 
    print("Enter value: ");                         
    int x; 
    scan("%d", &x);                   
 
    int y = x * 900 / 2703 + 450; 
    print("y = %d\n\n", y);                       
  } 
} 
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 Click Run with Terminal, and use some test values (like in Figure 6-22) to verify 

that the code correctly scales and offsets the expected A/D3 input values. 
 

  

Figure 6-22 
Scale and Offset 
in SimpleIDE 
Terminal 
 
Test Calculations 
before Running 

 

Your Turn – Servo Motion Scale and Offset 

Now that we know int y = x * 900 / 2703 + 450 works, let’s test it with our pot-
controlled servo. 
 
 Use Open Project to open Volts-ServoControl. 
 Use Save Project As to save a copy named Volts-ServoControl-YourTurn in My 

Projects. 
 Change int y = x * 1800 / 2703; to int y = x * 900 / 2703 + 450; 

Click the Load RAM & Run button. 
 Test to make sure the servo’s output range only turns from 45º to 135º when you 

turn the knob over its full range. 
 

ACTIVITY #7: POTENTIOMETER CONTROLLING OTHER COG 
Let’s use the potentiometer input values to control the LED blink rate from another cog.  
When the pot is turned to its clockwise limit, the fastest blink rate will have 25 ms 
pauses.  When it’s turned to its counterclockwise limit, the slowest rate will have 275 ms 
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pauses.  Let’s first apply your scale and offset calculation and coding skills to fit this 
output range to the potentiometers 0…2703 input range.  
 
 Apply the math from the Your Turn you just completed to determine a statement 

that calculates a y output in the 25…275 range that corresponds to an x input in 
the 0…2703 range.  Correct answer options include int y = x * (275 - 25) 
/ 2703 + 25 as well as int y = x * 250 / 2703 + 25. 

Pot Input Controls Output in Other Process 

We have already written code that controls LED blink rate in another cog using the 
Activity Board’s built-in P26 LED.  It was in the Multi-InfoExchange project from 
Chapter 5, Activity #5.  The program’s main function would set the value of a volatile 
global variable named t.  It also had a function named blink, which used t to set blink 
rate running in another cog. 
 
This program can serve as a starting point for potentiometer-controlled blink rate.  
Instead of using statements like t = 100 and t = 50 to set the blink rate, the main 
function can instead measure the potentiometer, apply scale and offset, and then use the 
result to set the value of t for the blink function. 
 
 Go back to Chapter 5, Activity #5 and examine Multi-InfoExchange.c. 
 Think about how you would modify the main function to enable potentiometer 

control of the blink rate. 
 Would you need to make other modifications to the file?  Maybe an extra 

#include and some changes to the comments? 

Example Program: Volts-Multicore 

The Volts-Multicore program is a modified version of Multi-InfoExchange from Chapter 
5, Activity #5 that controls blink rate in another cog based on potentiometer 
measurements. 
 
 Click SimpleIDE’s New Project button, set the File name to Volts-Multicore and 

then Save. 
 Enter the following Volts-Multicore.c code into SimpleIDE.   
 Click SimpleIDE’s Load RAM & Run button. 
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 Turn the potentiometer’s knob, and verify that it now controls the rate at which 
the LED light blinks. 
 

/* Volts-Multicore.c */ 
 
#include "simpletools.h"                      // Library include 
#include "abvolts.h" 
 
void blink();                                 // Forward declaration 
 
volatile int t;                               // Declare t for both cogs 
 
int main()                                    // Main function 
{ 
  print("Adjust pot knob, and verify \n");    // User prompts 
  print("blink rate control.\n"); 
 
  // Initialize t before running 
  // blink in other cog. 
  int x = ad_in(3);                           // Check pot 
  int y = x * 250 / 2703 + 25;                // Scale + offset 
  t = y;                                      // Change blink’s pause time 
 
  cog_run(blink, 128);                        // Run blink in other cog 
 
  while(1)                                    // Main loop 
  { 
    x = ad_in(3);                             // Check pot 
    y = x * 250 / 2703 + 25;                  // Scale + offset 
    t = y;                                    // Update blink’s pause time 
  } 
} 
 
void blink()                                  // Function for other cog 
{ 
  while(1)                                    // Endless loop 
  { 
    high(26);                                 // LED on 
    pause(t);                                 // ...for t ms 
    low(26);                                  // LED off 
    pause(t);                                 // ...for t ms 
  } 
} 

How it Works 

This application needs the simpletools library for access to its high, low, pause, and 
cog_run functions.  It also needs the abvolts library for access to its ad_in function. 
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#include "simpletools.h" 
#include "abvolts.h" 

 
Since the blink function is below main, but there’s a reference to it in main, the forward 
declaration void blink() is required.  A global variable named t is declared as volatile 
so that functions running in different cogs use it to exchange information. 
 

void blink(); 
 
volatile int t; 

 
The main function starts with a couple of print statements prompting to test the pot’s 
control of the blink rate. 
 

int main() 
{ 
  print("Adjust pot knob,and verify \n"); 
  print("blink rate control.\n"); 
 

The blink function needs to start with a value of t, so these three lines check the pot, 
apply scale and offset, and copy the result to t.  After that, it’s safe to run the blink 
function in another cog with cog_run(blink, 20). 
 

  int x = ad_in(3); 
  int y = x * 250 / 2703 + 25; 
  t = y; 
 
  cog_run(blink, 20); 

 
The while(1) loop repeatedly checks the pot, scales its output, and copies it to the 
shared t variable for control of the blink function’s LED on/off rate. 
 

  while(1) 
  { 
    x = ad_in(3); 
    y = x * 250 / 2703 + 25; 
    t = y; 
  } 
} 
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This is the same LED blink function from Multi-InfoExchange.  It expects to have its 
global pin and t variables set before it gets launched in another cog.  As it repeats itself, 
code in another cog can change the value of the global t variable, and this cog’s blink 
rate will change.   
 

void blink() 
{ 
  while(1) 
  { 
    high(26); 
    pause(t); 
    low(26); 
    pause(t); 
  } 
} 

Your Turn – Reduce Duplicate Code, Add a Function 

This code is repeated twice, once in the initialization and again in the while loop.   
  
  int x = ad_in(3); 
  int y = x * 250 / 2703 + 25; 
  t = y; 

 
Instead of having all that code repeating itself twice, why not just have a function that 
your code calls twice?  Here is an example of a function that can do the job.  This one is 
not for launching into another cog; it’s just for reading and scaling the pot. 
 

 int potScaled(int channel) 
  { 
    int x = ad_in(channel);                            
    int y = x * 250 / 2703 + 25;                
    return y;  
  }      

 
A call to that function might look like this: 
  

t = potScaled(3); 
 
After adding the function, that call can replace the three lines that read the pot, scale, and 
set the t variable. 
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Don’t forget the forward declaration above main: 
 

int potScaled(int channel); 
 
 Continuing with Volts-Multicore.c, click SimpleIDE’s Save Project As button, 

set the File name to Volts-Multicore-YourTurn.  Make sure to save in My 
Projects. 

 Add the potScaled function below the main function. 
 Add the forward declaration above the main function.   
 Find the two groups of 3 commands that look like this:  

 
  int x = ad_in(3); 
  int y = x * 250 / 2703 + 25; 
  t = y; 
 
…and replace them with the t = potScaled(3) function call. 

 Click SimpleIDE’s Load RAM & Run button. 
 Verify that it still works correctly. 

 

 SUMMARY 

 

Why isn’t x declared at the start of main?  Just as a variable can be local to a function, it 
can also be local to a code block.  The x variable is only needed within the while loop, so it 
is declared at the start of the while loop.  As a general rule, it’s best to minimize the scope 
of local variables your program uses.  There are some cases where you’ll need to increase 
the scope by declaring the variable earlier.  For example, if the while loop was not endless, 
and your code needed to retain the value of x after the loop finishes, you would have to 
declare x above the while loop.  In that case it would be: 

int x;              // Variable for A/D input 
while(1) 
{ 
  x = ad_in(3);     

 
This chapter used the potentiometer as a knob in activities that both measured and set 
voltages.  Along the way, it introduced the following:   
 

• Potentiometer schematic and part drawing, and explanation of its terminals. 
• Potentiometer theory of operation, and some of its uses. 
• Voltage divider circuits and equation. 
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• Analog to digital (A/D) conversion for measuring voltages. 
• Digital to analog (D/A) conversion for setting voltages. 
• Part tolerance contributions to measurement errors. 
• Solving y = mx and y = mx + b for m and b. 
• Scaling values from an input range to their corresponding values in a different 

output range. 
• Using casts to copy values between variables of different types.   
• Operator precedence and order. 
• Moving scalar operations into a function that can be re-used. 

Questions 

1. How many terminals does a potentiometer have and what are they named? 
2. What parts does a voltage divider circuit have, and how are they connected?  
3. What does A/D stand for?  What does D/A stand for? 
4. What does the %1.2f flag do in a print statement?  
5. How many voltage measurement sockets does the Propeller Activity Board 

have? 
6. What library contains the functions ad_volts and da_volts? 
7. Which has higher precedence, + or *?  How does that affect which gets executed 

first in a statement? 
8. What’s the difference between an analog and digital value? 
9. What is the rounding rule for the / operator when applied to int variables? 
10. Will this work?  int i; float f; i = 6.0 * f;  Explain. 
11. What does a thumb joystick use to detect its position? 
12. What’s a good way to clean up repeated blocks of identical code in your 

program? 
13. How would you position a potentiometer’s knob in a 3.3 volt circuit to make its 

output close to 1.65 V? 

Exercises 

1. Calculate the voltage divider for RA = 1.000 and RB = 10,000 with a 3.3 V 
supply. 

2. Calculate the voltage divider for RA = 10,000 and RB = 10,000 with a 3.3 V 
supply. 

3. Calculate the voltage divider for RA = 10,000 and RB = 1,000 with a 3.3 V 
supply. 

4. Copy the value of a float variable named f to an int variable named i. 
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5. Copy the value of an int variable named i to a float variable named f. 
6. Write a statement to measure the volts applied to A/D2. 
7. Write a statement to apply 2.9 V with D/A1. 
8. Write a statement to get the raw A/D value from A/D1. 
9. Write a line of code that scales an input in the 0 to100 range to an output in the 0 

to 50 range.  Assume your input and output variables are int x and int y. 
10. Write a line of code that takes an input in the 0 to 120 range and scales it to the 

30 to 90 range.  Assume your input and output variables are int x and int y. 

Projects 

1. Modify Volts-Multicore from Activity #5 so that its knob-position monitoring all 
happens in another cog.  Then, add code to the main function that prints the pot 
voltage and the number of seconds elapsed since the application started every 
second.  Hints: You will want to make x global and volatile.  Also, look for and 
remove any instances of int x in functions.  (Yes, you can have a global 
variable and a local variable with the same name, and it can cause problems.)  
Use while(t == 0); to wait for the potentiometer reading function in the other 
cog to store a value in t before allowing cog_run(blink, 20) to execute. 

 
2. Add a button to the potentiometer servo controller.  When you press and hold the 

button, it reverses the direction of servo control.  So, instead of turning the same 
direction with the knob, it turns the opposite direction.  When you release the 
button, rotation direction should return to normal.  Hints: For opposite direction, 
subtract the servo setting from 1800.  Use the technique introduced in the 
Activity #4’s Try This –Scale and Offset to test your solution first.  That way, 
you can be sure it works before trying it with your servo hardware.   

Solutions 

Q1. 3 terminals: A, B, and W (or wiper). 
Q2. A voltage divider circuit has two resistors connected in series. Generally there is 

a connection to measure the voltage at the point between the two resistors. 
Q3. A/D stands for analog to digital, D/A stands for digital to analog. 
Q4. It displays the corresponding floating point value in the print statements 

parameter list with 1 digit to the left of the decimal point and two to the right. 
Q5. Four A/D sockets numbered 0 to 3. 
Q6. The abvolts library. 
Q7. * has higher precedence, so it gets executed before +. 
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Q8. An analog value varies continuously.  A digital value has some form of discrete 
step. 

Q9. There can be no fractional part in the result, so it always rounds down to the next 
integer. 

Q10. No, the int variable on the left cannot be assigned the right-side value which is 
a float. Correct answers would be: 

a. int i;  float f;  i = (int)(6.0 * f) 
b. float f1;  float f2;  f1 = 6.0 * f2 

Q11. The two outputs of the whole unit are the wiper terminal voltages of its two 
potentiometers. 

Q12. Move the code block to a function and call it from the various places that used 
to have the redundant block. 

Q13. Position it roughly in the middle of its range of motion. 
 

E1. The equation for this voltage divider is R1 divided by (R1 plus R2) where R1 is 
the resistor towards 3.3 V. 3.3 V × 10,000 / (1,000 + 10,000) = 3.0 V. 

E2. 3.3 V × 10,000 / (10,000 + 10,000) = 1.65 V.  (Noticing a pattern with equal 
resistors yet?) 

E3. 3.3 V × 1,000 / (1,000 + 10,000) = 0.3 V.  (How about a pattern for swapping 
unequal resistors?) 

E4. Solution: i = (int) f; 
E5. Solution: f = (float) i; 
E6. Solution: float volts = ad_volts(2); 
E7. Solution: da_volts(1, 2.9); 
E8. Solution: int myVar = ad_in(1); 
E9. y = x / 2 
E10. y = x * (90 – 30) / 120 + 30 

 
P1. Example solution: 

 
/* Volts-P1-Solution.c */ 
 
#include "simpletools.h"                      // Library include 
#include "abvolts.h" 
 
void blink();                                 // Forward declaration 
void potentiometer();                         // <- add 
volatile int pin, t, x;                       // Variables for cogs go share 
 
int main()                                    // Main function 
{ 
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  cog_run(potentiometer, 20);                 // potentiometer() to other cog 
 
  pin = 26;                                   // Set up blink cog vars 
 
  // Wait for other cog to store value in t.  Blink will need it. 
  while(t == 0); 
 
  cog_run(blink, 40);                         // blink() to other cog 
 
  // Seconds & pot display 
  int seconds = 0;                            // Seconds variable  
 
  while(1)                                    // New main loop 
  { 
    pause(1000);                              // Wait 1 second 
    seconds++;                                // Add 1 to seconds 
    print("Seconds = %d\n", seconds);         // Display seconds 
    print("Pot = %d\n", x);                   // Display pot measurement 
  } 
} 
 
void potentiometer() 
{ 
  x = ad_in(3);                               // Initialize shared variables 
  int y = x * 250 / 2703 + 25; 
  t = y; 
 
  while(1)                                    // Main loop 
  { 
    x = ad_in(3);                             // Check pot 
    int y = x * 250 / 2703 + 25;              // Scale + offset 
    t = y;                                    // Change blink’s pause time 
  } 
} 
 
void blink()                                  // Blink function for other cog 
{ 
  while(1)                                    // Blink loop 
  { 
    high(pin);                                // LED on 
    pause(t);                                 // ...for t ms 
    low(pin);                                 // LED off 
    pause(t);                                 // ...for t ms 
  } 
} 

 
P2. Build circuits shown. 
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Test the potentiometer and pushbutton with SimpleIDE Terminal first. 
 
/* Volts-P2-Solution1.c */ 
 
#include "simpletools.h"                      // Library includes 
#include "abvolts.h" 
#include "servo.h" 
 
int main()                                    // Main function 
{ 
  print("Twist knob to control value.\n");    // User prompt 
  print("Monitor terminal for servo value.\n\n"); 
 
  while(1) 
  { 
    int x = ad_in(3);                         // Measure potentiometer 
 
    int y = x * 1800 / 2703;                  // Scale value same direction 
 
    if(input(3) == 1) 
    { 
      y = 1800 - y;                           // Scale opposite direction 
    } 
 
    // servo_angle(14, y);                    // Set degreeTenths to y 
    print("y = %d\n", y); 
    pause(500); 
  } 
} 

 
Then try it again with the servo. 
 
/*  Volts-P2-Solution2.c */ 
 
#include "simpletools.h"                      // Library includes 
#include "abvolts.h" 
#include "servo.h" 
 
int main()                                    // Main function 
{ 
  print("Twist knob to control servo.");      // User prompt 
 
  while(1) 
  { 
    int x = ad_in(3);                         // Measure potentiometer 
 
    int y = x * 1800 / 2703;                  // Scale value same direction 
 
    if(input(3) == 1) 
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    { 
      y = 1800 - y;                           // Scale opposite direction 
    } 
 
    servo_angle(14, y);                       // Set degreeTenths to y 
  } 
} 
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