

What’s a Multicore
Microcontroller?

Student Guide, Part 1

VERSION 1.0

Page 2 ⋅ What’s a Multicore Microcontroller

Warranty
Parallax warrants its products against defects in materials and workmanship for a period of 90 days from receipt of
product. If you discover a defect, Parallax will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-Day Money Back Guarantee
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax will refund the purchase price of the product, excluding shipping/handling costs. This guarantee
is void if the product has been altered or damaged. See the Warranty section above for instructions on returning a
product to Parallax.

Copyrights and Trademarks
This documentation is Copyright 2015 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use, in whole or in part, is permitted subject to the following conditions: the
material is to be used solely in conjunction with Parallax products, and the user may recover from the student only the
cost of duplication. Check with Parallax for approval prior to duplicating any of our documentation in part or whole
for any other use.

BASIC Stamp, Board of Education, Boe-Bot, Stamps in Class, and SumoBot are registered trademarks of Parallax
Inc. HomeWork Board, PING))), Parallax, the Parallax logo, and Spin are trademarks of Parallax Inc. If you decide to
use any of these words on your electronic or printed material, you must state that “(trademark) is a (registered)
trademark of Parallax Inc.” upon the first use of the trademark name. Other brand and product names herein are
trademarks or registered trademarks of their respective holders.

Disclaimer of Liability
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax is also not responsible for any personal damage, including that to life and health, resulting
from use of any of our products. You take full responsibility for your Propeller application, no matter how life-
threatening it may be.

Errata
While great effort is made to assure the accuracy of our texts, errors may still exist. Occasionally an errata sheet with
a list of known errors and corrections for a given text will be posted on the related product page at
www.parallax.com. If you find an error, please send an email to editor@parallax.com.

Table of Contents

Preface ... 5
Audience ... 5
A Bit About Propeller C and Simple Libraries ... 5
About the Author ... 7
Contributors .. 7

Chapter 1 : Getting Started .. 9
How Many Microcontrollers Did You Use Today? .. 9
The Propeller Activity Board – Your New Embedded System .. 9
Amazing Inventions with Microcontrollers ... 10
Activity #1 : What’s a “Multicore” Microcontroller? .. 12
Activity #2 : Set up Software and Hardware ... 17
Activity #3 : Learn Just a Little Programming ... 18
Activity #4 : Variables and Math ... 23
Activity #5 : When You are Done For Now ... 26
Summary .. 26

Chapter 2 : Lights On – Lights Off .. 30
Indicator Lights ... 30
Making a Light-Emitting Diode (LED) Emit Light .. 30
Activity #1 : Building and Testing the LED Circuit ... 31
Activity #2 : On/Off Control with the Microcontroller ... 40
Activity #3 : Counting and Repeating .. 47
Activity #4 : Building and Testing a Second LED Circuit .. 51
Activity #5 : Control a Bicolor LED with Current Direction .. 55
Summary .. 62

Chapter 3 : Digital Input – Pushbuttons ... 67
Found on Calculators, Handheld Games, and Applicances ... 67
Receiving vs. Sending High and Low Signals .. 67
Activity #1 : Testing a Pushbutton with an LED Circuit ... 67
Activity #2 : Reading a Pushbutton with the Propeller .. 71
Activity #3 : Pushbutton Control of an LED Circuit ... 76
Activity #4 : Two Pushbuttons Controlling Two LED Circuits .. 80
Activity #5 : Reaction Timer Test .. 88
Summary .. 96

Chapter 4 : Control Position and Motion ... 103
Microcontrolled Motion .. 103
Introducing the Servo .. 103
Activity #1 : Safely Connecting the Servo ... 106

Page 4 ⋅ What’s a Multicore Microcontroller

Activity #2 : Test and Adjust Range of Motion .. 110
Activity #3 : Program to Hold Positions... 116
Activity #4 : Controlling Position with your Computer ... 120
Activity #5 : Converting Position to Motion ... 125
Activity #6 : Pushbutton-Controlled Servo .. 127
Summary .. 132

Chapter 5 : Write Multicore Code ... 136
Introducing the Function ... 137
Activity #1 : Test the Multi-HelloFunction ... 138
Activity #2 : Parameters and Return Values ... 142
Activity #3 : Variable Scope .. 146
Activity #4 : Run Functions in Other Processors (cogs) ... 153
Activity #5 Sharing Global Variables Between Cogs .. 160
Activity #6 : Self-terminating Cogs .. 164
Activity #7 : Printing and Terminating from a launched Cog 168
Summary .. 173

Chapter 6 : Measure Voltage and Position .. 177
The Variable Resistor – a Potentiometer .. 177
Activity #1 : Set Voltages with Two Resistors ... 178
Activity #2 : Read the Position with the Propeller ... 184
Activity #3 : Calibrate D/A Outputs ... 189
Activity #4 : Potentiometer Controlled LED .. 197
Activity #5 : Measure Input, Scale Value, Set Output ... 198
Activity #6 : Potentiometer Controlled Servo .. 202
Activity #7 : Potentiometer Controlling Other Cog .. 209
Summary .. 214

Preface ⋅ Page 5

Preface

This tutorial answers the question “What’s a multicore microcontroller?” and shows
students how to use one to design their own “smart” invention. It features Parallax Inc.’s
Propeller microcontroller, which is built into the Propeller Activity Board. The tutorial
activities are designed to appeal to a student’s imagination by using motion, light, sound,
and tactile feedback to explore new concepts. Along the way, students encounter basic
principles in the fields of computer programming, electricity and electronics,
mathematics, and physics. Many activities give hands-on experience with design
practices and common electronic components used by engineers and technicians in the
creation of modern machines and appliances. At the end of this course students will
understand the capabilities of microcontrollers, design their own projects, and build them.
In short, they will be able to use multicore microcontrollers as another tool to equip their
genius.

AUDIENCE
This tutorial is designed to be an entry point to technology literacy, and an easy learning
curve for embedded programming and device design. The text is organized so that it can
be used by the widest possible variety of students as well as by independent learners.
Middle-school students can try the examples in this text in a guided tour fashion by
simply following the check-marked instructions with instructor supervision. At the other
end of the spectrum, engineering students’ comprehension and problem-solving skills
can be tested with the questions, exercises, and projects (with solutions) in each chapter
summary. The independent learner can work at his or her own pace, and obtain
assistance through the Learn forum cited below.

A BIT ABOUT PROPELLER C AND SIMPLE LIBRARIES
Propeller C is introduced here: http://learn.parallax.com/propellerc. This program
combines the most popular elements of the Stamps in Class program for the BASIC
Stamp with the multicore Propeller microcontroller and the C programming language.

Those of you who got started with Stamps in Class tutorials will probably recognize
many of the PBASIC features that made getting started with microcontrollers and
electronics so fun with the BASIC Stamp. For example, blinking a light in PBASIC uses
commands named high, low and pause. The Propeller C tutorials use a library called
simpletools, which has equivalent functions named: high, low and pause. A few more

Page 6 ⋅ What’s a Multicore Microcontroller

examples from simpletools you might recognize: pulse_in, pulse_out, shift_in,
shift_out, i2c_in, i2c_out, freq_out, count. You can go here for the complete list,
and click the simpletools.h link:

https://propsideworkspace.googlecode.com/hg/Learn/Simple%20Libraries%20Index.html

The portions of PBASIC that were incorporated into the simpletools library were the P
(for Parallax) part of PBASIC, not the BASIC part. In other words, the simpletools
library made functions out of the commands that can be applied in any language to
simplify the the I/O control and timing commonly used to make microcontrollers interact
with the circuits inside products, robots, and inventions. The rest is C language, built by
the fully C compliant Propeller GCC compiler. So, instead of putting high, low, and
pause commands in a PBASIC do...while loop for the BASIC Stamp, to blink that
light with a BASIC Stamp, we have high, low, and pause function calls inside a C
language while(1){...} loop for the Propeller.

Launching into the larger world of C language and multicore microcontroller
applications, Propeller C uses both custom and standard libraries. Some custom libraries
support popular devices. So instead of needing to write a function to check a PING)))
Ultrasonic Distance Sensor and convert the echo time measurement to centimeters, you
can just include the ping.h header, and call its ping_cm function. Some libraries even
provide simple function calls that launch and manage multicore processes like wav files,
VGA display, and/or controlling many servos with a single core.

Standard libraries are used whenever possible. Trig functions, random numbers, and
string comparisons are all examples that can be found in the tutorials. The original intent
was to also use the stdio library’s printf and scanf functions. Another original intent
that guided the design of the Propeller Activity Board was to have all Propeller C
examples executed in CMM (compact memory) mode so that programs could be run by
just the Propeller chip on most existing boards without requiring extended memory
hardware add-ons.

The first stdio obstacle was encountered when floating point was added to a simple
program that wrote to/from SD. Even in CMM mode, the program overflowed the
Propeller chip’s 32 KB memory. Although a library called libtiny reduced the size of
some programs with printf and scanf, it didn’t support floating point or file I/O. In
contrast, the simpletext library’s print and scan functions supported a more well-
rounded subset of printf / scanf features, including floating point. In addition, print

https://propsideworkspace.googlecode.com/hg/Learn/Simple%20Libraries%20Index.html

Preface ⋅ Page 7

supports a binary formatter that is not available to printf, yet is extremely useful for
microcontroller applications and was expected by BASIC Stamp users. The simpletext
library also has other functions for communicating with peripheral devices, including
simple and full duplex serial, and VGA. This, combined with the fact that it supported
floating point and allowed judicious use of fread and fwrite for SD I/O and still left
space for application code, made it the best choice at the time.

The simpletext library has been a great tool for terminal examples, as an addition to
libraries for serial peripheral devices, and for applications with multiple peripherals that
handle text input and/or display. Examples on learn.parallax.com include many terminal
examples, serial LCD, XBee, RFID, VGA, and more. The list will grow as as more
libraries are submitted.

The Propeller C Simple Libraries are part of an open source project, and we highly
encourage submissions of new libraries, especially for supporting devices. Simple
Libraries posted to obex.parallax.com will be evaluated and considered for inclusion in
future revisions. Libraries that are compatible with existing simple libraries and follow
the existing Simple Library API pattern and Doxygen comments will be more readily
incorporated. For examples, look for similar devices in the Library Index, Learn
Tutorials, and in the Simple Libraries folder that SimpleIDE places in
...Documents/SimpleIDE/Learn/. If another subset version of stdio is submitted, it will
also be carefully considered. It would need to be able support all the existing tutorials
and device drivers with an equivalent level of simplicity to what’s already there and
either use equal or less code space.

ABOUT THE AUTHOR
Andy Lindsay joined Parallax Inc. in 1999, and has since authored numerous books,
articles, product documents, and web tutorials for the company. Andy also travels the
nation and abroad teaching Parallax Educator Courses and events, and gathers feedback
from educators’ observations to improve the material. Andy studied Electrical and
Electronic Engineering at California State University, Sacramento. When he’s not
writing educational material, Andy does product and application engineering for Parallax.

CONTRIBUTORS
This Parallax-authored tutorial includes application engineering, activity design, technical
writing, photographs, and C code by Andy Lindsay; technical illustration by Andy

Page 8 ⋅ What’s a Multicore Microcontroller

Lindsay and Courtney Jacobs; editing and layout by Courtney Jacobs, and technical
nitpicking/general prodding by Stephanie Lindsay.

A very special thank you goes to educator and customer John Kauffman for extensive
edits and suggestions made to the What’s a Multicore Microcontroller? draft, for test-
driving the activities in the classroom, and for creating and sharing the Educators Guide
and assessment material.

Getting Started · Page 9

Chapter 1: Getting Started

HOW MANY MICROCONTROLLERS DID YOU USE TODAY?
A microcontroller is a kind of miniature computer brain that you can find in all kinds of
devices. Some common, every-day products that have microcontrollers inside are shown
in Figure 1-1. If it has buttons and a digital display, chances are it also has a
programmable microcontroller brain.

Figure 1-1
Many devices
contain
microcontrollers

Try counting how many devices with microcontrollers you use in a day. If you hit your
alarm clock’s snooze button a few times in the morning, the first thing you did is interact
with a microcontroller. Heating up some food in the microwave oven and making a call
on a mobile phone also involve interacting with microcontrollers. Each of those
microcontrollers is doing several jobs at once; the radio calculates the time, displays the
numbers, tunes to the right station and reacts when you hit the snooze button. All of
those devices have microcontrollers inside them that interact with you.

THE PROPELLER ACTIVITY BOARD – YOUR NEW EMBEDDED SYSTEM
Parallax Inc.’s Propeller Activity Board shown in Figure 1-2 has a multicore
microcontroller built onto it; it is the largest black chip just above the Propeller Activity
Board label. That chip has eight cores inside that perform the actual computing
functions. The rest of the parts on the board support the microcontroller by providing
power, a USB connection to your computer, extra memory, and sockets for connecting
other devices. When all of these parts work together they are called an embedded
computer system. This name is almost always shortened to just “embedded system.”

Explore the Board. Learn more about each part by reading the Propeller Activity Board’s
product documentation, a free download from www.parallax.com/product/32910.

http://www.parallax.com/product/32910

Page 10 ⋅ What’s a Multicore Microcontroller

Figure 1-2
Propeller Activity
Board with Built-
in Propeller
Microcontroller

The activities in this tutorial will guide you through building circuits with electronic parts
similar to the ones found in consumer appliances and high-tech gadgets. You will also
write computer programs that the Propeller chip will run. These programs will make the
Propeller Activity Board monitor and control these circuits so that they perform useful
functions.

AMAZING INVENTIONS WITH MICROCONTROLLERS
Consumer appliances aren’t the only things that contain microcontrollers. Robots,
machinery, aerospace designs, and other high-tech devices are also built with
microcontrollers. Let’s take a look at two in Figure 1-3 shows two robotic examples. On
each of these robots, students use the Propeller microcontroller to read sensors, control
motors, and communicate with other computers.

 Figure 1-3
Educational Robots

ActivityBot robot
(left)
CSU Monterey Bay
Ulithi ROV Project
(right)

Getting Started · Page 11

The robot on the left is Parallax Inc.’s ActivityBot robot. It uses the Propeller Activity
Board mounted on a small chassis with servo motors, wheels, and sensors to navigate by
touch, visible light, infrared light, or ultrasound. The robot on the right is called an
underwater ROV (remotely operated vehicle) and it was constructed at California State
University of Monterey to study coral reefs in the Ulithi Atoll. Operators see what the
ROV sees through a video camera feed, and control the ROV with a combination of hand
controls and a laptop. Its Propeller microcontroller monitors sensors on the ROV and
reports that information to the operator. At the same time, it also processes signals
received from the operator’s hand controls and relays them to the ROV’s onboard motor
controllers.

The flying quadcopter in the left of Figure 1-4 is called the ELEV-8. It was developed by
Parallax, and its Propeller microcontroller manages the four motor-driven flight
propellers so the aircraft remains stable and responsive to the operator’s joystick controls.
The millipede-like robot on the right of Figure 1-4 was developed by a professor at
Nanyang Technical University, Singapore. It has more than 50 simple microcontrollers
on board, and they all communicate with each other in an elaborate network that helps
control and orchestrate the motion of each set of legs. In both of these vehicles,
microcontrollers solve complex mechanical control problems. Robots not only help us
better understand designs in nature, but they are being used to explore remote locations,
disaster sites, and even other planets.

Figure 1-4
Research Robots

Parallax’s ELEV-8
quadcopter (left) and
Millipede Project at
Nanyang University
(right)

Microcontrollers are used in environmental applications, both unique and common. The
weather station shown on the left of Figure 1-5 is part of a coral reef decay study. The
microcontroller inside it gathers weather data from a variety of sensors and stores it for
later retrieval by scientists. Even common traffic lights use sophisticated embedded
systems to sense the presence of vehicles, coordinate with other lights to keep traffic
moving smoothly, and detect preemption signals sent by emergency vehicle operators.

http://learn.parallax.com/activitybot

Page 12 ⋅ What’s a Multicore Microcontroller

Figure 1-5
Environmental Devices

Ecological data collection by
EME Systems (left); traffic light
in Greece (right)

From your first project all the way through scientific applications, the microcontroller
basics needed to get started on projects like these are introduced in this book. By
working through the activities, you will get to experiment with a variety of building
blocks like the ones found in all these inventions. You will build circuits for displays,
sensors, and motion controllers. You will learn how to connect these circuits to the
Propeller Activity Board’s microcontroller, and then write programs that make it collect
data from sensors, make decisions, and control lights or motion. Along the way, you will
learn many important electronic and computer programming concepts and techniques.
By the time you’re done, you might find yourself well on the way to inventing a device of
your own design.

ACTIVITY #1: WHAT’S A “MULTICORE” MICROCONTROLLER?
Okay, so now that we have seen where microcontrollers are used, what is a multicore
microcontroller, and why would you want to use one? In each of the examples above, the
microcontroller is doing more than one task at the same time. While a few tasks can be
juggled at once by a single-core microcontroller, the more processes running at once, the
more complicated it gets, especially with time-sensitive tasks like playing WAV files and
controlling motors. Computers now come with dual, quad, and even eight cores to
handle multiple tasks with speed and precision. Since a microcontroller is like a
miniaturized computer that’s designed to be the brains of products and inventions, it was
inevitable that microcontrollers would also be designed with more cores.

The web article Propeller Brains for Your Inventions included below, breaks down and
illustrates these concepts.

http://learn.parallax.com/propeller-brains-your-inventions

Getting Started · Page 13

Propeller Brains for Your Inventions

The Propeller microcontroller on the Activity Board can be the brains for your own
inventions, such as a robot. It is the brains of the ActivityBot robot, for example.

So, what is a microcontroller? It is an integrated circuit (computer chip) that includes a
tiny processor to do the “thinking” and some memory so it can keep track of what it is
doing. Microcontrollers also have input/output pins, I/O pins for short, which can
exchange electrical signals with other devices such as lights, switches, beepers, motors,
and sensors.

Figure 1-6
So What Is a
Microcontroller?

A single-core microcontroller has just one processor inside. A multicore
microcontroller has two or more processors, also called cores, inside one chip.

Figure 1-7
Single Core vs.
Multicore

Page 14 ⋅ What’s a Multicore Microcontroller

A single-core microcontroller is multitasking when it executes several tasks that must
share its single processor. The processor must interrupt each task to switch briefly to
another, to keep all of the processes going.

Imagine a chef in a kitchen alone, making bread, roast beef, and sauce. The chef must
knead the bread dough for 15 minutes, interrupt that task every minute to stir the sauce,
and remove the roast from the oven as soon as a thermometer reaches 120 °F. At any
moment, the chef (processor) is executing only one task, while keeping all three
processes (kneading, stirring, roasting) going at once.

Now imagine being that chef. The more tasks you must do at once, the more difficult it
gets to keep track of them all, and keeping the timing right becomes more of a challenge.

Figure 1-8
Multitasking

A multi-core microcontroller is multiprocessing when it executes several tasks at once,
with each task using its own processor. This is also referred to as true multitasking.

Now, imagine a chef in a kitchen with three assistants, making bread, roast beef, and
sauce. The chef puts one assistant at the stove to stir the sauce every minute. Another
assistant is sent to keep watch on the thermometer, and remove the roast when it reaches
120 °F. Now the chef is free to knead bread dough for 15 minutes. The three cooks
(processors) are keeping all three processes (kneading, stirring, roasting) executing at the
same time, without any task-switching interruptions, and without missing the moment
when the thermometer reaches 120 °F. There is even an extra assistant ready to help if
something more is needed.

Having multiple cores makes it easier to do many tasks at once, especially if precise
timing is needed.

Getting Started · Page 15

Figure 1-9
Multiprocessing

The Propeller microcontroller has 8 cores, and can therefore do multiprocessing, also
called true multitasking. The cores are all the same. It has 32 I/O pins, which are also all
the same. Each core can work with every I/O pin. This means that all of the Propeller
cores and I/O pins are equally good at any tasks they must perform. Each core has a bit
of its own memory. Each core also takes turn accessing a larger Main Memory, where
they can share information.

Figure 1-10
The Propeller Has 8
Cores

Eight cores in one microcontroller might sound intimidating. It might seem complicated
to have to write programs for all of them. But the Propeller C language has pre-written
code tasks, called functions, which make it easy.

Just think of functions as recipes the head chef can hand over to assistants, instead of
having to explain to each one how to cook. One assistant can even ask another assistant
for help, without bothering the head chef. Just as a team of 8 chefs can efficiently

Page 16 ⋅ What’s a Multicore Microcontroller

manage great meals, the Propeller with its eight cores can efficiently manage great
inventions. Now that's teamwork!

Figure 1-11 Multicore Is Easy with C Functions

A C library is a collection of functions, sort of the way a cookbook is a collection of
recipes.

Figure 1-12 A C Library is a Collection of Functions

So what does multicore processing look like for an invention like the ActivityBot?

Your C program might start a motor function, which makes another core manage the
motors to make the robot move. Then, it might call a sensor function so the robot can
“see” if there is an obstacle in its path. If an object is detected, your program then might
call a music function, which will task other cores with the jobs of fetching songs from an
SD card and playing music on an audio jack.

The ActivityBot is just one example of a microcontroller invention. You can use the
Activity Board to build other projects or create your own inventions.

Getting Started · Page 17

Figure 1-13 From Cooking to Robotics

In this book, you will learn to use the Propeller microcontroller with electronic
components you can think of as ingredients for your own inventions. So let’s get started!

ACTIVITY #2: SET UP SOFTWARE AND HARDWARE
Getting started with the Propeller Activity Board is similar to getting started with a
brand-new PC or laptop: take it out of the box, power it up, download and test some
software. If this is your first time using the Propeller Activity Board, you will be doing
all these same activities plus (most importantly) learning to write software of your own in
a programming language for the Propeller called “C”.

If you are in a class, your hardware may already be all set up for you and your teacher
may have other instructions. If not, it is time to go to online resources for downloading
and installing the software, connecting the hardware to your computer, and testing to
make sure your computer can load programs into your board.

 Using a web browser, go to the web tutorial Propeller C – Set Up SimpleIDE.

(http://learn.parallax.com/propeller-c-set-simpleide)
 Click the link for your operating system (Windows, Mac, or Linux).

http://learn.parallax.com/propeller-c-set-simpleide/update-your-learn-folder
http://learn.parallax.com/propeller-c-set-simpleide

Page 18 ⋅ What’s a Multicore Microcontroller

 Follow the instructions to:
o Download and install the USB driver.
o Download and install the SimpleIDE software.
o Connect your Activity Board to the computer.
o Run a test program that displays a “Hello” message.

 Once you are sure your board and software are working, update your learn folder
to make sure you have the most current example programs and libraries.
(http://learn.parallax.com/propeller-c-set-simpleide/update-your-learn-folder)

What do I do if I get stuck? If you run into problems, you have many options to obtain free
Technical Support:

• Forums: sign up and post a message in our free, moderated Learn forum at
http://forums.parallax.com.

• Email: send an email to support@parallax.com.
• Telephone: In the Continental United States, call toll-free 888-997-8267. All

others call (916) 624-8333.

ACTIVITY #3: LEARN JUST A LITTLE PROGRAMMING
In this book, you will build lots of useful circuits and write programs to monitor and
control them. Most of the programming and circuit-building will be learn-as-you-go, and
just a little at a time. But before moving on to that, let’s try two of the tutorials from the
Propeller C – Start Simple web tutorial series that have been included below; one in this
activity and one in the next. They will help you to you get familiar with the SimpleIDE
programming software.

Simple Hello Message Tutorial

This C program will make the Propeller microcontroller send a "Hello!!!" message to the
SimpleIDE Terminal on your computer.

 Click the Open Project button.
 Navigate to My DocumentsSimpleIDE\Learn\Examples\C Intro\Basics.
 Select Hello Message.side, and click Open.

http://learn.parallax.com/propeller-c-set-simpleide/update-your-learn-folder
http://learn.parallax.com/propeller-c-set-simpleide/update-your-learn-folder
http://forums.parallax.com/
mailto:support@parallax.com
http://learn.parallax.com/propeller-c-start-simple

Getting Started · Page 19

Figure 1-14 Opening a Project in SimpleIDE

When SimpleIDE opens the project, it will open Hello Message.c into its text editor pane.

 Click the COM Port dropdown on the right and select the com port your board is

connected to. If in doubt, disconnect/reconnect the board and click it again to
see which one disappeared/reappeared.

 Click the Run with Terminal button.

Figure 1-15
Setting the COM Port
and Running the
Terminal

A single "Hello!!!" message should appear in the Simple IDE Terminal.

Page 20 ⋅ What’s a Multicore Microcontroller

Figure 1-16
SimpleIDE Terminal

How Hello Message.c Works

The print("Hello!!!") makes the Propeller chip send its message to your computer
through its programming port. The SimpleIDE terminal displays the message on your
computer screen.

The print("Hello!!!") is followed by a semicolon (;). The semicolon is what tells
the PropGCC compiler that it has reached the end of an instruction statement.

The print statement is inside curly braces {} below main(), and so we call it part of the
main function’s code block. A C program always starts with the first statement in the
main function.

The print command is also a function, but it is stored in other files called library files.
Later on, you’ll get to search for libraries that contain useful functions to add to your own
projects. For now, just keep in mind that your program needs #include
"simpletools.h" because it has information about print, and many other functions.

Try This – Print Another Message

The program has one statement: print("Hello!!!");. Let’s save this project under a
new name, and add a second print statement. We can then say that the program is
calling the print function twice.

 Click the Save Project As button.

Getting Started · Page 21

Figure 1-17
Save Project As

 Browse to My Documents\SimpleIDE\My Projects.
 Type Hello Again into the File name field.
 Click the Save button.

Figure 1-18
Saving a Copy to the
My Projects Folder

 Modify the main function to add a second print function call, like this:

Figure 1-19 Modified Main Function

Page 22 ⋅ What’s a Multicore Microcontroller

 Click the Run with Terminal button, and observe the output.
 What effect does the \n have? Delete \n, then run the program a third time.

Saving Programs
SimpleIDE saves your program each time you run or compile it. As you progress through
these tutorials you will notice that we ask you to save a new copy of any program you'll be
modifying to prevent you from overwriting the original project with one you have changed.

Did You Know?

C is case-sensitive. You have to use the correct capitalization when programming in
C. If you make an error, such as typing Print, for example, SimpleIDE will let you
know:

Figure 1-20 Build Failure Message

• newline — \n is called the newline character, and it is an example of a control
character used for positioning a cursor in a serial terminal.

• int (main) — the int in int main() is part of the C compiler's programming
convention. It is used no matter what you include inside the main function's
code block. You will learn more about how int is used in other ways as you go
through the tutorials.

Your Turn – Using Comments

Comments are notes about your code that help explain it to other people that have to work
with it. Also, it is good to leave comments as notes to yourself about what you were
doing in case you need a reminder days (or months or years) later.

If you want to comment all or part of a single line, use two forward slashes //.
Everything to the right of // will be ignored by the C compiler. Block comments can
span multiple lines. They start with /* and end with */, and everything in between will
be ignored by the C compiler.

Getting Started · Page 23

 Click the Save As Project button again and save the project as Hello Again

Commented.
 Add the comments shown below.
 Run it again to verify that the comments do not have any actual effect on the way

your program runs. (If your comment prevents the program from running, you
may have a typing error!)

Figure 1-21 Hello Again Commented.c in SimpleIDE

ACTIVITY #4: VARIABLES AND MATH
A variable is a name you give to a section of microcontroller memory so your program
“remembers” values and works with them. In this activity, the Propeller microcontroller
will do some simple math problems, using variables to store the values and the answers.

 Click SimpleIDE’s Open Project button.
 If you’re not already there, navigate to ...\SimpleIDE\Learn\Examples\C

Intro\Basics.
 Open Variables and Calculations.side.
 Examine Variables and Calculations.c, and try to predict what SimpleIDE

Terminal will display.
 Click the Run with Terminal button to run the program, and compare the actual

output to your predicted output.

Page 24 ⋅ What’s a Multicore Microcontroller

/* Variables and Calculations.c */

#include "simpletools.h" // Include simpletools

int main() // main function
{
 int a = 25; // Initialize a variable to 25
 int b = 17; // Initialize b variable to 17
 int c = a + b; // Initialize c variable to a + b
 print("c = %d ", c); // Display decimal value of c
}

How Variables and Calculations.c Works

Variables and Calculations.c declares an integer variable named a and assigns it the value
25 with int a = 25. Then, it declares a second variable named b and initializes it to 17
with int b = 17. The last integer variable it declares is named c, and stores the result
of a + b in it.

Finally, it displays the value of c with print("c = %d", c). This variation on print
displays a sequence of characters called a string, followed by a variable. The %d is called
a format placeholder, and it tells print how to display the value stored in that variable as
a decimal number, 42 in this case.

The add operator (+) is a binary operator, meaning that it needs two inputs to perform an
operation. Here are some common binary operators:
+ Add
- Subtract
* Multiply
/ Divide
% Modulus (remainder of a division calculation)

Try This – Test Binary Operators

Here is a modified version of the main routine that displays "a = , b = " with their values,
and then "a + b = " and the value of c on a new line. Then, it repeats for a – b.

Notice that the second time it calculates the value of c, we don’t need to declare it with
int. It’s just c = a – b. Notice also that print allows you to display more than one

Getting Started · Page 25

numeric value within your string. All it takes is two format placeholders in the string and
two values, separated by commas, after the string.

 Click Save As Project button, and name it Test Binary Operators.
 Modify the main function as shown below.
 Run the program and verify the output.

Figure 1-22 Modified Main Function

Your Turn – More Binary Operators

 Expand Test Binary Operators.c so that it goes through testing all five binary
operators in the information box, above.

 Try changing a to 17 and b to 25, then re-run.
 Try declaring int variables of y, m, and b, and then use them to calculate and

display y = m * x + b.

PRO TIP: Displaying % with print
To display the output of the Modulus operator, use ("a mod b = ...") or ("a %% b =
...) in the print function. Since % has another purpose in print strings, just saying ("a
% b = ...) will give unexpected results.

There are many additional pages in the Propeller C – Start Simple tutorial series that
introduce more C programming. Those topics will be introduced as you go through the
upcoming activities as needed for a certain circuit or project. But if you want to go

Page 26 ⋅ What’s a Multicore Microcontroller

online to try more programming language web tutorials now, have fun. Just make sure to
pick back up here when you’re done. (http://learn.parallax.com/propeller-c-start-simple)

ACTIVITY #5: WHEN YOU ARE DONE FOR NOW
Ready to take a break? Whenever you leave your Activity Board unattended, it’s best to
set its PWR switch to 0 (off) and disconnect its USB cable (and/or batteries). Also, it is
wise to always wash your hands after working with electronics.

 Set the Activity Board’s PWR switch to 0.
 Disconnect the USB cable.
 If you happen to have batteries connected to the Activity Board’s 6-9 VDC jack,

unplug them now and store them where they cannot touch other components.

SUMMARY
This chapter guided you through the following:

• An introduction to some devices that contain microcontrollers.
• An introduction to the Activity Board and its Propeller multicore

microcontroller.
• A tour of some interesting inventions made with the Propeller microcontroller

and other embedded systems.
• How to install the USB drivers for loading programs into the Propeller

microcontroller.
• How to download and install the SimpleIDE for writing programs for the

Propeller microcontroller.
• How to make the Propeller send messages to your computer, and how to make

your computer display them in the SimpleIDE Terminal.
• Using the print function in a program to make the Propeller send messages for

your computer to display.
• Using the \n (newline) character to move the SimpleIDE Terminal’s cursor to

the next line.
• How to use variables to store values.
• How to use operators to perform simple math operations.
• What to do when you are finished working with your Propeller Activity Board.

http://learn.parallax.com/propeller-c-start-simple

Getting Started · Page 27

Questions

1. What is a microcontroller?
2. Is the Propeller Activity Board a microcontroller, or does it contain one?
3. What clues would you look for to figure out whether or not an appliance like a

clock radio or a cell phone contains a microcontroller?
4. What effect does the double-slash // have on code to the right of it?
5. What character tells the C compiler it has reached the end of a statement?
6. Let’s say you want to take a break from your Propeller microcontroller project to

go get a snack, or maybe you want to take a longer break and return to the
project in a few days. What should you always do before you take your break?

Exercises

1. Explain what the \n does in this function call:

print("Hi \n there!");

2. What would the SimpleIDE Terminal display in response to this statement:

print("Line1\nLine2\nLine3");

3. This statement was written so that it would display a = 1, b = 2, but it instead
displayed a = 1, b = 1960. (The value of b may be different for you, but it is not
guaranteed to be 2.) What’s the problem, and how would you correct it?

 int a = 1, b = 2;
 print("a = %d, b = %d\n", a);

Projects

1. Use print to display the solution to the math problem: 1 + 2 + 3 + 4.
2. Make a program that computes z = c × (a + b). Test with a = 1, b = 2, c = 3. The

result should be 9.

Solutions

Q1. A microcontroller is a kind of miniature computer found in electronic products.
Q2. The Propeller Activity Board contains a Propeller microcontroller chip. The rest

of the board provides support for the Propeller and sockets for connecting other
devices.

Page 28 ⋅ What’s a Multicore Microcontroller

Q3. If the appliance has buttons and a digital display, these are good clues that it has
a microcontroller inside.

Q4. Whatever notes you put to the right of // will be ignored by the C compiler. It’s
great for inserting notes about the code into the program.

Q5. The semicolon (;)
Q6. Set the PWR switch to 0. Disconnect the USB cable. Disconnect power cable if

connected. Wash your hands!

E1. It causes “ there!” to appear on the line below “Hi” in the SimpleIDE Terminal.
E2. The SimpleIDE Terminal would display each item on its own line, like this:

Line1
Line2
Line3

E3. The print statement’s text had two %d formatters, but it was missing b in the
variable list following the text. Here is the code with the corrected print
statement.

 int a = 1, b = 2;
 print("a = %d, b = %d\n", a, b);

P1. Here are two examples of programs that display a solution to the math problem:

1+2+3+4. There will be lots of possible solutions, so if it displayed the correct
answer in the SimpleIDE terminal, you got it right.

/* Intro-P1-Solution1.c */

#include "simpletools.h"

int main()
{
 int sum = 1 + 2 + 3 + 4;
 print("1 + 2 + 3 + 4 = %d\n", sum);
}

/* Intro-P1-Solution2.c */

#include "simpletools.h"

int main()
{
 print("1 + 2 + 3 + 4 = %d\n", 1 + 2 + 3 + 4);
}

Getting Started · Page 29

P2. Here is an example of a program that makes the calculation correctly. Again,
keep in mind that this is just one of many possible correct solutions.

/* Intro-P2-Solution.c */

#include "simpletools.h"

int main()
{
 int a = 1, b = 2, c = 3;
 int z = c * (a + b); // add b and c together before multiplying by c

 print("z = %d \n", z);
}

Page 30 ⋅ What’s a Multicore Microcontroller

Chapter 2: Lights On – Lights Off

INDICATOR LIGHTS
Indicator lights are so common that most people tend not to give them much thought.
Figure 2-1 shows three indicator lights on a laser printer. Depending on which light is
on, the person using the printer knows if it is running properly or needs attention. Car
stereos, televisions, DVD players, disk drives, printers, and alarm system control panels
all use indicator lights. Look around — can you see any from where you are sitting?

Figure 2-1
Indicator Lights on a Printer

Indicator lights are common on
many everyday devices.

Turning an indicator light on and off is a simple matter of connecting and disconnecting
it from a power source. In some cases, the indicator light is connected directly to the
battery or power supply, like the power indicator lights on the Propeller Activity Board.
Other indicator lights are switched on and off by a microcontroller inside the device.
These are usually status indicator lights that tell you what the device is up to.

MAKING A LIGHT-EMITTING DIODE (LED) EMIT LIGHT
Most of the indicator lights you see on devices are called light-emitting diodes. It is
abbreviated LED, and pronounced as three letters: “L-E-D.” If you build an LED circuit
and connect power to it, the LED emits light. If you disconnect the power from an LED
circuit, the LED stops emitting light.

Lights On – Lights Off · Page 31

When an LED circuit is connected to the Activity Board, its Propeller microcontroller can
be programmed to connect and disconnect the LED circuit’s power. This is much easier
than manually changing the circuit’s wiring or connecting and disconnecting the battery,
but we will try both ways. Here are a few more things we will do in this chapter:

• Turn an LED circuit on and off at different rates
• Turn an LED circuit on and off a certain number of times
• Control more than one LED circuit
• Control the color of a bicolor (two-color) LED circuit

ACTIVITY #1: BUILDING AND TESTING THE LED CIRCUIT
It’s important to test components individually before building them into a larger system.
This activity focuses on building and testing two different LED circuits. The first circuit
makes the LED emit light. The second circuit makes it not emit light. You will be
connecting the LED to battery power, but not to the microcontroller. (In the activity
following this one, you connect the LED the Propeller microcontroller and write
programs to turn it on and off.)

Introducing the Resistor

A resistor is a component that “resists” the flow of electricity. This flow of electricity is
called current. Each resistor has a value that tells how strongly it resists current flow.
This resistance value is called the ohm, and the sign for the ohm is the Greek letter
omega: Ω. Later in this tutorial you will see the symbol kΩ, meaning kilo-ohm, or one
thousand ohms.

Let’s look at an example: the 470 Ω resistor shown in Figure 2-2. This resistor has two
wires — called leads and pronounced “leeds” — one coming out of each end. There is a
ceramic case between the two leads, and it contains the part that resists current flow.
Many circuit diagrams use the jagged-line symbol shown on the left. This tells the
circuit-builder to use a resistor, and the number indicates the required resistance value in
ohms. This is numbered jagged line is an example of a schematic symbol. The drawing
on the right is a part drawing used in this entry-level tutorial to help you identify the
resistor needed, and where to place it when you build a circuit.

Page 32 ⋅ What’s a Multicore Microcontroller

470 Ω
Yellow

Violet
Brown

Gold
Silver
or
Blank

Figure 2-2
470 Ω Resistor Schematic
Symbol (left) and Part Drawing
(right)

Resistors like the ones in this activity have color-coded stripes to indicate their resistance
values. There is a different color combination for each resistance value. For example,
the color code for the 470 Ω resistor is yellow-violet-brown.

There may be a fourth stripe that indicates the resistor’s tolerance. Tolerance is
measured in percent, and it tells how far off the part’s true resistance might be from the
labeled resistance. The fourth stripe could be gold (5%), silver (10%) or no stripe (20%).
For the activities in this book, a resistor’s tolerance does not matter, but its value does.

Each color bar corresponds to a digit, and these colors/digits are listed in Table 2-1.
Figure 2-3 shows how to use each color bar with the table to determine the value of a
resistor. Always hold a resistor with the silver or gold band on the right side when
reading its value.

Table 2-1
Resistor Color
Code Values

Digit Color

0 Black
1 Brown
2 Red
3 Orange
4 Yellow
5 Green
6 Blue
7 Violet
8 Gray
9 White

First Digit

Second Digit

Number of Zeros

Tolerance
Code

Figure 2-3
Resistor Color
Codes

Lights On – Lights Off · Page 33

Here is an example that shows how Table 2-1 and Figure 2-3 can be used to figure out a
resistor value by proving that yellow-violet-brown is really 470 Ω:

• The first stripe is yellow, which means the leftmost digit is a 4.
• The second stripe is violet, which means the next digit is a 7.
• The third stripe is brown. Since brown is 1, it means add one zero to the right of

the first two digits.

Yellow-Violet-Brown = 4-7-0 = 470 Ω.

You will be using a different resistor in this activity, with a value of 220 Ω.

 Use the table to figure out the color code for a 220 Ω resistor.

What did you come up with? The answer is red-red-brown. If you came up with a
different answer, try again to make sure you’ve got the steps right.

Introducing the LED

A diode is a one-way current valve, and a light-emitting diode (LED) emits light when
current passes through it. Unlike the color codes on a resistor, the color of the LED
usually just tells you what color it will glow when current passes through it. The
important markings on an LED are contained in its shape. Since it is a one-way current
valve it is important to connect it the right way in your circuit or it won’t work as
intended.

Figure 2-4 shows an LED’s schematic symbol and part drawing. An LED has two leads.
One connects to the LED’s anode, and the other connects to its cathode. In this activity,
you will build the LED into a circuit, paying attention to make sure the anode and
cathode leads are connected to the circuit properly: anode to power, cathode to ground.

On the part drawing, the anode lead is longer and is labeled with the plus-sign (+). On
the schematic symbol, the anode is the wide part of the triangle.

In the part drawing, the cathode lead is the shorter, unlabeled pin, and on the schematic
symbol, the cathode is the line across the point of the triangle.

Page 34 ⋅ What’s a Multicore Microcontroller

+

LED

Figure 2-4
LED Part Drawing and Schematic
Symbol

Part Drawing (above) and schematic
symbol (below).

The LED’s part drawings in later
pictures will have a + next to the
anode leg.

When building your circuit, check it against the schematic symbol and part drawing.
Note that the LED’s leads are different lengths. The longer lead is connected to the
LED’s anode; connect this lead to power. The shorter lead is connected to its cathode;
connect this lead to ground.

Also, if you look closely at the LED’s plastic case, it’s mostly round, but there is a small
flat spot right near the shorter lead that that tells you it’s the cathode. This is useful if an
LED’s leads have been cut to equal lengths.

LED Test Circuit Parts

(1) LED – Green
(1) Resistor – 220 Ω (red-red-brown)
(1) Jumper Wire (black)

Identifying the parts: In addition to the part drawings in Figure 2-2 and Figure 2-4, you can
use the photo on the last page of the book to help identify the parts in the kit needed for this
and all other activities.

Building the LED Test Circuit

You will build a circuit by plugging the LED and resistor leads into small holes called
sockets on the prototyping area, shown in Figure 2-5. This prototyping area has black
sockets along the top, left and bottom. The black sockets along the top have labels above
them: 3.3 V and 5 V, and there are some sockets along the bottom labeled GND. These

Lights On – Lights Off · Page 35

are called the power terminals, and they will be used to supply your circuits with
electricity.

The black sockets on the left have labels P0, P1, up through P15. Use these sockets to
connect your circuit to the Propeller microcontroller’s input/output pins (called I/O pins).

The sockets labeled D/A and A/D are the analog terminals, which we will use later in the
tutorial.

Figure 2-5
Prototyping
Area

Input/output pins are usually called I/O pins. After connecting your circuit to one or more of
these I/O pins, you can program your Propeller microcontroller to monitor the circuit (input)
or send “on” or “off “signals to the circuit (output). You will try this in the next activity.

The white board with lots of holes in it is called a solderless breadboard. You will use
this breadboard to connect components to each other and build circuits. This breadboard
has 17 rows of sockets. In each row, there are two five-socket groups separated by a
trench in the middle. All the sockets in a 5-socket group are electrically connected
together by a metal clip under the breadboard. So, if you plug two wires into the same
5-socket group, they will make electrical contact.

Page 36 ⋅ What’s a Multicore Microcontroller

Two wires in the same row but on opposite sides of the center trench will not be
connected. Many devices are designed to be plugged in over this trench, such as the
pushbutton we will use in Chapter 3. There is no connection between the black sockets
and the white breadboard. You will make connections to the I/O pins with short wires or
component leads when you build circuits on the breadboard.

More about breadboards and connecting circuits: To learn about the history of
breadboards, how modern breadboards are constructed, and how to use them, watch the
video on our Breadboard Basics page.
(http://learn.parallax.com/reference/breadboard-basics)

The left side of Figure 2-6 shows a circuit schematic, a drawing that uses symbols and
lines to show how electrical components need to be connected together. On the right is a
wiring diagram, which is a drawing of how that circuit might look when it is built on the
prototyping area.

For this circuit, the resistor and the LED’s anode are connected because each one has a
lead plugged into the same 5-socket group. The resistor’s other lead is plugged into 3.3V
so the circuit can draw power. The LED’s cathode lead is plugged into a different 5-
socket row, along with a wire whose other end is connected to GND (0 V, ground)
completing the circuit. (Note that in this case, the circuit is not connected to an I/O pin.
We will get to that in the next activity, we promise!)

Figure 2-6
LED On, Wired Directly to Power

Schematic (left) and Wiring Diagram
(right).

Follow the checklist below to build the circuit shown in Figure 2-6:

http://learn.parallax.com/reference/breadboard-basics
http://learn.parallax.com/reference/breadboard-basics

Lights On – Lights Off · Page 37

 Set the Activity Board’s PWR switch to 0.
 Plug one end of the 220 Ω resistor into one of the sockets labeled 3.3 V. It

doesn’t matter which end.
 Plug the resistor’s other end into the white breadboard.
 Use Figure 2-4 to decide which LED lead is the anode and which is the cathode.
 Plug the LED’s longer anode lead into the same 5-socket row as the resistor.

This connects those two leads together.
 Plug the LED’s shorter cathode lead into a different 5-socket row. (Remember,

5-socket rows on opposite sides of the trench are not connected to each other.)
 Plug one end of a wire into the same 5-socket row with the LED’s cathode.
 Plug the other end of the wire into one of the sockets labeled GND.

Direction does matter for the LED, but not for the resistor or the wire. If you plug the
LED in backward, the LED will not emit light when you connect power. The resistor just
resists the flow of current. There is no backwards or forwards for a resistor. Likewise, a
wire conducts current either way, so it doesn’t have a backwards or forwards either.

 Power your Activity Board by plugging it into your computer’s USB port.
 Double-check your circuit connections, and then set the PWR switch to 1.
 Is your LED is emitting light? It should glow green.

If the green LED does not emit light when you connect power to the board:

 Try looking straight down onto the dome part of the LED’s plastic case from

above. Some LEDs are brightest when viewed from above.
 If the room is bright, try turning off some of the lights, or use your hands to cast

a shadow on the LED.

If you still do not see any glow, try these steps:

 Double-check that the LED’s cathode and anode are connected properly. If not,

turn off power, then simply remove the LED, give it a half-turn, and plug it back
in. Then turn the power back on. (It will not hurt the LED if you plugged it in
backwards, it just doesn’t emit light.)

 Check that you are using the correct resistor, marked red-red-brown, with the
gold band on the right. A high-value resistor will make the light dimmer.

Page 38 ⋅ What’s a Multicore Microcontroller

 Double-check that two leads that need to be connected together are actually in
the same 5-socket row, as shown in Figure 2-6.

 If you are using a component kit that somebody used before you, the LED may
be damaged, so try a different one.

 If you are in a lab class, check with your instructor.

How the LED Test Circuit Works

The 3.3V socket is like a battery’s positive terminal. The GND socket is like a battery’s
negative terminal. Figure 2-7 shows how connecting a to a battery’s terminals causes
electrons to flow. This flow of electrons is called electric current, which is what causes
the diode to emit light. The current is limited by the resistor, so it does not apply more
“pressure” than the LED can tolerate.

-

-

- -

-

-

-

-

-

-

-
-

-

-

-

-
+

_
-
-

+

+

-

--
-
+
+

+

--
-
+
+

+

--
+

+

-

N

NNN
+

=

N
N

N

Figure 2-7
LED On, Circuit Electron Flow

The minus signs with the circles
around them show electrons flowing
from the battery’s negative terminal
to its positive terminal.

Chemical reactions inside the battery supply the circuit with current. The battery’s negative
terminal contains a compound that has molecules with extra electrons (shown in Figure 2-7
by minus-signs). The battery’s positive terminal has a chemical compound with molecules
that are missing electrons (shown by plus-signs). When an electron leaves a molecule in
the negative terminal and travels through the wire, it is called a free electron (also shown by
minus-signs). The extra electrons at the negative end of battery create a force, or electrical
pressure, to go through your circuit and get to the molecules that need electrons at the
positive end of the battery.

Figure 2-8 shows how the flow of electricity through the LED circuit is described using
schematic notation. The electrical pressure across the circuit is called voltage. The + and
– signs show the voltage applied to a circuit. The arrow shows the current flowing
through the circuit.

Lights On – Lights Off · Page 39

This arrow is almost always shown pointing the opposite direction of the actual flow of
electrons. Benjamin Franklin is credited with not having been aware of electrons when
he decided to represent current flow as charge passing from the positive to negative
terminal of a circuit. By the time physicists discovered the true direction of electric
current, the convention was already well established.

Figure 2-8
LED On, Circuit Schematic Showing
Conventional Voltage and Current
Flow

The + and – signs show voltage
applied to the circuit, and the arrow
shows current flow through the
circuit.

Your Turn – Modifying the LED Test Circuit

Now you will modify the circuit by connecting the resistor to GND instead of 3.3V, and
verify that the LED will then not emit light.

 Set your board’s PWR switch to 0.
 Unplug the resistor lead from the 3.3V socket, and plug it into a socket labeled

GND as shown in Figure 2-9.
 Set the PWR switch back to 1.
 Check to make sure your LED is not emitting light. It should not glow anymore.

Page 40 ⋅ What’s a Multicore Microcontroller

Figure 2-9
LED Off Circuit

Schematic (left) and
wiring diagram (right).

Why does the LED not glow? Since both ends of the circuit are connected to the same
voltage (GND), there isn’t any electrical pressure across the circuit. So, no current flows
through the circuit, and the LED stays off.

Now you have experienced turning the LED on and off by moving the resistor lead from
3.3V to GND by hand. It is effective, but not at all convenient. Imagine if you needed the
LED to blink very quickly, over and over again! This is a perfect job for a
microcontroller. In the next activity you will connect the resistor’s lead to a Propeller I/O
pin. Then, you will write a program that tells the Propeller to internally connect that
resistor to 3.3V or GND to turn the LED or off.

ACTIVITY #2: ON/OFF CONTROL WITH THE MICROCONTROLLER
In Activity #1, two different circuits were built and tested. One circuit made the LED
emit light while the other did not. Figure 2-10 shows how the Propeller microcontroller
can do the same thing if you connect an LED circuit to one if its I/O pins. In this activity,
you will connect the LED circuit to the Activity Board and program its Propeller
Microcontroller to turn the LED on and off. You will also experiment with programs that
make the Propeller do this at different rates.

Lights On – Lights Off · Page 41

Figure 2-10
Switching Inside
the Propeller

A Propeller can be
programmed to
internally connect
the LED circuit’s
input to 3.3V or
GND.

There are two big differences between changing the connection manually and having the
Propeller microcontroller do it. First, the Propeller doesn’t have to cut the power to the
development board when it changes the LED circuit’s supply from 3.3V to GND.
Second, while a human can make that change several times a minute, the Propeller can do
it thousands or even millions of times per second!

LED Test Circuit Parts

Same as Activity #1.

Connecting the LED Circuit to the Propeller Microcontroller

The LED circuit shown in Figure 2-11 is wired almost the same as the circuit in the
previous exercise. The difference is that the resistor’s lead that was manually switched
between 3.3V and GND is now connected to a Propeller I/O pin.

 Set your board’s PWR switch to 0.
 Modify your circuit from Activity #1 so that it matches Figure 2-11.

Page 42 ⋅ What’s a Multicore Microcontroller

Figure 2-11
Propeller-controlled
LED Circuit

The LED circuit’s
input is now
connected to a
Propeller I/O pin
instead of 3.3V or
GND.

Resistors are essential. Always remember to use a resistor. Without it, too much current
will flow through the circuit, and it could damage any number of parts in your circuit,
Propeller, or Activity Board.

Turning the LED On/Off with a Program

The example program makes the LED blink on and off one time per second. It
introduces several new programming techniques at once. After running it, you will
experiment with different parts of the program to better understand how it works.

Example Program: LED-OnOff

 Click SimpleIDE’s New Project button .
 Name the new project LED-OnOff, and click Save.
 Enter the LED-OnOff.c code into SimpleIDE.
 Make sure your Activity Board is connected to your computer, and set the PWR

switch back to 1.

 Click SimpleIDE’s Run with Terminal button .
 Verify that the LED blinks on and off once per second.
 Disconnect power when you are done with the program.

Lights On – Lights Off · Page 43

/* LED-OnOff.c */

#include "simpletools.h"

int main()
{
 print("The LED connected to P14 is blinking!\n");

 while(1)
 {
 high(14);
 pause(500);
 low(14);
 pause(500);
 }
}

Build your programming muscles – type it in!
Experience shows that students learn better by typing in the example programs themselves,
to save in the SimpleIDE > My Projects folder. However, if you just can’t get an activity to
work, you can find the example programs in the Learn > Examples > WAMM folder. This
can be helpful if you need to find out if the problem is in your code, or your circuit. Be
careful not to save changes to the examples for the Try This or Your Turn activities. Use
Save Project As, rename them, and save them in your My Projects folder.

How LED-OnOff Works

Lines of code or comments between /* and */ are ignored by the C compiler. This lets
you add the program name and instructions on how to use it. Just make sure your
comments are between /* and */.

The line #include "simpletools.h" is a directive that makes SimpleIDE add a library
named simpletools to your project. Remember from the Propeller Brains for Your
Inventions article that libraries are collections of functions — useful pre-written code that
takes care of basic tasks — a big time saver. This library has code that makes the high,
low, pause, and many other functions do their jobs. Simpletools also includes other
libraries, such as simpletext that has code to make print do its job. You will see
simpletools.h included in every program in this tutorial.

Remember that every program starts by executing the the first line of code inside of the
int main()curly braces: { }. Here, that is print("The LED connected to P15 is
blinking!"). It’s a lot like print("Hello!") but with different text between the
quotes.

Page 44 ⋅ What’s a Multicore Microcontroller

Next comes while(1). The while command repeats the code inside of its own curly
braces. Its syntax is:

while(condition){one or more statements to repeat}

As long as the condition is not zero, the while loop will keep repeating. Since the while
loop’s condition is set at 1, the four statements between its curly braces keep repeating in
order, as shown in Figure 2-12.

while(1)
 {
 high(14);
 pause(500);
 low(14);
 pause(500);
 }

Figure 2-12
An infinite while Loop

The statements between the while
loop’s opening { and closing }
braces get executed over and over
endlessly.

The first statement in the while loop is high(14). This makes the Propeller’s P14 I/O
pin internally connect to 3.3V, like the left side of Figure 2-10. This makes the LED light
up. You will see this called “sending a high signal” throughout this tutorial.

The second statement is pause(500), which makes the Propeller processor executing
this program do nothing for 500 milliseconds. A millisecond is one thousandth of a
second, so this pause(500) lasts one half of a second, keeping the LED lit.

The third statement is low(14). This makes the I/O pin internally connect to GND, like
the right side of Figure 2-10. This turns off the LED. We’ll be calling that “sending a
low signal.”

The fourth statement keeps LED off for a half second; it is another pause(500). That’s
the last statement inside the curly braces, so the program execution returns to the first
statement inside the braces.

Since there is nothing in the code that can cause the while condition to change, these
four statements get executed over and over again until the power turns off or runs out!
This is an example of what’s called an endless loop or infinite loop.

Lights On – Lights Off · Page 45

More simpletools syntax
If you want to see the syntax for the high, low, and pause functions, click the SimpleIDE
Help menu and select Simple Library Reference. When you get there, click the
simpletools.h link under the Utility header. On the Simpletools Library page, scroll down to
see all of the functions available, including high, low, and pause. We will dig deeper
into function syntax later in this tutorial.

Your Turn – Timing and Repetitions

A parameter is a bit of information that a function needs to do its job. Your code needs
to provide a value that parameter, also known as an argument, each time the function is
called. For example, in pause(500), the value 500 is provided for (often phrased as
“passed to”) the pause function’s time parameter. By changing the value passed to the
time parameter, you can change how long the LED stays on or off. For example, if you
changed both instances of pause(500) to pause(250), what do you think will happen?

 Use SimpleIDE’s Save Project As button to save a copy of LED-OnOff.
 Name it LED-OnOff-YourTurn1, and save it to My Projects.
 Update the project name at the top of the code.
 Change both instances of pause(500) to pause(250) and re-run the program

using SimpleIDE’s Run with Terminal button.

Did you correctly anticipate what would happen? The LED should now blink twice as
fast as it did before, completing two on/off cycles in about 1 second.

The “on” time and “off” time do not have to be the same. For example, let’s make the
LED blink on and off once every three seconds, with the low time twice as long as the
high time. To do this, use pause(1000) after high(14)so that the LED stays on for one
second. Then, use pause(2000) after low(14) to keep the LED off for 2 seconds:

while(1)
 {
 high(14);
 pause(1000);
 low(14);
 pause(2000);
 }

 Save another copy as LED-OnOff-YourTurn2, and then update the arguments in
the pause function calls as shown above.

Page 46 ⋅ What’s a Multicore Microcontroller

A fun experiment is to see how short you can make the pauses and still see that the LED
is flashing. When the LED is flashing very fast, it looks like it’s just staying on, a
phenomenon called persistence of vision.

To test your own persistence of vision threshold:

 Set your pause calls’ time values to 100.
 Save a copy as LED-OnOff-YourTurn3 and re-run your program and check for

flicker.
 Reduce the value for both time values by 5 and try again.
 Keep reducing time values until the LED appears to be on all the time with no

flicker. When you cross from flicker to solid you have reached the minimum
time your eye can detect. After persistence of vision kicks in the LED will be
dimmer than normal, but it should not appear to flicker.

One last thing to try is to just flash the LED once. This is a way to look at the
functionality of the while loop. You can de-activate a line of code by placing two
forward slashes // at the beginning of the line. This is also called “commenting out” the
line, and it is a very useful tool to test the effect of changes to your code while you are
developing programs. (Two forward slashes can also be placed at the end of the line of
code, followed by notes about what that line does. These comments will be ignored by
the code compiler, but are very useful to other humans who might want to read and
understand your code.)

To de-activate the while loop, you will need to comment out three lines of code that
make up its syntax: the while(1) itself, and the lines with its opening and closing curly
braces { and }. If you have been playing the persistence of vision game, you will also
need to make your pause times longer again so you don’t miss the flash.

// while(1)
 // {
 high(14);
 pause(1000);
 low(14);
 pause(2000);
 // }

Lights On – Lights Off · Page 47

 Modify, save a copy as LED-OnOff-YourTurn4, and re-run the program using
the code snippet above.

 Explain what happened. Why did the LED only flash once?

ACTIVITY #3: COUNTING AND REPEATING
In the previous activity, the LED circuit either flashed on and off endlessly, or it flashed
once and then stopped. What if you want the LED to flash on and off exactly ten times?
Computers (including the Propeller) are great at keeping running totals of how many
times something happens. Computers can also be programmed to make decisions based
on a variety of conditions. In this activity, you will program the Propeller to stop flashing
the LED on and off after ten repetitions.

Counting Parts and Test Circuit

Continue using the example circuit shown in Figure 2-11 on page 42.

Counting with a While Loop

LED-OnOffTenTimes shows how just a few updates to the previous activity’s
LED-OnOff program can use counting and comparing in the while loop’s condition to
limit the light to ten blinks. Counting takes two steps. First, declare a variable to count
the number of times the LED blinks. This example uses int x = 1 to declare a variable
named x and set it to 1. Then, at the very end of the while loop, insert the line x = x +
1. Now, every time through the while loop, the value of x will increase by 1. Inside the
while loop’s condition, change 1 to x <= 10. That means the while loop will only
keep repeating while x is less than or equal to 10. To help us see what the loop is doing,
a print statement to display the value of x was added at the start of the while loop.

Example Program: LED-OnOffTenTimes

 Use SimpleIDE’s Open Project button to open LED-OnOff .
 Use SimpleIDE’s Save Project As button and name a copy

LED-OnOffTenTimes. Don’t forget to update the project name at the top of the
code!

 Delete the line print("The LED connected to P14 is blinking!\n").
 Make the additions and changes shown below.

Page 48 ⋅ What’s a Multicore Microcontroller

/* LED-OnOffTenTimes.c */

#include "simpletools.h"

int main()
{
 int x = 1; // <- Add

 while(x <= 10) // <- Change
 {
 print("x = %d\n", x); // <- Add
 high(14);
 pause(500);
 low(14);
 pause(500);
 x = x + 1; // <- Add
 }
}

 Use the Run with Terminal button, and verify that the LED stops blinking after

ten reps. The blinks start quickly so begin watching right after you click on Run
with Terminal.

 Use Run with Terminal a second time and watch the SimpleIDE Terminal to
verify that the value of x counts from 1 to 10.

Easier Counting with a For Loop

There’s a special kind of loop called a for loop that makes this job easier. Instead of
using three lines (to declare a variable, use while with a condition, and add to variable in
the loop) you can do it all with just one line. Try it!

Example Program: LED-OnOffTenAgain

 Use SimpleIDE’s Save Project As button to save LED-OnOffTenTimes as LED-
OnOffTenAgain.

 Delete these two lines: int x = 1; x = x + 1;
 Change while(x <= 10) to for(int x = 1; x <= 10; x++)
 Use the Run with Terminal button, and verify that the value of x counts from 1

to 10 as the LED blinks 10 times.

Lights On – Lights Off · Page 49

/* LED-OnOffTenAgain.c */

#include "simpletools.h"

int main()
{
 for(int x = 1; x <= 10; x++) // <- Change
 {
 print("x = %d\n", x);
 high(14);
 pause(500);
 low(14);
 pause(500);
 }
}

How LED-OnOffTenAgain Works

This for loop has three parameters:

1. A variable declaration and starting value. Here, the argument is int x = 1,
2. A condition. Here, the argument is x <= 10;
3. A variable operation. Here, the argument is x++

The third argument is something you might not have seen yet, x++. The operator ++
means “add one to the variable” and its position after the x means “do the addition after it
gets used in this instruction.” It’s called the post-increment operator, and it is a shortcut
to writing x = x + 1.

 Try replacing x++ with x = x + 1.
 Re-run the program and verify that it still works the same.

The for loop depends on a variable to track how many times the LED has blinked on and
off. Recall from the Variables and Math lesson that a variable is a name you give to a
section of microcontroller memory so your program “remembers” values and works with
them. We used the name x, but you could also have picked something more self-
explanatory, like blinkReps.

http://learn.parallax.com/propeller-c-start-simple/variables-and-math

Page 50 ⋅ What’s a Multicore Microcontroller

Variable Name Rules:
1. The name cannot be a word that is already used by the C language, like for,

while, and main. These words are called reserved words.
2. The name cannot contain a space.
3. Even though the name can contain letters, numbers, or underscores, it must begin

with either a letter or an underscore.
4. Give each variable a unique name. (A good practice, but not technically necessary

in certain circumstances — we will explore variable scope in Chapter 5.)

The int in int x = 1; tells the C compiler that the for loop will use the letter x as a
variable that can store an int variable’s worth of information.

What’s an int? An int is enough memory to store a number in the approximately negative
2 billion to positive 2 billion range. Here are some examples of C language variable types
supported by the Propeller.

Table 2-2: Variable Types
Variable type Range of Values

char -128 to 127
unsigned char 0 to 255

short -32768 to 32767
unsigned short 0 to 65535

int -2,147,483,648 to 2,147,483,647

unsigned int 0 to 4,294,967,296

float
For numbers with decimal point that can
range from very large to very small, with

six digits of precision

double Like float, but with ten digits of precision

Your Turn – Other Ways to Count

 In the LED-OnOffTenAgain, replace the statement:

for(int x = 1; x <= 10; x++)

…with this:

for(int x = 1; x <= 20; x++)

Lights On – Lights Off · Page 51

 Save a copy of the program and name it LED-OnOffTenAgain-YourTurn1. Re-
run the program. What was different, and was it expected?

 Save another copy as LED-OnOffTenAgain-YourTurn2. Try a second
modification to the for statement. This time, change it to:

for(int x = 1; x <= 20; x = x + 4)

How many times did the LED flash? What values displayed in the Debug Terminal?

 Save a third copy as LED-OnOffTenAgain-YourTurn3. This time, replace x =

x + 4 with x += 4.

Did you get the results you expected?

ACTIVITY #4: BUILDING AND TESTING A SECOND LED CIRCUIT
Indicator LEDs often tell a machine’s user many things. Many devices need two, three,
or more LEDs to tell the user if the machine is ready or not, if there is a malfunction, if
it’s done with a task, and so on.

In this activity, you will repeat the LED circuit test in Activity #1 for a second LED
circuit. Then, you will adjust the example program from Activity #2 to make sure the
LED circuit is properly connected to the Propeller. After that, you will modify the
example program from Activity #2 to make the LEDs operate in tandem.

Extra Parts Required

In addition to the parts you used in Activities 1 and 2, you will need these parts:

(1) LED – yellow
(1) Resistor – 220 Ω (red-red-brown)
(1) Jumper wire (black)

Building and Testing the Second LED Circuit

In Activity #1, you manually tested the first LED circuit to make sure it worked before
connecting it to the Propeller. Before connecting the second LED circuit to the Propeller,
it’s important to test it too.

Page 52 ⋅ What’s a Multicore Microcontroller

 Set your board’s PWR switch to 0.
 Construct the second circuit as shown in Figure 2-13.
 Make sure the leads of the different resistors are not touching each other.
 Set your board’s PWR switch to 1.

Did the LED circuit you just added turn on? If yes, then continue. If no, Activity #1 has
some troubleshooting suggestions that you can repeat for this circuit.

Figure 2-13
Manually Test the
Second LED

 Turn off power, and then connect the second LED circuit’s resistor lead to P15

as shown in Figure 2-14.

Lights On – Lights Off · Page 53

Figure 2-14
Connect the Second
LED to I/O Pin 15

Using a Program to Test the Second LED Circuit

In Activity #2, you used an example program with high, low, and pause statements to
control the P14 LED circuit. These statements can be modified to control the P15 LED
circuit. It is simply a matter of passing 15 instead of 14 to the high and low functions’
pin parameters.

Example Program: LED-TestSecond

 Use SimpleIDE’s Open Project button to open LED-OnOff.
 Use SimpleIDE’s Save Project As button to save it as LED-TestSecond.
 Change the values passed to the high and low pin parameters from 14 to 15.
 Click SimpleIDE’s Run with Terminal button and verify that the LED in the

circuit connected to P15 blinks.

/* LED-TestSecond.c */

#include "simpletools.h"

int main()
{
 print("The LED connected to P15 is blinking!\n");

 while(1)
 {
 high(15); // <- Change
 pause(500);

Page 54 ⋅ What’s a Multicore Microcontroller

 low(15); // <- Change
 pause(500);
 }
}

Controlling Both LEDs

Yes, you can flash both LEDs at once! One way you can do this is to use two high
statements before the first pause statement, one for P14 and one for P15. You will also
need two low statements to turn both LEDs off. It’s true that both LEDs will not turn on
and off at exactly the same moment because one is turned on or off after the other, but the
difference will be infinitesimal compared to how long it would take for the human eye to
actually detect it.

Example Program: LED-FlashBoth

 If it’s not already open, open LED-TestSecond, and then use Save Project As to
save it as LED-FlashBoth.

 Add the high(14) and low(14) lines as shown below.
 Click the Run with Terminal button.
 Verify that both LEDs appear to flash on and off at the same time.

/* LED-FlashBoth.c */

#include "simpletools.h"

int main()
{
 print("The LEDs connected to P14 and P15 are blinking!\n");

 while(1)
 {
 high(15);
 high(14); // <- add
 pause(500);
 low(15);
 low(14); // <- add
 pause(500);
 }
}

Lights On – Lights Off · Page 55

Your Turn – Alternate LEDs

What if you want one LED to be on while the other LED is off, and vice versa? Think
about how you would need to change your code. If you thought of swapping the high
and low statements that control one of the I/O pins, you thought right.

 Modify LED-FlashBoth so that the statements in the while loop look like this:

 high(15);
 low(14); // <- change
 pause(500);
 low(15);
 high(14); // <- change
 pause(500);

 Save a copy and name it LED-FlashBoth-YourTurn. Run the modified code and
verify that the lights are on alternately.

ACTIVITY #5: CONTROL A BICOLOR LED WITH CURRENT DIRECTION
The device shown in Figure 2-15 is a security system’s card reader for electronic key
cards. When key card with the right code is held near the device, the LED changes color
from red to green, and a door unlocks. This kind of LED is called a bicolor LED. This
activity answers two questions:

1. How does the LED change color?
2. How can you control a bicolor LED with the Propeller microcontroller?

Page 56 ⋅ What’s a Multicore Microcontroller

Figure 2-15
Bicolor LED in a Security
Device

When the door is locked,
this bicolor LED glows
red. When the door is
unlocked by an electronic
key with the right code,
the LED turns green.

Introducing the Bicolor LED

The bicolor LED’s schematic symbol and part drawing are shown in Figure 2-16. This
LED has a rounded dome and a cloudy white color. (You may also have a part with a
clear case and flat top – that’s a phototransistor, and we will use it later.)

Figure 2-16
Bicolor LED

Schematic symbol (left)
and part drawing (right).

The bicolor LED is really just two LEDs in one package. Figure 2-17 shows how you
can apply voltage in one direction and the LED will glow green. By disconnecting the
LED and plugging it back in reversed, the LED will then glow red. As with the other
LEDs, if you connect both terminals of the circuit to GND, the LED will not emit light.
Since current could be going either direction in your project, the leads are named 1 and 2
rather than + and -.

Lights On – Lights Off · Page 57

Figure 2-17
Bicolor LED and
Applied Voltage

Green (left), red
(center) and no
light (right)

Bicolor LED Circuit Parts

(1) LED – bicolor (plastic case is a cloudy white color).
(1) Resistor – 220 Ω (red-red-brown)
(1) Jumper wire (black)

Building and Testing the Bicolor LED Circuit

Figure 2-18 shows the manual test for the bicolor LED.

 Set your board’s PWR switch to 0, and remove any parts from the last activity.
 Build the circuit shown on the left side of Figure 2-18.
 Set the PWR switch to 1, and verify that the bicolor LED is emitting green light.
 Set PWR to 0 again.
 Modify your circuit by turning the LED around so that its leads swap position, as

shown in the right side of Figure 2-18.
 Set PWR to 1, verify that the bicolor LED is now emitting red light.
 Set PWR to 0 again.

Page 58 ⋅ What’s a Multicore Microcontroller

Figure 2-18
Manual Bicolor LED
Test

Bicolor LED green (left)
and red (right).

Your LED might be
manufactured with the
colors reversed.

What if my bicolor LED’s colors are reversed? If your bicolor LED glows red when it’s
connected in the circuit that should make it glow green and vice-versa, your LED’s colors are
reversed inside the case. Just plug pin 1 in where the diagrams show pin 2, and pin 2 where
the diagrams show pin 1.

Controlling a bicolor LED with a microcontroller requires two I/O pins. After you have
manually verified that the bicolor LED works using the manual test, you can connect the
circuit to the Propeller as shown in Figure 2-19.

 Connect the bicolor LED circuit to the Propeller microcontroller as shown in

Figure 2-19.
 Double-check that the bare metal leads of the components are not accidentally

touching above the breadboard.

Lights On – Lights Off · Page 59

Figure 2-19
Bicolor LED Connected
to Propeller

Schematic (left) and
wiring diagram (right).

Propeller Bicolor LED Control

Figure 2-20 shows how you can use P15 and P14 to control the current flow in the
bicolor LED circuit. The upper schematic shows how current flows through the green
LED when P15 is internally connected to 3.3V and P14 is internally connected to GND.
The green LED will let current flow through it when electrical pressure is applied as
shown, but the red LED acts like a closed valve and does not let current through it.
Therefore, only the bicolor LED glows green.

The lower schematic shows what happens when P15 is instead set to GND and P14 is set
to 3.3V. The electrical pressure is now reversed. The green LED shuts off and does not
allow current through. Meanwhile, the red LED turns on as current passes through the
circuit in the opposite direction.

Page 60 ⋅ What’s a Multicore Microcontroller

Figure 2-20
Propeller Bicolor LED
Test

Current through green
LED (above) and red
LED (below).

Figure 2-20 also shows the key to programming the Propeller to make the bicolor LED
glow two different colors. The upper schematic shows how to make the bicolor LED
green using high(15) and low(14). The lower schematic shows how to make the
bicolor LED glow red by using low(15) and high(14). To turn the LED off, connect
both leads to GND using low(15) and low(14).

The bicolor LED will also turn off if you send high signals to both P14 and P15. Why?
Because the electrical pressure (voltage) is the same at P14 and P15 if you set both I/O pins
high (3.3 V). So, the effect is the same as setting both P14 and P15 low (0 V = GND).

Example Program: LED-TestBicolor

 Set the PWR switch to 1.
 Use SimpleIDE’s New Project button to create a project named LED-

TestBicolor.
 Enter the code below and test with the Run with Terminal button.
 Verify that the LED cycles through the red, green, and off states.

/* LED-TestBicolor.c */

#include "simpletools.h"

Lights On – Lights Off · Page 61

int main()
{

 print("Program running! \n");

 while(1)
 {
 print("Green \n");
 high(15);
 low(14);
 pause(1500);

 print("Red \n");
 low(15);
 high(14);
 pause(1500);

 print("Off \n");
 low(15);
 low(14);
 pause(1500);
 }
}

Your Turn – Lights Display

In Activity #3, a variable named x was used to control how many times an LED blinked.
What happens if you use the value x to control the pause function’s time parameter while
repeatedly changing the color of the bicolor LED?

 Use the Save as Project button to create a copy of your code named LED-

TestBicolor-YourTurn.
 Replace the code inside the while(1) loop with this:

for(int x = 1; x <= 50; x++)
 {
 high(15);
 low(14);
 pause(x);

 low(15);
 high(14);
 pause(x);
 }

Page 62 ⋅ What’s a Multicore Microcontroller

When you are done, your code should look like this:

#include "simpletools.h"

int main()
{

 print("Program running! \n");

 while(1)
 {
 for(int x = 1; x <= 50; x++)
 {
 high(15);
 low(14);
 pause(x);

 low(15);
 high(14);
 pause(x);
 }
 }
}

At the beginning of each pass through the for loop, the pause value (time parameter) is
only one millisecond. Each time through the for loop, the pause gets longer by one
millisecond at a time until it gets to 50 milliseconds. The while(1) causes the for loop
to go through this process over and over again.

 Run the modified program and observe the effect. Did it do what you expected?

SUMMARY
This chapter introduced lots of new concepts, electronic components, and programming
techniques:

• How common devices use indicator lights.
• What a resistor is, what its schematic symbol looks like, and how to decode its

colored markings to determine its resistance value.
• What an LED (light-emitting diode) is, and what its schematic symbol looks like.
• What a bicolor LED is, and what its schematic symbol looks like.

Lights On – Lights Off · Page 63

• What a solderless breadboard is, and how to use it to make electrical connections
between components for building a circuit.

• How electrons move through a circuit to turn on an LED.
• How to build an LED circuit and turn it on and off by manually connecting it to

power.
• How current direction/voltage polarity determine which color a bicolor LED will

glow.
• How to build an LED circuit connected to a microcontroller.
• How to write programs to control regular and bidirectional LED circuits.
• How to use the high, low, and pause functions from the simpletools library.
• What a parameter is, and how to pass values to a function’s parameter.
• How to use a while instruction to make a block of code repeat endlessly (an

infinite loop), or only while an expression evaluates as true using a variable (a
conditional loop).

• How to use a for instruction to make a block of code repeat a certain number of
times (a counted loop) by using a variable.

• How to use the post-increment operator, as in x++.
• How to use // at the front of a line of code to deactivate it, or at the end of a line

of code to add human-readable comments.
• Several types of C variable names and value ranges.
• Basic rules for naming variables.

Questions

1. What is the name of this Greek letter: Ω, and what measurement does Ω refer
to?

2. Which resistor would allow more current through the circuit, a 470 Ω resistor or
a 1000 Ω resistor?

3. How do you connect two wires using a breadboard? Can you use a breadboard
to connect four wires together?

4. What do you always have to do before modifying a circuit that you built on a
breadboard?

5. How long would pause(10000) last?
6. How would you cause a Propeller’s processor to do nothing for an entire

minute?
7. What are three different C variable types?
8. Can a char variable hold the value 500?

Page 64 ⋅ What’s a Multicore Microcontroller

9. What will the command high(7) do?

Exercises

1. Draw the schematic of an LED circuit like the one you worked with in Activity
#2, but connect the circuit to P13 instead of P14. Explain how you would modify
LED-OnOff on page 42 so that it will make your LED circuit flash on and off
four times per second.

2. Explain how to modify LED-OnOffTenTimes so that it makes the LED circuit
flash on and off 5000 times before it stops.

Project

1. Make a 10-second countdown using one yellow LED and one bicolor LED.
Make the bicolor LED start out red for 3 seconds. After 3 seconds, change the
bicolor LED to green. When the bicolor LED changes to green, flash the yellow
LED on and off once every second for ten seconds. When the yellow LED is
done flashing, the bicolor LED should switch back to red and stay that way for
three seconds before turning off.

Solutions

Q1. Its name is omega, and it refers to the ohm, which measures how strongly
something resists current flow.

Q2. A 470 Ω resistor: higher values resist more strongly than lower values,
therefore lower values allow more current to flow.

Q3. To connect 2 wires, plug the 2 wires into the same 5-socket group. You can
connect 4 wires by plugging all 4 wires into the same 5-socket group.

Q4. Disconnect the power by setting your board’s PWR switch to 0.
Q5. 10 seconds.
Q6. pause(60000)
Q7. Any three of these would be correct: char, unsigned char, short,

unsigned short, int, unsigned int, float, unsigned float.
Q8. No. A char variable only holds from -128 to 127, so the value 500 is too large.

A short or int would work.
Q9. high(7) will cause the Propeller to internally connect I/O pin P7 to 3.3V.

E1. The pause(time) must be reduced to 500 ms / 4 = 125 ms, so pause(125).

Propeller C will also accept pause(500/4). To use I/O pin P13, high(14)
and low(14) have been replaced with high(13) and low(13).

Lights On – Lights Off · Page 65

while(1)
{
 high(13);
 pause(125);
 low(13);
 pause(125);
}

E2. Change for(int x = 1; x <= 10; x++) to for(int x = 1; x <= 5000;

x++).

P1. The bicolor LED schematic, on the left, is unchanged from Figure 2-19 on page

59. The yellow LED schematic is based on Figure 2-11 on page 42. For this
project P14 was changed to P13, and a yellow LED was used instead of green.

/* LED-P1-Solution.c
 10 Second Countdown with Red, Yellow, Green LED
 Red/Green: Bicolor LED on P15, P14. Yellow: P13 */

#include "simpletools.h"

int main()
{
 print("Program Running!");

 low(15); // Bicolor LED Red
 high(14);
 pause(3000); // ...for three seconds

 high(15); // Bicolor LED Green
 low(14);

 for(int x = 1; x <= 10; x++) // ...while yellow flashes
 {
 high(13); // Yellow LED on
 pause(500);

Page 66 ⋅ What’s a Multicore Microcontroller

 low(13); // Yellow LED off
 pause(500);
 }

 low(15); // Bi Color LED Red
 high(14);
 pause(3000); // Bi Color LED Red
 low(14); // Bi Color LED off
}

Digital Input – Pushbuttons · Page 67

Chapter 3: Digital Input – Pushbuttons

FOUND ON CALCULATORS, HANDHELD GAMES, AND APPLICANCES
How many devices with pushbuttons do you use on a daily basis? Think about a
computer, mouse, calculator, microwave oven, TV remote, handheld game, and cell
phone. In each device, there is a microcontroller scanning the pushbuttons and waiting
for a circuit to change when you push a button. When the microcontroller detects a
change, it carries out whatever action you expect the pushbutton to trigger. By the end of
this chapter, you will have experience with designing pushbutton circuits and
programming the Propeller to monitor them and take action when changes occur.

RECEIVING VS. SENDING HIGH AND LOW SIGNALS
In Chapter 2, you programmed the Propeller make its I/O pins send, or output, high and
low signals. The LEDs turned on and off (or changed color) to display the state of these
signals. In this chapter, you will use a Propeller I/O pin as an input. As an input, an I/O
pin “listens” for high/low signals instead of sending them. You will send these signals to
the Propeller with a pushbutton circuit, and you will program the Propeller to recognize
whether the pushbutton is pressed or not pressed.

Other terms that mean send, high/low, and receive: Sending high/low signals is
described in different ways. You might see sending referred to as transmitting, controlling,
or switching. Instead of high/low, you might see it referred to as binary(1/0), TTL, CMOS, or
Boolean signals. Another term for receiving is sensing.

ACTIVITY #1: TESTING A PUSHBUTTON WITH AN LED CIRCUIT
If you can use a pushbutton to send a high or low signal to the Propeller, can you also
control an LED with a pushbutton? The answer is yes, and you will use it to test a
pushbutton in this activity.

Introducing the Pushbutton

Figure 3-1 shows the schematic symbol and the part drawing of the pushbutton included
in your kit. It has four pins, connected in two pairs: 1,4 and 2,3.

This means that connecting a wire to pin 1 of the pushbutton is the same as connecting it
to pin 4. The same rule applies with pins 2 and 3. The reason the pushbutton doesn’t just

Page 68 ⋅ What’s a Multicore Microcontroller

have two pins is because it needs stability and strength so it doesn’t bend or break when
you push on it.

1, 4

2, 3 2

1 4

3

Figure 3-1
Normally Open Pushbutton

Schematic symbol (left) and
part drawing (right)

This is a normally open pushbutton, and it looks like the left side of Figure 3-2 when it’s
not pressed. Notice there is a gap between the 1,4 and 2,3 terminals. This gap makes it
so that the 1,4 terminal cannot conduct current to the 2,3 terminal. This is called an open
circuit. So, this pushbutton’s normal not-pressed state forms an open circuit, which gives
us the name “normally open.” When the button is pressed, the gap between the 1,4 and
2,3 terminals is bridged by conductive metal, as shown in Figure 3-3. This forms a
closed circuit, and current can then flow through the pushbutton.

1, 4

2, 3

1, 4

2, 3

Figure 3-2
Normally-Open Pushbutton

Not pressed (left) and pressed (right)

Figure 3-3
Pressing the
button bridges
the 1,4 and 2,3
terminals with
conductive
metal

Digital Input – Pushbuttons · Page 69

Test Parts for the Pushbutton

(1) LED – red, yellow, or green, your choice!
(1) Resistor – 220 Ω (red-red-brown)
(1) Pushbutton – normally open
(2) Jumper wires

Building the Pushbutton Test Circuit

Figure 3-4 shows a circuit you can build to manually test the pushbutton.

Always disconnect power from your board by setting the PWR switch to 0 before making
any changes to your test circuit. Unplugging the USB cable (which can supply power) and
any external power supply will also disconnect power.
Always reconnect power to your board before downloading a program to the Propeller, by
setting the PWR switch to 1. Of course, you must have your USB programming cable
connected as well, and you should also reconnect any external supply you may have
unplugged.
IMPORTANT: From here onward, the instructions will no longer say “Disconnect power…”
and “Reconnect power” between each circuit modification. It is up to you to remember!
WARNING SIGNS: When doing any circuit activities, if the LEDs below the PWR switch on
the Activity Board flicker, go dim, or go out completely when you reconnect power,
DISCONNECT POWER IMMEDIATELY and re-check your circuit. It may mean that there
is a short circuit from 3.3 V or 5 V to GND. Fix any circuit errors before proceeding.

 Build the circuit shown in Figure 3-4.

Figure 3-4
Circuit for pushbutton to
turn on an LED

Page 70 ⋅ What’s a Multicore Microcontroller

Testing the Pushbutton

When the pushbutton is not pressed, the LED will be off. If the wiring is correct, when
the pushbutton is pressed, the LED should be on (emitting light).

 Press the pushbutton down — you should hear or feel a little click.
 Verify that when you hold down the pushbutton, the LED emits light, and when

you let go of the pushbutton, the LED turns off.

How the Pushbutton Circuit Works

The left side of Figure 3-5 shows what happens when the pushbutton is not pressed. The
LED circuit is not connected to 3.3 V. It is an open circuit that cannot conduct current.
By pressing the pushbutton, as shown on the right side of the figure, you close the
connection between the terminals with conductive metal. This makes a pathway for
electrons to flow through the circuit, and so the LED emits light as a result.

Figure 3-5
Pushbutton Not Pressed,
and Pressed

Pushbutton not pressed:
circuit open and light off
(left)

Pushbutton pressed:
circuit closed and light on
(right)

Your Turn – Turn the LED off with a Pushbutton

Figure 3-6 shows a different pushbutton and LED circuit. In this case, when the
pushbutton is not pressed, the LED stays on; when the button is pressed, the LED turns
off. When the pushbutton is not pressed, current flows through the LED and it emits
light. But when the pushbutton is pressed, conductive metal connects terminals 1,4 and
2,3, and electricity will take the path of least resistance through the pushbutton instead of
through the LED.

 Build the circuit shown in Figure 3-6.

Digital Input – Pushbuttons · Page 71

 Make sure the LED’s longer anode lead is in the same row with the wire coming
from 3.3V, as marked with a (+) sign in the wiring diagram. The LED’s shorter
cathode lead (by the flat spot on the case) is in the same row with the resistor
going to GND.

 Now, turn on the PWR switch. The LED should turn on.
 Press and hold down the pushbutton. This should now make the LED turn off.

Figure 3-6
Circuit for Pushbutton to
Turn Off an LED

Can you really do that with the LED? Up until now, a resistor has always connected the
LED’s anode to either 3.3V or an I/O pin. But now, the anode is connected directly to 3.3V,
and the resistor is connecting the LED’s cathode to GND. People often ask if this breaks
any circuit rules.
The answer is no! The electrical pressure supplied by 3.3V and GND is 3.3 volts. You
might see the term voltage drop describing how much voltage to expect across each
component’s leads. The green LED will always have a voltage drop in the 2.1 V range, and
the resistor will use the remaining 1.2 V, regardless of their order.

ACTIVITY #2: READING A PUSHBUTTON WITH THE PROPELLER
In this activity, you will connect a pushbutton circuit to a Propeller microcontroller I/O
pin, and display whether or not the pushbutton is pressed. You will do this by writing a C
program that checks the state of the pushbutton and prints it in the SimpleIDE Terminal.

Page 72 ⋅ What’s a Multicore Microcontroller

Parts for a Pushbutton Circuit

(1) Pushbutton – normally open
(1) Resistor – 220 Ω (red-red-brown)
(1) Resistor – 10 kΩ (brown-black-orange)
(1) Jumper wire (red)

Building a Pushbutton Circuit for the Propeller Microcontroller

Figure 3-7 shows a pushbutton circuit that is connected to Propeller I/O pin P3.

 Build the circuit shown in Figure 3-7.

Figure 3-7
Pushbutton
Circuit
Connected to I/O
Pin P3

On the wiring
diagram, the
220 Ω resistor
(red-red-brown)
is connecting the
pushbutton’s
lower terminal to
P3.

The upper half of Figure 3-8 shows how the Propeller responds when the pushbutton is
pressed. The Propeller senses that 3.3 V is connected to P3, and responds by placing the
number 1 in a part of its memory that stores information about its I/O pins.

When the pushbutton is not pressed, the lower half of Figure 3-8 shows that the Propeller
cannot sense 3.3 V, but it can sense GND through the 10 kΩ and 220 Ω resistors. This
causes it to store the number 0 in that same memory location. We can use the simpletools
library’s input function to check that memory location, and take a different action
depending on if it’s storing a 0 or a 1.

Digital Input – Pushbuttons · Page 73

Figure 3-8
Propeller Reading a
Pushbutton

When the pushbutton is
pressed, the Propeller
reads a 1 (above). When
the pushbutton is not
pressed, the Propeller
reads a 0 (below).

Binary and Circuits: The base-2 number system uses only the digits 1 and 0 to make
numbers, and these binary values can be transmitted from one device to another. The
Propeller interprets 3.3 V as binary 1 and GND (0 V) as binary 0. Likewise, when the
Propeller sets an I/O pin to 3.3 V using high, it sends a binary 1. When it sets an I/O pin to
GND using low, it sends a binary 0. This is a very common way of communicating binary
numbers that is used by many computer chips and other devices.

Example Program: Button-ReadState

This next program uses the input function to check the pushbutton every ¼ second, and
then display the function’s return value, which will be a 0 or 1. Figure 3-9 shows the
SimpleIDE Terminal while the program is running. When the pushbutton is pressed,
SimpleIDE Terminal displays the number 1, and when the pushbutton is not pressed, it
displays the number 0.

Page 74 ⋅ What’s a Multicore Microcontroller

Figure 3-9
SimpleIDE Terminal
Displaying
Pushbutton States

The SimpleIDE
Terminal displays 1
when the pushbutton
is pressed and 0
when it is not
pressed.

 Click the New Project button and name the project Button-ReadState.
 Enter the Button-ReadState.c code into SimpleIDE.
 Click the Run with Terminal button.
 Verify that the SimpleIDE Terminal displays the value 0 when the pushbutton is

not pressed, and the value 1 when pressed.

/* Button-ReadState.c */

#include "simpletools.h"

int main()
{
 int button;

 while(1)
 {
 button = input(3);
 print("button = %d\n", button);
 pause(250);
 }
}

How Button-ReadState Works

The program contains an infinite while(1) loop. Just above the loop, int button;
declares a variable named button. The first statement in the loop, button =
input(3), translates to “check I/O pin P3, and assign its input state to the variable
named button.” The input(3) function call checks the state of P3, and will return a
value of 1 if a button is pressed, or 0 if it is not pressed. So, a 0 or a 1 are the two
possible values that could be assigned to button.

Digital Input – Pushbuttons · Page 75

Next, print("button = %d\n", button) displays the string between the quotation
marks in the SimpleIDE terminal. The text “button = ” is displayed just as appears in the
string. The %d flag means “right here, display the value that follows this string as a
decimal integer value.” In this case, the button variable comes after the string, so its
value, which will either be 0 or 1, is printed next. Finally, the \n formatter tells the
print statement to put the cursor at the beginning of the next line.

The last statement is pause(250), which makes the program wait for ¼ of a second
before allowing the while(1) loop to repeat. This makes the terminal display more
readable. Without it, the values would just race by.

Your Turn – A Pushbutton with a Pull-up Resistor

The circuit you just finished working with has a resistor connected to GND, called a pull-
down resistor because it pulls the voltage at P3 down to GND (0 volts) when the button is
not pressed. Figure 3-10 shows a pushbutton circuit that uses a pull-up resistor.

Figure 3-10
Modified Pushbutton
Circuit

This resistor pulls the voltage up to 3.3V (3.3 volts) when the button is not pressed.
When the button is pressed, P3 detects GND. So, the rules are now reversed. When the
button is not pressed, input(3) returns the number 1, and when the button is pressed,
input(3) returns the number 0.

The 220 Ω resistor is used in the pushbutton example circuits to protect the Propeller I/O
pin. Although it’s a good practice for prototyping, in many products this resistor is replaced
with a wire (since wires cost less than resistors).

Page 76 ⋅ What’s a Multicore Microcontroller

 Modify your circuit as shown in Figure 3-10.
 Re-run Button-ReadState with the Run with Terminal button.
 Use the SimpleIDE Terminal to verify that input(3) returns 1 when the button

is not pressed and 0 when the button is pressed.

Active-low vs. Active-high: The pushbutton circuit in Figure 3-10 is called active-low
because it sends the Propeller a low signal (GND) when the button is active (pressed). The
pushbutton circuit back in Figure 3-7 is called active-high because it sends a high signal
(3.3 V) when the button is active (pressed). The “active” direction will always be opposite
the “pull” direction.

ACTIVITY #3: PUSHBUTTON CONTROL OF AN LED CIRCUIT
Many devices have pushbuttons to press for changing settings on a device, and LEDs to
show you the status of the settings. The example Figure 3-11 shows a zoomed-in view of
a pushbutton and LED used to adjust the settings on a computer monitor.

Figure 3-11
Button and LED on a
Computer Monitor

The Propeller microcontroller can be programmed to make decisions based on what it
senses. Like Activity #1, this next activity will use a pushbutton to control an LED.
However, instead of wiring the pushbutton to directly change the flow of current to the
LED, we will connect both the LED and the pushbutton to Propeller I/O pins. Then, your
C program can use the input state of the pushbutton’s I/O pin in a decision to set the
output state of the LED’s I/O pin. Using a microcontroller this way opens up many more
options than the simple button/LED interaction you’ve seen so far. The next example
program will rapidly flash the LED while the pushbutton is held down — something the
Activity #1 circuits could not do.

Pushbutton and LED Circuit Parts

(1) Pushbutton – normally open
(1) Resistor – 10 kΩ (brown-black-orange)
(1) LED – red, yellow, or green, your choice!

Digital Input – Pushbuttons · Page 77

(2) Resistor – 220 Ω (red-red-brown)
(2) Jumper wires

Building the Pushbutton and LED Circuits

Figure 3-12 shows the active-high pushbutton circuit with pull-down resistor used in the
beginning of the last activity, along with the LED circuit from Chapter 2, Activity #2.

 Build the circuits shown in Figure 3-12.

Figure 3-12
Pushbutton and LED
Circuit

Programming Pushbutton Control

The Propeller microcontroller can be programmed to make decisions using an
if...else... statement. Its syntax, paraphrased, is:

If (condition is true) {execute this code block} else {execute this code block instead}

A code block is a group of commands contained by opening and closing braces { }.
A code block can be all on one line, or take up multiple lines.

Example Program: Button-ControlOneLED

 Use SimpleIDE’s New Project Button to create a new project and name it
Button-ControlOneLED.

 Enter the Button-ControlOneLED.c code into SimpleIDE.

Page 78 ⋅ What’s a Multicore Microcontroller

 Click the Run with Terminal button.
 Verify that the LED does not flash when you are not pressing the pushbutton.
 Verify that the LED flashes on and off when you hold down the pushbutton.

/* Button-ControlOneLED.c */

#include "simpletools.h"

int main()
{
 int button;

 while(1)
 {
 button = input(3);
 print("button = %d\n", button);

 if(button == 1)
 {
 high(14);
 pause(50);
 low(14);
 pause(50);
 }
 else
 {
 pause(100);
 }
 }
}

How Button-ControlOneLED Works

This program is a modified version of Button-ReadState from the previous activity.
Everything stays the same up through button… and print inside the while(1) loop.
But then, the pause(250) was deleted, and an if...else... statement was put in its
place. When code execution reaches this spot, it checks to see if (button == 1) is
actually true. If yes, the statements within its code block braces { } get executed:
high(14); pause(50); low(14); and another pause(50);. As a result, the light blinks
on and off very quickly, and then the code execution goes back to the beginning of the
while loop. So, as long as you are holding the button down, the LED will flash rapidly.
If you are not pressing the button, the if (button == 1) condition evaluates as false,
and the code execution skips down to the else block where only { pause(100); } gets
executed. There is no code for blinking the LED in the else block, so it stays off.

Digital Input – Pushbuttons · Page 79

Assign-equals (=) vs. Compare-equals (==)
In the instruction button = input(3), the = operator assigns the value on the right to the
variable on the left. Another way to say it would be that the = operator sets the symbol on
the left equal to the value on the right. It is also called the assignment operator.
In if(button == 1), the == operator performs a comparison to see if the variable on the
left is equal to the value on the right. It does not change the value of button. It is simply
asking a true-or-false question, and will return 1 if it is true, and 0 if it is false. It also called
the equality operator.

You can make a detailed list of what a program should do, to either help you plan the
program or to describe what it does. This kind of list is called pseudo code, and the
example below uses pseudo code to describe how Button-ControlOneLED works.

• Do these commands over and over again
o Copy the 1/0 result of P3 input to a variable named button
o Display the value of button in SimpleIDE Terminal
o If the value of button is 1, Then

 Turn the LED on
 Wait for 50 ms
 Turn the LED off
 Wait for 50 ms

o Else, (if the value of IN3 is not 1)
 Do nothing, but wait for the same amount of time it would have

taken to briefly flash the LED (1/10 of a second).

Your Turn – Alternate Coding Approach

Button-ControlOneLED-YourTurn shows another way to write code that does the same
job. Instead of if…else…, it just uses an if… statement. Also, instead of copying the
input(3) function’s return value to a variable, it uses input(3) and the compare-equals
operator directly to decide whether or not to turn on the light. If the button is pressed,
if(input(3) == 1 high(14) turns the light on. If the button is not pressed, it just
leaves the light off.

 Use SimpleIDE to create a project named Button-ControlOneLED-YourTurn

and try this code. It should do the same job.

Page 80 ⋅ What’s a Multicore Microcontroller

/* Button-ControlOneLED-YourTurn.c */

#include "simpletools.h"

int main()
{
 while(1)
 {
 print("button = %d\n", input(3));

 if(input(3) == 1)
 high(14);

 pause(50);
 low(14);
 pause(50);
 }
}

An if… statement is just an if…else… statement without the else.
If you have just one statement to conditionally execute, you don’t need braces { }.
Conditional statements execute the next thing that follows them. That could be a code
block contained in braces { }, or it could be a single statement ending with a semicolon ; .

These two pieces of code do the same job: set P14 high if the button is pressed.

 SAME
if(input(3) == 1) if(input(3) === 1)
 high(14); {
 high(14);
 }

These next two pieces of code do different jobs. On the left, P14 is set high if the button is
pressed. Then, it waits for 50 ms no matter what. The one on the right will do both, but only
if the button is pressed, since the high and pause statements are both inside the braces.

 NOT SAME
if(input(3) == 1) if(input(3) === 1)
 high(14); {
 high(14);
pause(50) pause(50);
 }

ACTIVITY #4: TWO PUSHBUTTONS CONTROLLING TWO LED CIRCUITS
Now that you know how to use a microcontroller to monitor a pushbutton and control an
LED based on the pushbutton’s state, let’s make things more interesting. In this activity,
you will add a second pushbutton and a second LED to the circuits on your breadboard.

Digital Input – Pushbuttons · Page 81

Pushbutton and LED Circuit Parts

(2) Pushbuttons – normally open
(2) Resistors – 10 kΩ (brown-black-orange)
(4) Resistors – 220 Ω (red-red-brown)
(2) LEDs – any color
(4) Jumper wires (2 red, 2 black)

Adding a Pushbutton and LED Circuit

 Build the circuits shown in Figure 3-13 and Figure 3-14. If you need help
building the circuit shown in the schematic, use the wiring diagram in Figure
3-14 as a guide.

Figure 3-13
Schematic for Two
Pushbuttons and LEDs

Page 82 ⋅ What’s a Multicore Microcontroller

Dots Indicate Connections
There are three places where lines intersect in Figure 3-13, but only two of those
intersections have dots. When two lines intersect with a dot, it means they are electrically
connected. When building a circuit on the breadboard, leads connected by a dot are usually
in the same 5-socket row.
For example, the 10 kΩ resistor on the lower-right side of Figure 3-14 has one of its
terminals connected to one of the P3 circuit’s pushbutton terminals and to one of its 220 Ω
resistor terminals. When one line crosses another, but there is no dot, it means the two
wires DO NOT electrically connect. The line that connects the P4 pushbutton to the 10 kΩ
resistor does not connect to the P3 pushbutton circuit because there is no dot at that
intersection.

Figure 3-14
Wiring Diagram for Two Pushbuttons
and LEDs

 Reopen the Button-ReadState project, and modify it so that it reads input(4)

instead of input(3), and use it to test your second pushbutton circuit.

Programming Pushbutton Control

In the previous activity, you experimented with making decisions using if...else...
and if… statements. There is also such a thing as an if...else if...else...
statement. The else if part allows you to add additional conditions to test for, if the first
if condition evaluates to false. It works great for deciding which LED to flash on and
off. The next example program shows how it works.

Digital Input – Pushbuttons · Page 83

Example Program: Button-ControlTwoLEDs

 Make a new project and name it Button-ControlTwoLEDs.
 Enter Button-ControlTwoLEDs into SimpleIDE.
 Click the Run with Terminal button.
 Verify that the P14 LED flashes while the P3 pushbutton is held down.
 Also verify that the P15 LED flashes while the P4 pushbutton is held down.

/* Button-ControlTwoLEDs.c */

#include "simpletools.h"

int main()
{
 int button, otherButton;

 while(1)
 {
 button = input(3);
 otherButton = input(4);

 print("%c button = %d, otherButton = %d \n", HOME, button, otherButton);

 if(button == 1)
 {
 high(14);
 pause(50);
 low(14);
 pause(50);
 }
 else if(otherButton == 1)
 {
 high(15);
 pause(50);
 low(15);
 pause(50);
 }
 else
 {
 pause(100);
 }
 }
}

Page 84 ⋅ What’s a Multicore Microcontroller

Figure 3-15
SimpleIDE Terminal output of
Button-ControlTwoLEDs

How Button-ControlTwoLEDs Works

The main function begins with declaring two int variables: button and otherbutton,
just above a while(1) loop. All the other instructions in the program are inside this
infinite loop.

 int button, otherButton;

 while(1)

Each time through the while loop, the two variables are assigned values from input
function calls that check P3 and P4.

button = input(3);
otherButton = input(4);

Next comes an expanded print statement, and it’s probably the trickiest line to
understand. Note that it has three formatting flags in it, denoted by the % sign. Each time
the print statement sees a % flag, it displays the next item in the value list that comes
after the string between the quotation marks. The first formatting flag is %c, which means
“display the character without any changes.” The first item in the value list is HOME. The
HOME constant from the simpletools library is a value that sends SimpleIDE Terminal’s
cursor to the top-left home position. This allows this one print statement in the
while(1) loop to keep reprinting in the same place each time through the loop, replacing
what was there before with the most up-to date values.

Digital Input – Pushbuttons · Page 85

print("%c button = %d, otherButton = %d \n", HOME, button, otherButton);

After that, the print statement displays the text “button = ”. Then, it sees another
formatting flag, %d, for displaying a decimal integer value. This is the second flag, so the
next thing print will display is the decimal integer form of the value stored in button.
Since we know button either stores 1 or 0, it’ll display either ‘1’ or ‘0’. Then, the
print statement displays, “otherButton = ”. Finally, the third formatting flag is another
%d, which prints the value of the otherButton variable in decimal integer form too.

After checking the copying the button states to variables and displaying them, the
program uses the current values of button and otherButton to decide what to do. The
first part is the same as the previous example program; it blinks the P14 light if the P3
pushbutton is pressed. But, if it’s not pressed, and if the P4 pushbutton is pressed, then
the otherButton == 1 condition will be true, and the P15 light blinks. If neither
condition is true, then the else condition just pauses for 100 ms (1/10 second) before
allowing the while loop to repeat.

if(button == 1)
{
 high(14);
 pause(50);
 low(14);
 pause(50);
}
else if(otherButton == 1)
{
 high(15);
 pause(50);
 low(15);

First, HOME
constant moves
cursor to top-left

Decimal value of
button variable
is printed here

Decimal value of
otherButton

variable is printed

String Value list

Page 86 ⋅ What’s a Multicore Microcontroller

 pause(50);
}
else
{
 pause(100);
}

Your Turn – What about Pressing Both Pushbuttons?

The example program has a flaw. Try pressing both pushbuttons at once, and you’ll see
the flaw. You would expect both LEDs to flash on and off, but they don’t because only
the first code block with a “true” condition in an if...else if...else... statement
gets executed before the code leaves the decision making process behind and skips to
whatever code follows.

What the program needs is an additional condition to test if both buttons are pressed at
the same time. Fortunately, it is fair game to have more than one else if condition at a
time. Let’s modify the current program so it has four conditions: if...else if ...
else if ...else.

 Use the Save Project As button, and rename the project Button-

ControlTwoLEDs-YourTurn1.
 Replace this if statement and code block:

 if(button == 1)
 {
 high(14);
 pause(50);
 low(14);
 pause(50);
 }

...with this if...else if... statement:

 if(button == 1 && otherButton == 1)
 {
 high(14);
 high(15);
 pause(50);
 low(14);
 low(15);
 pause(50);

Digital Input – Pushbuttons · Page 87

 }
 else if(button == 1)
 {
 high(14);
 pause(50);
 low(14);
 pause(50);
 }

 Run your modified program and see if it handles both pushbutton and LED
circuits as you would expect.

Logical AND && and Logical OR ||
The && operator can be used in conditional statements like if, else if, and while to
check if more than one condition is true. All conditions with && have to be true for the
conditional statement to be true. It is called the logical-AND operator.
The || operator can also be used in conditional statements, and at least one of the
conditions must be true for the conditional statement to evaluate as true. It is called the
logical-OR operator.

You can also modify the program so that the flashing LED stays on for different amounts
of time. For example, you can reduce the value passed to both pause function calls’ time
parameters to 25, increase the pause for the P14 LED to 100, and increase the pause for
the P15 LED to 200.

 Use the Save Project As button, and rename the project Button-

ControlTwoLEDs-YourTurn2.
 Modify the pause commands in the if and the two else if statements as

discussed.
 Run the modified program.
 Observe the difference in the behavior of each light.

A Simplified Approach

In case you’re wondering if the Your Turn approach from the previous activity will work
here, yes, it will. The code is nice and compact too.

 Use the Save Project As button and rename another copy of the project Button-

ControlTwoLEDs-YourTurn3, then try this in place of the if...else
if...else...statement and code blocks:

Page 88 ⋅ What’s a Multicore Microcontroller

 if(input(3) == 1)
 high(14);

 if(input(4) == 1)
 high(15);

 pause(50);
 low(14);
 low(15);
 pause(50);

 Run the modified code and verify that it works the same.

Why not just use this code and forget about the example in the main activity? Mainly
because you’ll encounter both when looking at published code solutions for various
projects you might work on. So, knowing the rules of how to work with and without
braces and using just if… or if...else if...else... will come in handy.

ACTIVITY #5: REACTION TIMER TEST
Imagine you’re an embedded systems engineer at a video game company. The marketing
department recommends that the next hand-held game controller should have a circuit
and firmware code to test the player’s reaction time. Your next task is to develop a proof
of concept for the reaction timer test.

The solution you will build and test in this activity is an example of how to solve this
problem, but it’s definitely not the only solution. Before continuing, take a moment to
think about how you would design this reaction timer.

The approach we are taking here is to turn on a bicolor LED, and time how long it takes
for the player to release a pushbutton in response to seeing the LED change color.

Reaction Timer Game Parts

(1) LED – bicolor
(2) Resistor – 220 Ω (red-red-brown)
(1) Pushbutton – normally open
(1) Resistor – 10 kΩ (brown-black-orange)
(2) Jumper wires

Digital Input – Pushbuttons · Page 89

Building the Reaction Timer Circuit

Figure 3-16 shows a schematic and wiring diagram for a circuit that can be used with the
Propeller to make a reaction timer game.

 Build the circuit shown in Figure 3-16 on page 89.
 Run LED-TestBicolor from Chapter 2, Activity #5 to test the bicolor LED circuit

and make sure your wiring is correct.
 If you just re-built the pushbutton circuit for this activity, run Button-ReadState

from Activity #2 in this chapter to make sure your pushbutton is working
properly.

 Fix any circuit-building errors your tests uncover before continuing.

Figure 3-16
Reaction Timer Game
Circuit

Programming the Reaction Timer

This next example program will leave the bicolor LED off until the game player presses
and holds the pushbutton to start the game. When the pushbutton is held down, the LED
will turn red for a short period of time. Then the LED will switch to green, and the
player has to let go of the pushbutton as fast as he or she can. The program then
measures time it takes the player to release the pushbutton in reaction to the light turning
green.

Page 90 ⋅ What’s a Multicore Microcontroller

The example program also demonstrates how polling and counting work. Polling is the
process of checking something over and over again very quickly to see if it has changed.
Counting is the process of adding a number to a variable each time something does (or
does not) happen.

In this program, polling is used twice. Initially, the Propeller polls the pushbutton to see
if it has been pressed yet, which starts the game. Then, from the time the bicolor LED
turns green the Propeller will start polling the pushbutton again every millisecond
(1/1000 of a second) to see if it has been released. Each time it polls and the pushbutton
is not yet released, it will add 1 to a counting variable named timeCounter. When it
senses that the pushbutton is released, the program stops polling and sends a message to
the SimpleIDE Terminal that displays the value of the timeCounter variable.

Example Program: Button-ReactionTimer

 Enter Button-ReactionTimer into SimpleIDE.
 Click the Run with Terminal button.
 Follow the prompts on the Debug Terminal (see Figure 3-17).

Figure 3-17
Reaction
Timer Game
Instructions in
the Debug
Terminal

/* Button-ReactionTimer.c */

#include "simpletools.h" // Include library

int main() // Main function
{

Digital Input – Pushbuttons · Page 91

 int timeCounter;

 print("Press and hold the pushbutton\n"); // Display instructions
 print("to make the light turn red \n\n");
 print("When the light turns green, let\n");
 print("go as fast as you can.\n\n");

 while(1) // Main loop
 {
 while(input(3) == 0); // Wait for press

 high(14); // Light red
 low(15);

 pause(1000); // Wait 1 second

 low(14); // Light green
 high(15);

 timeCounter = 0; // timeCounter var -> 0

 do // do
 {
 pause(1); // pause 1 second
 timeCounter++; // Add 1 to timeCounter
 }
 while(input(3) == 1); // ...while pressed

 low(15); // Turn light off

 print("Your time was %d ms. \n\n", // Display timecounter
 timeCounter);
 print("To try again, hold the\n"); // Repeat instructions
 print("button down again.\n\n");
 }
}

How Button-ReactionTimer Works

Inside main, the program declares the int timeCounter variable, then makes print
function calls that display instructions for the player.

 int timeCounter;

 print("Press and hold the pushbutton\n");
 print("to make the light turn red \n\n");
 print("When the light turns green, let\n");
 print("go as fast as you can.\n\n");

Page 92 ⋅ What’s a Multicore Microcontroller

Next comes nested while loops, one while loop is inside of the other. The outer
while(1) is followed immediately with while(input(3) == 0). Notice that this
inner, conditional loop actually has no code block below it. This translates to “while the
P3 pushbutton is not pressed, do nothing.” This coding technique of an empty,
conditional while loop is very handy when you want program execution to simply pause
for an unknown period of time, polling until some external input occurs.

 while(1)
 {
 while(input(3) == 0);

When the player presses and holds down the pushbutton to start the game,
while(input(3) == 0) finally evaluates to false, and code execution resumes to the
lines below.

Now that the player has pressed the button, the bicolor LED turns red with the now-
familiar high(14); low(15) function calls. A pause(1000) keeps the LED red for 1
second, and then low(14); high(15) reverses the current to turn the LED green.

 high(14); // Light red
 low(15);

 pause(1000); // Wait 1 second

 low(14); // Light green
 high(15);

As soon as the bicolor LED turns green, it’s time to start polling the pushbutton again,
and counting the milliseconds until the player releases it. The next line sets
timeCounter equal to 0.

 timeCounter = 0; // timeCounter var -> 0

Immediately after that, a do...while(condition) loop starts repeating itself. A
do...while(condition) loop is like a while loop, but the condition test comes after
the code block instead of before it to make sure the code inside the block gets executed at
least once. As long as while(input(3) == 1) evaluates as true, meaning the player is
still holding down the pushbutton, the loop will repeat and add 1 to the timeCounter

Digital Input – Pushbuttons · Page 93

variable with the ++ operator. The pause(1) makes the loop repeat about 1000 times per
second until the do...while loop evaluates as false when the pushbutton is released.

 do
 {
 pause(1);
 timeCounter++;
 }
 while(input(3) == 1);

When the player releases the pushbutton, the code exits the do...while loop and the
next line of code turns the bicolor LED off.

 low(15)

The game is now over, but the program is not. The next three lines are print statements
to display in the SimpleIDE Terminal. The first one displays the value of timeCounter,
so the player can see his or her reaction time in milliseconds. The next two print
statements invite the player to try again, and give instructions to press the button.

 print("Your time was %d ms. \n\n",
 timeCounter);
 print("To try again, hold the\n");
 print("button down again.\n\n");

After this, the code reaches the outer while(1) loop’s closing brace }. So, code
execution returns the first instruction inside the while(1) loop’s opening brace {. That
puts us back at while(input(3) == 1), polling the pushbutton to see if anyone has
pressed it to start a new game.

Your Turn

Imagine now that the marketing department gave your prototype to some game testers.
When the game testers were done, the marketing department came back to you with
details about two problems that have to be fixed before your prototype can be built into
the game controller. One can be fixed with code you already know. The other is trickier,
and we’ve introduced some new concepts to solve it.

Page 94 ⋅ What’s a Multicore Microcontroller

Problem 1: A player that lets go of the button before the light turns green gets an
unreasonably good score (1 ms, since the code in the do...while loop gets executed
at least once). Your microcontroller needs to figure out if a player is cheating.

This can be fixed with code that checks the value of timeCounter to decide whether to
display the result or tell the user to try again and wait for the light to change before letting
go of the button. Here’s an example of some pseudo-code that describes it.

• If the value of timeCounter is greater than 1 (timeCounter > 1)
o Display the value of timeCounter in ms (just like in Button-

ReactionTimer)
• Else, (if the value of timeCounter is 1 or less)

o Display a message telling the player he or she has to wait until after the
light turns green to let go of the button.

• Display a “To play again...” message. (Unchanged from what’s in Button-
ReactionTimer)

 Before continuing, stop and consider how you would write that code.
 Save a copy as Button-ReactionTimer-YourTurn1. Then try modifying the code,

following the pseudo-code, to fix Problem 1.

Here is an if…else… solution to the pseudo-code:

 if(timeCounter > 1) // <- add
 { // <- add
 print("Your time was %d ms. \n\n",
 timeCounter);
 } // <- add
 else // <- add
 { // <- add
 print("Wait for the light to change \n"); // <- add
 print("before letting go of the button. \n"); // <- add
 print("Try again. \n\n"); // <- add
 } // <- add
 print("To try again, hold the\n");
 print("button down again.\n\n");

 Try it!

Digital Input – Pushbuttons · Page 95

Optional Tricky Topic – Pseudo-random Number, Scale, and Offset

Problem 2: Players soon figure out that the delay from red to green is 1 second.
After playing it several times, they get better at predicting when to let go, and their
score no longer reflects their true reaction time.

One solution would be to make the LED stay red for a random number of milliseconds
between 500 and 1500 ms, instead of always pausing for 1 second. But how?
Fortunately, there is a function named rand() in the Standard C Library (called stdlib)
which is already included by the simpletools library.

The rand function returns a different pseudo-random number each time you call it. You
can use a couple of math tricks to scale down and offset the value returned by rand into
the desired range. Then, you can assign this scaled & offset value to a variable, let’s call
it randomVal, and then use pause(randomVal)in place of pause(1000) in the program.
This will cause the LED to stay red for a different length of time each game, within the
time range you desire. Let’s try it first, and then look closer at how it works:

 Save a new copy of Button-ReactionTimer as Button-ReactionTimer-

YourTurn2.
 Add a second int variable named randomVal.
 Then, replace pause(1000) with this:

randomVal = 500 + rand() % 1001;
print("randomVal = %d \n", randomVal);
pause(randomVal);

 Try the button game a few times, and notice that randomVal, indicating the red

LED time, changes for each game.

How it Works

The line randomVal = 500 + rand() % 1001 takes care of the hard part, which is
generating a value in the 500 to 1500 range using a trick with modulus operator % and the
addition operator +. There’s a lot going on in that one line of code, so let’s dissect it.

Page 96 ⋅ What’s a Multicore Microcontroller

(1) First, rand() gets a pseudo-random value, which will be in the range of 0 to
2,147,483,647. (We can’t use this value range with pause as-is; it could make
the LED red for more than 24 days!!)

(2) The operation % 1001 gives you the remainder of rand() ÷ 1001. This will
always be a number in the 0 to 1000 range, effectively scaling down the value
returned by rand.

(3) 500 + offsets the scaled value range from 0-1000 to 500-1000.
(4) = copies the scaled and offset result to the randomVal variable.

After that, print("randomVal = %d \n", randomVal) displays the value, and then
pause(randomVal) pauses for that random amount of time that’s somewhere in the 500
to 1500 ms range. It will be different each time.

What’s an algorithm? An algorithm is a sequence of mathematical operations.
What’s pseudo-random? Pseudo-random means that it seems random, but it isn’t really.
Each time you start the program over again, you will get the same sequence of values. An
algorithm is used to create the sequence.
What’s a seed? A seed is a value that is used to start the pseudo-random sequence. You
always get the same sequence of random numbers when using the same seed value. The
default seed value is 1. To change the seed value, to 23 for example, you would add
srand(23) before the while(1) loop starts.

SUMMARY
This chapter introduced a new electrical component and many new circuit-building
activities, programming concepts, and C language elements:

• Introduced the normally open pushbutton and its schematic symbol.
• What dots at line intersections mean in a circuit schematic.
• How to build and test active-high and active-low pushbutton circuits, using pull-

down and pull-up resistors.
• How to control an LED directly with a pushbutton.
• How to use a microcontroller I/O pin as an input to monitor the state of a

pushbutton circuit.
• How to use the input() function to monitor the state of an I/O pin.
• C operators And &&, OR ||, Modulus %, Assign-equals =, Compare-equals ==.
• Decision-making with if and if...else if...else conditional statements.

Digital Input – Pushbuttons · Page 97

• Polling with conditional while and do...while statements.
• What the %c and %d formatting flags do in a print statement.
• What the simpletools library’s HOME constant does in a print statement.
• Generating pseudo-random numbers with the rand() function, and scaling and

offsetting the return value to the desired range.
• Building a reaction-timer game.

Questions

1. What is the difference between sending and receiving high and low signals with
the Propeller?

2. What does “normally open” mean in regards to a pushbutton?
3. What happens between the terminals of a normally open pushbutton when you

press it?
4. What value does input(3) return when a pushbutton connects it to 3.3 V?

What value does input(3) return when a pushbutton connects it to GND?
5. What does int button = input(3); print("button = %d", button);

do?
6. What kind of statements will conditionally execute blocks of code based on

conditions?
7. What does the HOME control character do in the statement print("%c button =

%d", HOME, button)?

Exercises

1. Explain how to modify Button-ReadState on page 74 so that it reads the
pushbutton every second instead of every ¼ second.

2. Explain how to modify Button-ReadState so that it reads a normally open
pushbutton circuit with a pull-up resistor connected to I/O pin P6.

Project

1. Modify Button-ReactionTimer so that it is a two-player game. Add a second
button wired to P4 for the second player.

Solutions

Q1. Sending uses the Propeller I/O pin as an output, whereas receiving uses the I/O
pin as an input.

Page 98 ⋅ What’s a Multicore Microcontroller

Q2. Normally open means the pushbutton's normal state (not pressed) forms an open
circuit.

Q3. When pressed, the gap between the terminals is bridged by a conductive metal.
Current can then flow through the pushbutton.

Q4. input(3) == 1 when pushbutton connects it to 3.3 V; input(3) == 0 when
pushbutton connects it to GND.

Q5. int button = input(3) gets declares an int variable named button, and
then copies the 1/0 value input(3) returns to it. print("button = %d",
button); displays “button = ” followed by the characters that describe the
decimal integer value of button. If the button is pressed, it will display “button
= 1”. If the button is not pressed, it will display “button = 0”.

Q6. Conditional statements like if...., if...else..., if...else if...else...
, while, and do...while.

Q7. The HOME control character sends the cursor to the top left position in the
SimpleIDE Terminal.

E1. The while(1) loop in the program repeats every ¼ second because of the

pause(250) call. To repeat every second, change the pause(250) (250 ms =
0.25 s = ¼ s), to pause(1000) (1000 ms = 1 s).

 while(1)
 {
 button = input(3);
 print("button = %d\n", button);
 pause(1000); // <- Change this
 }

E2. Replace input(3) with input(6), to read I/O pin P6. The program only
displays the pushbutton state, and does not use the value to make decisions; it
does not matter whether the resistor is a pull-up or a pull-down. The print call
will display the button state either way.

 while(1)
 {
 button = input(6); // <- Change this
 print("button = %d\n", button);
 pause(1000);
 }

Digital Input – Pushbuttons · Page 99

P1. First, add a button for the second player, wired to Propeller I/O pin P4. The
schematic is based on Figure 3-16 on page 89.

Snippets from the solution program are included below, but keep in mind that
solutions may be coded a variety of different ways. However, most solutions
will include the following modifications:

Use two variables to keep track of two players’ times:

 int timeCounterA, timeCounterB;

Change instructions to reflect two pushbuttons:

 print("Press and hold the pushbuttons\n");
 print("to make the light turn red \n\n");

Wait for both buttons to be pressed before turning LED red, by using the OR
operator:

 while(input(3) == 0 || input(4) == 0);

Page 100 ⋅ What’s a Multicore Microcontroller

Make sure both players’ time counters are set to zero:

 timeCounterA = 0;
 timeCounterB = 0;

Add logic to decide which player’s time is incremented:

 pause(1);

 if(input(3) == 1)
 {
 timeCounterA++;
 }
 if(input(4) == 1)
 {
 timeCounterB++;
 }

Wait for both buttons to be released to end timing, again using the OR operator:

 while(input(3) == 1 || input(4) == 1); // ...while pressed

Change time display to show times of both players:

 print("Player A Time: %d \n",
 timeCounterA);
 print("Player B Time: %d \n",
 timeCounterB);

Add logic to show which player had the faster reaction time:

 if(timeCounterA < timeCounterB)
 {
 print("Player A is the winner!\n");
 }
 else if(timeCounterA > timeCounterB)
 {
 print("Player B is the winner!\n");
 }
 else
 {
 print("It's a tie!\n");
 }

Digital Input – Pushbuttons · Page 101

The complete solution is shown below.

/* Button-P1-Solution.c */

#include "simpletools.h" // Include library

int main() // Main function
{

 int timeCounterA, timeCounterB; // counter for each player

 print("Press and hold the pushbuttons\n"); // Display instructions
 print("to make the light turn red \n\n");
 print("When the light turns green, let\n");
 print("go as fast as you can.\n\n");

 while(1) // Main loop
 {
 while(input(3) == 0 || input(4) == 0); // Wait for both to press

 high(14); // Light red
 low(15);

 int delay = 500;
 delay += rand()%1500;
 pause(delay); // Wait 1 second
 // print("delay = %d\n", delay);

 low(14); // Light green
 high(15);

 timeCounterA = 0; // timeCounterA var -> 0
 timeCounterB = 0; // timeCounterB var -> 0

 do // do
 {
 pause(1); // pause 1 second

 if(input(3) == 1)
 {
 timeCounterA++; // Add 1 to timeCounter
 }
 if(input(4) == 1)
 {
 timeCounterB++; // Add 1 to timeCounter
 }
 }
 while(input(3) == 1 || input(4) == 1); // ...while either pressed

 low(15); // Turn light off

Page 102 ⋅ What’s a Multicore Microcontroller

 print("Player A Time: %d \n", // Display timecounterA
 timeCounterA);
 print("Player B Time: %d \n", // Display timecounterB
 timeCounterB);

 if(timeCounterA < timeCounterB) // Decide who wins
 { // ...and display
 print("Player A is the winner!\n");
 }
 else if(timeCounterA > timeCounterB)
 {
 print("Player B is the winner!\n");
 }
 else
 {
 print("It's a tie!\n");
 }

 print("To try again, hold the\n"); // Repeat instructions
 print("button down again.\n\n");
 }
}

Control Position and Motion · Page 103

Chapter 4: Control Position and Motion

MICROCONTROLLED MOTION
Microcontrollers move mechanical devices in objects you see every day. If you have an
inkjet printer, the print head is swept across the page by stepper motor controlled by a
microcontroller. The automatic doors at a store are controlled by microcontrollers, and
the auto-eject feature in your DVD player is also controlled by a microcontroller. Look
around you now — can you spot more examples?

Just about all microcontrolled motors receive sequences of high and low signals that
resemble the ones you’ve been sending to LEDs. The microcontroller has to send these
signals much faster, sometimes so fast that the human eye cannot detect the switching.

Some motors require lots of external circuitry in addition to a microcontroller. Others
require extra mechanical parts to fit into machinery. The hobby servo that you will
experiment with in this chapter is simplest, as it requires neither.

INTRODUCING THE SERVO
A standard hobby servo is a device that controls position. You can find them in just about
any radio controlled (RC) car, boat or plane. In RC cars, the servo holds the steering to
control turn radius. In an RC boat, it holds the rudder in position for turning in the water.
RC planes may have several servos to position the different wing and tail flaps that
control the plane’s trajectory. In RC vehicles with gas powered engines, a servo moves
the engine’s throttle lever to control how fast the engine runs.

An example of an RC airplane and its radio controller are shown in Figure 4-1. The
hobbyist “flies” the airplane by manipulating thumb joysticks on the radio controller,
which causes the servos on the plane to control the positions of the RC plane’s elevator
flaps and rudder.

Page 104 ⋅ What’s a Multicore Microcontroller

Figure 4-1
Model Airplane and
Radio Controller

So, how does this work? The radio controller converts the position of the joysticks into
pulses of radio activity. The time each pulse lasts indicates the position of one of the
joysticks. On the RC plane, a radio receiver converts these radio activity pulses to digital
pulses (high/low signals) and sends them to the plane’s servos. Each servo has circuitry
inside it that converts these digital pulses to a position that the servo maintains. The
amount of time each pulse lasts is what tells the servo what position to maintain. These
control pulses only last a few thousandths of a second, and repeat around 40 to 50 times
per second to make the servo maintain the position it holds. Between pulses, the servo
will hold its position against any outside force that tries to turn it.

Figure 4-2 shows a drawing of a Parallax Standard Servo. The plug (1) is used to connect
the servo to a power source (5 V and GND) and a signal source (a Propeller I/O pin).
The cable (2) has three wires, and it conducts 5 V, GND and the signal line (white) from
the plug into the servo. The horn (3) is the part of the servo that looks like a four-pointed
star. When the servo is running, the output shaft turns and holds the horn in different
positions. The Phillips screw (4) attaches the horn to the servo’s output shaft. The case
(5) contains the servo’s position-sensing and control circuits, a DC motor, and gears.
These parts work together to take high/low signals from the Propeller and translate them
into positions held by the servo horn.

Control Position and Motion · Page 105

Figure 4-2
The Parallax Standard Servo

(1) Plug
(2) Cable
(3) Screw attaching horn to
output shaft Horn
(4) Screw that attaches the horn
to the servo’s output shaft
(5) Case with mounting holes

To turn to and hold a specific position, the servo needs to receive a short high-signal
pulse. The duration of the high pulse, between 500–2300 µs determines which position
the output shaft will turn to. The high pulse must be repeated every 20 ms for the servo
to maintain the position against outside forces.

Figure 4-3: Parallax Standard Servo Control Signal

 High pulse duration

sets servo axle position
Pulse duration range:

~ 500–2300 µs

Low signal between pulses

What’s a µs? This is the standard abbreviation for a microsecond, which is a millionth of a
second. µ is the Greek symbol Mu (typically pronounced mew).

1

2

3

5

4

Page 106 ⋅ What’s a Multicore Microcontroller

ACTIVITY #1: SAFELY CONNECTING THE SERVO
Up to now, our Activity Board and breadboard circuits got all the power they needed
from the computer’s USB port. However, a servo may draw more power than a USB port
can provide, and the Activity Board will shut itself down to prevent that from happening.

In this activity, you will connect your Activity Board to an appropriate external power
supply, and then connect the servo to the board. You will still keep the USB connection
for programming and communication, though we won’t be writing programs to control
until the next activity.

STOP: Before starting these activities, get an approved power supply with a 2.1 mm,
center positive plug. It should either be a 4 or 5 AA cell supply or 6-9 regulated VDC, 800
mA (min) wall mount.
CAUTION!: If you get a wall mount supply (other than Parallax part #750-00009 shown
below), make sure to test the output with a voltmeter to verify that its actual output matches
its rated range. If its actual voltage is outside the 6-9 V range, don’t use it.

 Obtain one of the external power supply options shown below.
 Don’t plug it in yet!

Figure 4-4: Appropriate Power Supply Options
Use one of the power supplies shown below available from www.parallax.com, or an
equivalent.

4-cell pack (#700-00038)
plus four 1.5 V AA
batteries

5-cell pack (#753-00007) plus five 1.2
V rechargeable or 1.5 V AA batteries

7.5 V regulated, 1 A
wall-mount supply
with 2.1 mm center-
positive plug
(#750-00009)

Control Position and Motion · Page 107

Servo and LED Circuit Parts

(1) Parallax Standard Servo
(1) Resistor – 220 Ω (red-red-brown)
(1) LED – any color
(1) 2.1 mm, center positive plug supply option from Figure 4-4.
(1) Jumper wire (black)
#1 Phillips-tip screwdriver

The LED circuit is not required to help the servo operate. It is just there to help you
“see” the control signals.

Use only a Parallax Standard Servo for the activities in this text! Other servos may be
designed to different specifications that might not be compatible with these activities.

Building the Servo and LED Circuits

These instructions are for all Propeller Activity Board Revisions.

 Turn off the power as shown in Figure 4-5.

Figure 4-5
Disconnect Power

Set 3-position switch to 0

Figure 4-6 shows the servo header on the Propeller Activity Board. Each larger set of 3
pins is a servo port, with a Propeller I/O pin connection on top, a V+ connection in the
middle, and a GND connection at the bottom.

Figure 4-6
Servo Header Jumpers Set to 5V

Page 108 ⋅ What’s a Multicore Microcontroller

Each pair of servo ports has a smaller 3-pin power header to its left, along with a
removable plastic jumper. You can set the jumper to connect the middle pin to the VIN
pin on top, or the 5V pin on the bottom. Whichever one the jumper connects the middle
pin to, that will be the power supplied to the V+ pins for the two servo ports to its right.

Setting the jumper to 5V protects your Parallax Standard Servo. The Parallax Standard
Servo accepts 4–6 VDC. By setting the power supply to 5V, your servo is protected from
excess voltage, no matter which of the three power supply options you chose above.

 Verify that the jumper is set to 5V as shown in Figure 4-6. If it is instead set to

VIN, lift the rectangular jumper up off of the pins it is currently on, and then
press it on the two pins closest to the 5V label.

Figure 4-7 shows the schematic of the circuit you will build on your Activity Board.

 Build the circuit shown in Figure 4-7 and Figure 4-8.
 Make sure you did not plug the servo in upside-down. The white, red and black

wires should line up as shown in Figure 4-8, with the white wire near the top
edge of the board.

Figure 4-7
Servo and LED Indicator
Schematic for Propeller
Activity Board

Control Position and Motion · Page 109

Figure 4-8
Servo and LED Indicator
on Activity Board

You are connecting two devices to one Propeller I/O Pin!
Notice that there are sockets labeled P12–P15 along the left edge of the breadboard, and
there are also servo ports labeled P12–P15. A socket and port pin with the same number
are connected to the same Propeller I/O pin.
Here, we are taking advantage of that to “see” the high and low signals being sent to the
servo. But be careful! In the future, make sure that you connect only one device to an I/O
pin at a time unless you are absolutely sure they are fully compatible in your application
circuit and program.

 Connect your external supply to the Activity Board as shown in Figure 4-9.

Figure 4-9
Connect External Supply

When you set the PWR switch to 1 it powers the entire board except for the servo ports.
Setting it to 2 also supplies power to the servo headers.

Page 110 ⋅ What’s a Multicore Microcontroller

 Supply power to the board and servo header by setting the PWR switch to 2 as

shown in Figure 4-10. Your servo may move a bit when you connect the power.
If the board had a P14 blinking light program running from an earlier activity,
the servo may also twitch when the light turns on/off. If the servo "chatters",
immediately turn off the power switch.

Figure 4-10
Power Turned on to Activity Board
and Servo Header

Throughout the rest of the tutorial, if you see instructions that read “Connect power to
your board” move the PWR switch to position-2 if you are using the servo. Likewise, if
you see instructions in this chapter that read “Disconnect power from your board” move
the 3-position switch to position-0.

 Disconnect power from your board.

ACTIVITY #2: TEST AND ADJUST RANGE OF MOTION
A degree is an angle measurement denoted by the ° symbol. Examples are shown in
Figure 4-11 for 30°, 45°, 90°, 135°, and 180°. Each degree of angle measurement
represents 1/360th of a circle, so the 90° measurement is ¼ of a circle since 90 ÷ 360 = ¼.
Likewise, 180° is ½ of a circle since 180 ÷ 360 = ½, and you can calculate similar
fractions for the other degree measurements in the figure.

Figure 4-11
Examples of
Degree Angle
Measurements

Control Position and Motion · Page 111

The Parallax Standard Servo can make its horn hold positions anywhere within a 180°
range. Figure 4-12 shows examples of a servo with a loop of wire that has been threaded
through two of the holes in its horn and then twist-tied. The direction the twist tie points
indicates the angle of the servo’s horn, and the figure shows examples of 0°, 45°, 90°,
135°, and 180°.

Figure 4-12: Servo Horn Position Examples

Your servo horn’s range of motion and mechanical limits will probably be different from what’s
shown here. Instructions on how to adjust it to match this figure come after the first example
program.

In the factory, servo horn mounting can be somewhat random, so your servo horn
positions will probably be different from the ones in Figure 4-12. In fact, compared to
Figure 4-12, your servo’s horn could be mounted anywhere in a +/- 45° range. The servo
in Figure 4-13 shows an example of a servo whose horn was mounted 20° clockwise
from the one in Figure 4-12. After you find the center of the servo horn’s range of
motion, you can either use it as a 90° reference or mechanically adjust the servo’s horn so
that it matches Figure 4-12 by following instructions later in this activity.

Figure 4-13: Servo Horn Position Examples before Mechanical Adjustment

This is an example of a horn that’s mounted on the servo’s output shaft about 20°
counterclockwise of how it was set in Figure 4-12.

Page 112 ⋅ What’s a Multicore Microcontroller

In these next steps, twist the servo horn slowly and do not force it! The servo has
built-in mechanical limits to prevent the horn from rotating outside its 180° range of motion.
Twist the horn gently, and you’ll be able to feel the when it reaches one of its mechanical
limits. Don’t try to force it beyond those limits because it could strip the gears inside the
servo.

You can find the center of the servo’s range of motion by gently rotating the horn to find
its clockwise and counterclockwise mechanical limits. The half way position between
these two limits is the center or 90° position. The servo’s center position could fall
anywhere in the region shown in Figure 4-14.

The center of your servo horn’s range of motion should
fall somewhere in this region

Figure 4-14
Range of Possible
Center Positions

 Verify that the power to your board is still disconnected.
 Gently rotate the servo horn to find the servo’s clockwise and counterclockwise

mechanical limits. The servo’s horn will turn with very little twisting force until
you reach these limits. DO NOT TRY TO TWIST THE HORN PAST THESE
LIMITS; only twist it far enough to find them.

 Rotate the servo’s horn so that it is half way between the two limits. This is
approximately the servo’s “center” position.

Control Position and Motion · Page 113

 With the servo horn in its center position, thread a jumper wire through the horn
and twist tie it so that it points upward into the region shown in Figure 4-14.

Keep in mind the direction the twist tie is pointing in the figure is just an example; yours
might point anywhere in the region. Wherever it points when it’s in the center of its
range of motion should be pretty close to the servo’s 90° position. Again, this position
can vary from one servo to the next.

Test and Adjust the Servo’s 90° “Center” Position

The servo’s 90° position is called its center position because the 90° point is in the
“center” of the servo’s 180° range of motion. You can use a screwdriver to remove and
reposition the horn so that 90° makes the jumper wire twist tie point straight up —
Instructions for this are coming up in the Your Turn section. But first, let’s find what
your servo’s actual center position is:

 Gently turn the servo to its clockwise limit.
 Click SimpleIDE’s New Project button and name your project Servo-Center.
 Enter Servo-Center.c into SimpleIDE.
 Connect power (plug in external power and set PWR switch to 2).
 Click SimpleIDE’s Load EEPROM button.
 The P14 LED should glow dimly indicating that the Propeller is sending servo

control signals over its P14 I/O pin.
 The servo should automatically turn to its center position, and hold there

indefinitely. We can use this position to fine-tune the servo horn.

Example Program: Servo-Center
/* Servo-Center.c */

#include "simpletools.h" // Include simpletools header
#include "servo.h" // Include servo header

int main() // main function
{
 servo_angle(14, 900); // P14 servo to 90 degrees
}

As soon as the program loads, the P14 LED should glow dimly, indicating that the
Propeller is transmitting the servo signal to P14. The servo’s horn should rotate to its
center position and stay there. The servo “holds” this position, because standard servos

Page 114 ⋅ What’s a Multicore Microcontroller

are designed to resist external forces that push against it. That’s how the servo holds the
RC car steering, boat rudder, or airplane control flap in place.

 Make a note of your servo’s center position.
 Apply very gentle twisting pressure to the horn like you did while rotating the

servo to find its mechanical limits, just enough to feel its resistance to the force
you are applying.

If you disconnect power, you can rotate the servo away from its center position. When
you reconnect power, the program will restart, and servo will immediately move the horn
back to its center position and hold it there.

 Try it disconnected!

How it Works – Servo-Center.c

There’s a Simple Library named servo with functions for setting a servo’s position. For
access to its functions, just add #include "servo.h" to your program. It’s best to keep
all the #include statements together, so we added it right below #include
"simpletools.h".

#include "servo.h"

For a full list of servo functions: Check the Documentation servo Library.html page. It’s
in …Documents\SimpleIDE\Learn\Simple Libraries\Motor\Servo\.
You can also access it from SimpleIDE by clicking Help and selecting Simple Library
Reference. Then, find and click the servo.h link.

Since the program has #include "servo.h", it has access to all the servo library’s
functions. This program uses a function named servo_angle to set the servo to its
center 90-degree position. This function has two parameters, pin and degreeTenths. The
statement servo_angle(14, 900) makes the Propeller send signals for a servo
connected to P14 to hold the 90-degree position.

int main()
{
 servo_angle(14, 900);
}

Control Position and Motion · Page 115

The servo library automatically launches its servo control code into another Propeller
cog (processor) as soon as your code makes its first servo_angle call. The code
running in the other cog sends a constant stream of signals to the servo that make it hold its
position. That’s why the servo continues to hold its position after the main program ends.

Your Turn – Adjust Servo Horn to 90° Center

Next, adjust your servo’s horn so that it makes the jumper wire twist-tie point straight up
when Servo-Center.c is running, like it does in the right side of Figure 4-15. This
mechanical adjustment will simplify tracking the servo’s angles because each angle will
resemble the ones in Figure 4-12 on page 111.

You will need a #1 Phillips screwdriver for this adjustment.

Figure 4-15
Mechanical Servo
Centering

You can remove
and reposition the
servo horn on the
output shaft with a
small screwdriver.

 Disconnect power from your board.
 Remove the screw that attaches the servo’s horn to its output shaft, and then

gently pull the horn away from the case to free it. Your parts should resemble
the left side of Figure 4-15.

 Reconnect power to your board to run the Servo-Center.c program. The program
should make the servo hold its output shaft in the center position.

Output
shaft

Horn

Phillips
Screw

Page 116 ⋅ What’s a Multicore Microcontroller

 Slip the horn back onto the servo’s output shaft so that it makes the twist-tied
wire point straight up like it does on the right side of Figure 4-15.

Alignment Offset: It might not be possible to get it to line up perfectly because of the way
the horn fits onto the output shaft, but it should be close. You can then adjust the wire loop
to compensate for this small offset and make the twist tie point straight up.

 Disconnect power from your board.
 Gently re-tighten the Phillips screw. It only has to be firm, not tight. The ridges

of the servo shaft lock the rotation force. The screw only holds the horn down
onto those ridges. Over-tightening will strip the threads and leave the servo
useless.

 Reconnect power so that the program makes the servo hold its center position
again. The twist tie should now point straight up (or almost straight up)
indicating the 90° position.

ACTIVITY #3: PROGRAM TO HOLD POSITIONS
Animatronics uses electronics to animate props and special effects, and servos are a
common tool in this field. Figure 4-16 shows an example of a robotic hand animatronics
project, with servos controlling each finger. The program that controls the hand gestures
has to make the servos hold positions for certain amounts of time for each gesture. In the
previous activity, our programs made the servo hold certain positions indefinitely. This
activity introduces how to write code that makes the servo hold certain positions for
certain amounts of time.

Control Position and Motion · Page 117

Figure 4-16
Animatronic Hand

Five servos pull bicycle brake cables
threaded through the fingers and
thumb to make them flex.

This gives the microcontrollers
control over each finger.

Let’s try a program that sets the servos to the three different positions shown in Figure
4-17. The program will hold each position for 2.5 seconds. It may be difficult to see, but
make sure to check the P14 signal LED’s brightness with each position. It should be just
a little dimmer at 0 degrees, and slightly brighter the further counterclockwise it turns.

 Figure 4-17: Servo Test Positions

 Click SimpleIDE’s New Project button and name your project Servo-Positions.
 Enter Servo-Positions.c into SimpleIDE.
 Connect power (plug in external power and set PWR switch to 2).
 Click SimpleIDE’s Load EEPROM & Run button.
 Verify that the servo holds three positions that are about 90-degrees apart.

Page 118 ⋅ What’s a Multicore Microcontroller

 Verify that the P14 servo signal indicator LED is slightly brighter in the 180
degree position and slightly dimmer in the 0 degree position.

Example Program: Servo-Positions.c
/* Servo-Positions.c */

#include "simpletools.h" // Include simpletools header
#include "servo.h" // Include servo header

int main() // main function
{
 servo_angle(14, 0); // P14 servo to 0 degrees
 pause(2500); // ...for 2.5 seconds
 servo_angle(14, 900); // P14 servo to 90 degrees
 pause(2500); // ...for 2.5 seconds
 servo_angle(14, 1800); // P14 servo to 180 degrees
 pause(2500); // ...for 2.5 seconds
 servo_stop(); // Stop servo process
}

How it Works – Servo-Positions.c

As mentioned earlier, the program uses #include "servo.h" to access to all the servo
library’s functions. This program uses a function named servo_angle to set the various
servo positions. This function has two parameters: pin and degreeTenths.

The statement servo_angle(14, 0) sends signals that make the servo connected to P14
hold the 0-degree position. The pause(2500) statement makes the servo hold that
position for 2.5 seconds. Next, servo_angle(14, 900) makes the servo hold a new
position, 90-degrees. Another pause(2500) allows it to hold that position for another
2.5 seconds before servo_angle(14, 1800) makes the servo hold the 180-degree
position.

 servo_angle(14, 0);
 pause(2500);
 servo_angle(14, 900);
 pause(2500);
 servo_angle(14, 1800);
 pause(2500);

Last, but not least, the servo library’s servo_stop() function tells the servo to stop
holding any position by shutting down the processor that was running the code that sends
control signals to the servo.

Control Position and Motion · Page 119

 servo_stop();

The servo library can control up to 14 servos. If your project needs more than 14, you can
include the servoAux library, which can control an additional 14 servos.

Your Turn – Programs to Point the Servo in Different Directions

Figure 4-18 shows a few servo_angle statements that tell the servo to hold certain
major positions: 0°, 30, 45°, 90°, 135°, and 180°.

 Use SimpleIDE’s Save Project As button, and re-name the project Servo-

Positions-YourTurn.
 Modify the program so that it visits each of the positions shown in Figure 4-18.

Pick a different amount of time from 1 second to 3 seconds for each hold time.

Page 120 ⋅ What’s a Multicore Microcontroller

Figure 4-18: Servo Horn Positions
Note that each one uses a different argument for the servo_angle function’s degreeTenths
parameter

ACTIVITY #4: CONTROLLING POSITION WITH YOUR COMPUTER
Factory automation often involves microcontrollers communicating with larger
computers. The microcontrollers read sensors and transmit that data to the main
computer. The main computer interprets and analyzes the sensor data, and then sends
position information back to the microcontroller. The microcontroller might then update
a conveyer belt’s speed, or a sorter’s position, or some other mechanical, motor-
controlled task. The control system pattern is input, process, output.

Control Position and Motion · Page 121

In this activity, you will program the Propeller to interact through the SimpleIDE
terminal. The program will make the Propeller send messages to the SimpleIDE terminal
with instructions to enter servo positions and hold times. The Propeller program will also
read the values you type and control the servo accordingly.

Parts and Circuit

Same as Activity #2

Programming the Propeller to Receive Messages from SimpleIDE Terminal

You can use the SimpleIDE Terminal to send messages from your computer to the
Propeller as shown in Figure 4-19. The Propeller has to be programmed to listen for the
messages you send using the SimpleIDE Terminal, and it also has to store the data you
send in one or more variables.

Figure 4-19
Sending Messages
to the Propeller

Click to the right of
the prompt and type
your answer.

 Click SimpleIDE’s New Project button, and save as Servo-TerminalControl.
 Click Run with Terminal.
 Click to the right of the “Enter angle:” prompt and type a value in the 0–180

range, then press Enter. (Don’t enter a value larger than 180 here! We’ll get to
that later.)

 Repeat for hold time in seconds — use a small number because it’s the number
of seconds you’ll have to wait — then press Enter again.

 Verify that the servo holds the specified position for the amount of time before
prompting you for a new position and time.

Page 122 ⋅ What’s a Multicore Microcontroller

Example Program: Servo-TerminalControl
/* Servo-TerminalControl.c */

#include "simpletools.h" // Include simpletools
#include "servo.h"

int main() // Main function
{
 int angle, time; // Variables

 while(1) // Main loop
 {
 print("Enter angle: "); // Prompt for angle
 scan("%d", &angle); // Get angle

 print("Enter time: "); // Prompt for time
 scan("%d", &time); // Get time

 angle *= 10; // Degrees -> degree tenths
 time *= 1000; // Seconds -> milliseconds

 print("Holding...\n\n"); // Indicate holding

 servo_angle(14, angle); // Set servo to position
 pause(time); // For specified time
 }
}

How it Works - Servo-TerminalControl

Inside the main function, the first line declares a couple of int variables, angle and
time.

 int angle, time;

Inside the while(1) loop a print statement displays the message "Enter angle: ".

 print("Enter angle: ");

Next we have a new function, scan. It’s like print, but instead of sending info from
Propeller to terminal, it makes the Propeller receive information from the Terminal. Like
print, the %d formatting flag specifies a decimal integer value, but this time, it’s going to
get stored in the angle variable.

 scan("%d", &angle);

Control Position and Motion · Page 123

One key difference between print and scan is that you have to put the & sign in front of
the variable that gets the value with scan. When we printed a value with print("%d",
angle), we used the % symbol. That’s because the print function is designed to send
the value of the angle variable to SimpleIDE Terminal. In contrast, the scan function
needs to know the variable’s address in RAM, so scan("%d", &angle) passes the
address of the angle variable with the & operator. After it converts the characters you
type into a decimal integer value, it writes that value to the memory set aside for the
angle variable in the Propeller chip’s RAM.

What’s the difference between a variable’s value and its address?
Each variable stores a value at a certain location in the Propeller microcontroller’s RAM
(random access memory), which has 32,768 bytes. There’s the 0th byte, the 1st byte, 2nd
byte, and so on, up to the 32,767th byte. Each of these bytes can contain a value in the 0 to
255 range (unsigned char) or -128 to 127 (char). Four bytes together form an int variable,
which can contain a value in the -2,147,483,648 to 2,147,483,647 range.
Let’s say that the user types 135, causing scan to enter 135 in the angle variable and that
variable occupies the 32,752th through 32,755th bytes in Propeller RAM. Its address would
be 32,752. The variable’s value would be 135, but its address would be 32,752.

The program repeats the same two calls to prompt for a time, and then gets the time
value from SimpleIDE Terminal.

 print("Enter time: ");
 scan("%d", &time);

The servo_angle call needs a value that describes the angle in terms of tenths of a
degree. So angle *= 10, which is the C language shorthand version of angle = angle
* 10, changes the value angle stores from degrees to tenths of a degree. So, if you
typed in 135, the result would be 1350. The time *= 1000 statement performs a similar
operation on the time variable, converting the seconds value that was entered into
thousandths of a second since it’s going to be used in the pause function. If you entered
3 for time, time it’ll be converted to 3000.

 angle *= 10;
 time *= 1000;

The program is just about ready to put the servo in a new position for a new amount of
time. Just before that, this print statement displays the "Holding...\n\n" message.

 print("Holding...\n\n");

Page 124 ⋅ What’s a Multicore Microcontroller

Now that we have an angle in tenths of a degree and a time in milliseconds, we can use
those variables in servo_angle(14, angle) and pause(time). The values stored by
each variable get passed to the functions and they use those values to do their jobs,
making the servo connected to P14 hold the 1350 tenth of a degree position for 3000
milliseconds, for example.

 servo_angle(14, angle);
 pause(time);

Your Turn – Setting Limits in Software

Let’s imagine that this computer servo control system is one that has been developed for
remote-control. Perhaps a security guard will use this to open a shipping door monitored
from a control room. Maybe a college student will use it to control doors in a maze that
mice navigate in search of food. Maybe a researcher will use it to aim their high-
powered telescope at a certain constellation. If you are designing the product for
somebody else to use, the last thing you want is to give the user (security guard, college
student, researcher) the ability to enter the wrong number that could damage the
equipment or give unexpected—and possibly disastrous—results.

While running Servo-TerminalControl, it is possible to make a mistake while typing the
angle value into the SimpleIDE Terminal. Let’s say the user accidentally typed 220
instead of 20 for the angle, and pressed Enter. The value 220 would cause the servo to try
to turn to a 220-degree position, beyond its mechanical limits. Although it won’t
instantly break the servo, it’s certainly not good for the servo or its useful lifespan.

A couple of if… statements just before the servo_angle call can prevent this problem.

 Click SimpleIDE’s Save Project As button, and save as Servo-TerminalControl-

YourTurn.
 Add the lines with the // <- add comments to your code between the

print("Holding...\n\n") and servo_angle(14, angle) statements.
 Try entering a value that’s out of range (like 200 or -10), and verify that it makes

the correction before positioning the servo.

print("Holding...\n\n");

if(angle > 1800) angle = 1800; // <- add
if(angle < 0) angle = 0; // <- add

Control Position and Motion · Page 125

print("angle = %d degree tenths\n", // <- add
 angle); // <- add

servo_angle(14, angle);

ACTIVITY #5: CONVERTING POSITION TO MOTION
In this activity, you will program the servo to change position at different rates. By
changing position by a few degrees at a time instead of all at once, you can make it seem
that the servo horn is rotating more slowly. It’s actually advancing positions
incrementally, but the motor’s response takes the jitter out of those increment changes so
that the horn “turns” instead of taking tiny steps.

Programming a Rate of Change for Position

The servo library has to send the servo a signal that repeats itself 50 times per second to
make it hold any given position. That’s why the library uses another cog so that the exact
timing of the signals does not interrupt any other task the Propeller is performing. Use
your calculator to divide 50 into 1, and you’ll see that 1/50th of a second is 0.02 seconds.
That’s 20 thousandths of a second, or 20 ms, which is the manufacturer's requirement for
the Parallax Servo. So this next example program makes the servo turn from 0 to 180 in
steps of 6 every 20 ms. Then, it returns twice as fast, in steps of 12 every 20 ms.

Example Program: Servo-Velocities.c

 Click SimpleIDE’s New Project button, and save as Servo-Velocities.
 Enter Servo-Velocities.c into SimpleIDE.
 Click the Load EEPROM and Run button. Don't forget to set your power switch

to 2.
 Monitor the servo as it turns gradually from 0 to 180, then twice as quickly back

to zero.

/* Servo-Velocities.c */

#include "simpletools.h" // Header includes
#include "servo.h"

int main() // main function
{
 int angle; // Declare angle variable

 while(1) // Main loop

Page 126 ⋅ What’s a Multicore Microcontroller

 {
 for(angle = 0; angle <= 1800; angle += 6) // 0 to 180, steps of 6
 {
 servo_angle(14, angle);
 pause(20);
 }

 for(angle = 180; angle > 0; angle -= 12) // 180 to 0, steps of 3
 {
 servo_angle(14, angle);
 pause(20);
 }
 }
}

How Servo-Velocities.c Works

We only need one variable for this operation, an int variable named angle.

int angle;

A for… loop starts with angle = 0. Each time through the loop, angle advances by 6.
The servo_angle(14, angle) uses that angle value to position the servo, each time
increasing by 6 tenths of a degree, for 20 ms (1/50th of a second). This causes the servo
to turn from 0 to 180 gradually.

for(angle = 0; angle <= 1800; angle += 6)
{
 servo_angle(14, angle);
 pause(20);
}

The loop that turns the servo back from 180 to 0 subtracts 12 from angle each time
through. This makes it seem like it’s turning from 180 to 0 twice as fast.

for(angle = 180; angle > 0; angle -= 12)
{
 servo_angle(14, 0);
 pause(20);
}

Control Position and Motion · Page 127

Your Turn – Adjusting the Velocities

You can change the += 6 and -= 12 to different values to customize the speed of the
servo’s sweep and return. There’s a limit to how far the servo can turn in 1/50th of a
second, and you can test to find it.

 Use SimpleIDE’s Save Project As button, re-name the copy Servo-Velocities-

YourTurn.
 Try changing += 6 to += 3 and -= 12 to -=8. Observe the changes; do they

match what you expect?
 Try increasing the sweep step size a little bit at a time until you start to notice

that the servo doesn’t make it all the way to the end of its range of motion.
That’s the indicator that your program is asking the servo to turn faster than its
motor can keep up with.

ACTIVITY #6: PUSHBUTTON-CONTROLLED SERVO
In this chapter, you have written programs that make the servo go through a pre-recorded
set of motions, and you have also controlled the servo with the SimpleIDE Terminal.
Now, let’s program the Propeller to control the servo based on pushbutton inputs. In this
activity you will:

• Build a circuit for a pushbutton servo control.
• Program the Propeller to control the servo based on those pushbutton inputs.

When you are done, you will be able to press and hold one button to get the Propeller to
rotate the servo in one direction, and press and hold the other button to get the servo to
rotate in the other direction. When no buttons are pressed, the servo will hold whatever
position it moved to last.

Extra Parts for Pushbutton Servo Control

The same parts from the previous activities in this chapter are still used. In addition, you
will need to gather the following parts for the pushbutton circuits:

(2) Pushbuttons – normally open
(2) Resistors – 10 kΩ (brown-black-orange)
(2) Resistors – 220 Ω (red-red-brown)

Page 128 ⋅ What’s a Multicore Microcontroller

(2) Jumper wires (red)

Adding the Pushbutton Control Circuit

Figure 4-20 shows the pushbutton circuits that you will use to control the servo.

 Add this circuit to the servo+LED circuit that you have been using up to this

point. When you are done, your circuit should resemble Figure 4-21.

Figure 4-20
Pushbutton
Circuits for Servo
Control

Figure 4-21
Propeller Activity
Board Servo,
LED and
Pushbutton
Circuits

Control Position and Motion · Page 129

 First just test your pushbutton circuit independent of servo control. Test the
pushbutton connected to P3 using the original version of Button-ReadState.c.
The program and the instructions on how to use it begin on page 73.

 Modify the program so that it reads P4.
 Run the modified program to test the pushbutton connected to P4.

Programming Pushbutton Servo Control

if… statements inside a while loop can be used to increase or decrease the servo’s angle
while the button is pressed. In addition to checking if the button is pressed, the program
also needs if… statements to make sure they have not exceeded the servo’s range of
motion. The solution for this is recycled from Activity #4’s Your Turn section.

Example Program: Servo-ButtonControl.c

This example program makes the servo’s horn rotate counterclockwise when the P4
pushbutton is pressed. The servo’s horn will keep rotating so long as the P4 pushbutton
is held down and the value of angle is smaller than 1800. When the P3 pushbutton is
pressed, the servo horn rotates clockwise. The servo also is limited in its clockwise
motion because the angle variable is not allowed to go below 0. The SimpleIDE
Terminal displays the value of angle while the program is running.

 Click SimpleIDE’s New Project button, and save as Servo-ButtonControl.
 Enter Servo-ButtonControl.c into SimpleIDE.
 Click Run with Terminal.
 Verify that the servo turns counterclockwise (until 180-degrees) when you press

and hold the pushbutton connected to P4.
 Verify that the servo turns clockwise (down to 0-degrees) when you press and

hold the P3 pushbutton.

/* Servo-ButtonControl.c */

#include "simpletools.h" // Include simple tools
#include "servo.h"

int main() // Main function
{
 int angle = 900; // Servo angle variable

Page 130 ⋅ What’s a Multicore Microcontroller

 while(1) // Main loop
 {
 if(input(4) == 1) // P4 button pressed?
 angle += 18; // ...increase angle

 if(input(3) == 1) // P3 button pressed?
 angle -= 18; // ...decrease angle

 if(angle > 1800) angle = 1800; // Limit angle
 if(angle < 0) angle = 0;

 print("%c angle = %d %c", // Display angle
 HOME, angle, CLREOL);

 servo_angle(14, angle); // Set servo to position

 pause(20); // Wait 1/50th second
 }
}

How it Works – Servo-ButtonControl

At the start of the main function, an int variable named angle is declared and initialized
to 900. This should start the servo at 90 degrees.

int angle = 900;

In the while(1) loop, if the P4 pushbutton is pressed, the number 18 gets added to the
angle variable. If the P3 button is pressed, the number 18 gets subtracted from angle.

if(input(4) == 1)
 angle += 18;

if(input(3) == 1)
 angle -= 18;

This is the code from the Activity #4 Your Turn section that prevents the servo from
turning outside its mechanical limits by changing the angle variable’s value to 1800 if it
tries to exceed it, or to 0 if it tries to drop below it.

if(angle > 1800) angle = 1800;
if(angle < 0) angle = 0;

Control Position and Motion · Page 131

With only 1/50th of a second pause between updates, this program keeps the angle
variable information on a single line. Otherwise, it would scroll too fast and not be
readable.

print("%c angle = %d %c",
 HOME, angle, CLREOL);

At this point, the angle variable has been adjusted if one of the buttons is pressed and its
value limited to stay within the servo’s mechanical limits. So this statement sets the
servo connected to P14 to the position dictated by the angle variable’s value, which is
the position in 10ths of a degree from 0 to 1800.

servo_angle(14, angle);

The servo library only updates the servo position 50 times per second, so the program
should wait for 20 ms (1/50th of a second) before allowing the while loop to repeat.

pause(20);

Your Turn – Speed and Limit Adjustments

You can change the 18s in these statements to larger values to make the servo respond
more quickly, or smaller values to make the servo respond more slowly.

if(input(4) == 1)
 angle += 18;

if(input(3) == 1)
 angle -= 18;

You can also limit the servos’ range of motion by decreasing the 1800 values
(counterclockwise limit) and/or increasing the 0 values. Make sure to adjust both 1800s
and both 0s.

if(angle > 1800) angle = 1800;
if(angle < 0) angle = 0;

 Click SimpleIDE’s Save Project As button, and save as Servo-ButtonControl-
YourTurn.

 Try it!

Page 132 ⋅ What’s a Multicore Microcontroller

SUMMARY
This chapter introduced microcontrolled motion with the Parallax Standard Servo,
including the following:

• What a servo is, and the parts of a servo.
• What servos are used for in a variety of industries and devices.
• Servo control signals that are required to set and hold a servo’s position.
• How to safely supply power to a Parallax Standard Servo via a Propeller Activity

Board.
• How to use the functions in the servo.h library to control the servo’s position

with functions such as servo_angle and servo_stop.
• How to use the SimpleIDE terminal and the scan function to send values to a

program during run time.
• The difference between a variable’s value and a variable’s address.
• How to use if(condition…) statements to set limits in software, so the

program does not attempt to push the servo beyond its mechanical limits.
• How to build a circuit that uses the Propeller microcontroller to control a servo

with pushbuttons.

Questions

1. What are the five external parts on a servo? What are they used for?
2. Is an LED circuit required to make a servo work?
3. What command controls the angle the servo’s horn gets turned to? What are its

parameters?
4. What function can you use to control the amount of time that a servo holds a

particular position?
5. How do you use the SimpleIDE Terminal to send messages to the Propeller?

What function was used to make the Propeller receive messages from the
SimpleIDE Terminal?

Exercises

1. Write code that positions the servo at 60 degrees for 3 seconds, then at 120
degrees for 2 seconds.

2. Write a code block that sweeps the value of angle controlling a servo’s position
from 700, to 800, then back to 700, in increments of (a) 1, (b) 4.

Control Position and Motion · Page 133

Project

1. Modify ServoVelocities so that the P3 pushbutton functions as a “kill switch”,
causing the windshield wiper motion to cease. Hints: You can use code that
says if(condition) break; to a code block to “break out” of it before all the
loop’s repetitions are done. (1) Declare a variable named button before the
while loop starts and initialize it to zero. (2) Read the P3 button inside each
for… loop and save its state to a variable named button. Example: button =
input(3). (3) Add if(button == 1) break; to each for… loop. (4) Also
add if(button == 1) break; after each for… loop so that you can get out of
the while loop too. (5) If the code exits the while loop, it should execute a
servo_stop(); call before the main function runs out of commands and ends.
This will stop the cog running the servo control code and release control of the
servo so that you can manually turn it again.

Solutions

Q1. Plug – connects servo to power and signal sources; 2) Cable – conducts power
and signals from plug into the servo; 3) Horn – the moving part of the servo; 4)
Screw – attaches servo’s horn to the output shaft; 5) Case – contains DC motor,
gears, and control circuits.

Q2. No, the LED just helps us see what's going on with the control signals.
Q3. The function is servo_angle, and its parameters are pin (I/O pin number) and

degreeTenths (position).
Q4. The pause function.
Q5. Click the SimpleIDE Terminal and start typing. Use the scan(“%d”,

&variableName) to pass the address of the variable you want scan to fill with
the result you typed into the terminal.

E1. A couple if... statements did the job in this chapter. Example: if(angle >

1800) angle = 1800.

servo_angle(14, 600);
pause(3000);
servo_angle(14, 1200);
pause(2000);

E2. a) Increments of 1

for(angle = 700; angle <= 800; angle++)

Page 134 ⋅ What’s a Multicore Microcontroller

{
servo_angle(14, angle);
pause(20);
}
for(angle = 800; angle > 700; angle--)
{
servo_angle(14, angle);
pause(20);
}

b) Increments of 4

for(angle = 700; angle <= 800; angle += 4)
{
servo_angle(14, angle);
pause(20);
}
for(angle = 800; angle > 700; angle -= 4)
{
servo_angle(14, angle);
pause(20);
}

P1. There are many possible solutions, here is one.

/* Servo-P1-Solution.c */

#include "simpletools.h" // Header includes
#include "servo.h"

int main() // main function
{
 int angle; // Declare angle variable
 int button = 0; // <- Add

 while(1) // Main loop
 {
 for(angle = 0; angle <= 1800; angle += 6) // 0 to 180, steps of 6
 {
 servo_angle(14, angle);
 pause(20);
 button = input(3); // <- Add
 if(button == 1) break; // <- Add
 }
 if(button == 1) break; // <- Add

 for(angle = 180; angle > 0; angle -= 12) // 180 to 0, steps of 3

Control Position and Motion · Page 135

 {
 servo_angle(14, angle);
 pause(20);
 button = input(3); // <- Add
 if(button == 1) break; // <- Add
 }
 if(button == 1) break; // <- Add

 }

 servo_stop(); // <- Add

}

Page 136 ⋅ What’s a Multicore Microcontroller

Chapter 5: Write Multicore Code

Multicore isn’t just for code tucked away in libraries like servo.h. You can also use it in
your programs to make different processors (cogs) pay attention to different tasks at the
same time. With multiprocessing, your program do things like have one processor focus
on a repetitive task requiring high speed and precision, while another processor focuses
on a different task without interruption. That different task might be waiting for input
signals, repeat at a different rate, or whatever else is needed. The best part is that code
for each task can exchange information by simply updating and checking certain
variables.

Figure 5-1
Multiprocessing is like
teamwork

The previous chapter introduced you to multiprocessing with the terminal-controlled
servo position example. The servo needed to receive precisely timed signals every 20
milliseconds. A library took care of that in another cog. Meanwhile, the cog running the
main function could wait patiently for the next servo position to be typed in without
having to repeatedly take breaks every 20 ms to send the next servo control signal.

In this chapter, you will write a variety of multicore programs that make more than one
processor execute different parts of your program at the same time. The parts of your
program that processors will execute are called functions, which are some of the most
widely used C language building blocks. Functions tucked away in libraries that you
have been using already include high, low, pause, print, etc., but now you’ll write
your own. This chapter also introduces global variables (you’ve been using local
variables up until now), and explains the difference with a term called variable scope. It
also shows how to add global variables to your programs, and what you need to do so that
those variables can be accessed by functions running in different processors.

Write Multicore Code · Page 137

INTRODUCING THE FUNCTION
Up to now, the example programs have used functions that were already defined within
some library. All your code needed to do was #include the function’s library, such as
simpletools.h and servo.h, and then call the function with arguments to pass to its
parameters as needed.

Now, let’s see how to make custom functions right in your program. Figure 5-2 shows an
example of a function definition you can add to your program. This function contains
two print statements that send messages to the SimpleIDE Terminal — these will let
you know that code in the function is getting executed. The “curly” braces { } contain
the two statements that make up the function’s code block.

The first line is the function prototype, and it typically contains three elements in this
order: a return value, a function name, and a parameter list. This function’s name is
hello. In this case, hello does not send any information back when it is done
executing, so the term void is used instead of a return value. The hello function does
not need to receive any values (arguments) to do its job, so its parameter list is just
(void) inside parentheses.

Figure 5-2: Function Definition for Hello Function

Figure 5-3 shows a code example with two functions, named main and hello. Yes,
main is also a function, a special one since programs start executing with the first
statement in main. The hello function was added below the main function.

hello function

function
prototype

code block
contained by
curly braces

statement(s)

Page 138 ⋅ What’s a Multicore Microcontroller

Inside main, we have the hello()function call. It tells the program to go find the hello
function, execute all of its statements, and come back (return) when done. After the
function call is done, code execution resumes where it left off, at the statement that
comes right after the hello call in main.

The forward declaration is a “heads-up” statement for the C compiler that it might find a
call to a function named hello before it ever sees the function itself.

Figure 5-3: How to Call a Function in Your Code

ACTIVITY #1: TEST THE MULTI-HELLOFUNCTION
Judging from Figure 5-3, we should expect the program to print “In main”, then “In hello
function” followed by “Back in main.” In other words, the SimpleIDE Terminal output
should resemble Figure 5-4. Let’s check and see.

function call

return

Forward
declaration

Write Multicore Code · Page 139

Figure 5-4
SimpleIDE
Terminal Output
from the Figure
5-3 program.

Example Program: Multi-HelloFunction

 Click SimpleIDE’s New Project button, name the project Multi-HelloFunction,
and save it to My Projects.

 Enter the Multi-HelloFunction code into SimpleIDE.
 Click SimpleIDE’s Run with Terminal button.
 Verify that your output resembles Figure 5-4.

/* Multi-HelloFunction.c */

#include "simpletools.h" // Library include

void hello(void); // Forward declaration

int main() // Main function
{
 print("In main.\n\n"); // First message

 hello(); // Call hello (2 messages)

 print("Back in main.\n"); // Fourth message
}

void hello(void) // Function definition
{ // Opening code block brace
 print("In hello\n"); // Second message
 print("function.\n\n"); // Third message
} // Closing code block brace

Page 140 ⋅ What’s a Multicore Microcontroller

How it Works

After the #include for simpletools, and before the main function, we need a forward
declaration for the hello function: void hello(void);. It’s just like the first line in
the hello function definition, but it’s followed by a semicolon instead of the entire code
block. It lets the C compiler know there will be calls to this custom function coming up.

The void before hello means this function does not return a value. The (void)after
hello means this function does not require any parameters.

#include "simpletools.h"

void hello(void);

Inside the main function, we have a print statement that displays "In main.\n\n" in the
SimpleIDE Terminal. The second statement is a hello function call. This tells the
program, “Go find the function named hello, execute its code, and come back when
done.” After the hello function is done, the main function prints, "Back in main.\n"
before running out of code and ending the program.

int main()
{
 print("In main.\n\n");

 hello();

 print("Back in main.\n");
}

When the main function got to the hello function call, it skipped to the function
definition, executed the two statements in its code block, and then returned.

void hello(void)
{
 print("In hello\n");
 print("function.\n\n");
}

Write Multicore Code · Page 141

Forward Declarations – Get in the Habit
If you put all of your custom function definitions before the main function, forward
declarations are not necessary. However, many programmers find code easier to follow
when it begins with forward declarations before main, and function definitions after main.
You might forget to add a forward declaration and discover that your code still runs. Why?
The PropGCC compiler is “forgiving” — it can figure out what to do if a forward declaration is
missing from a single-core program*. But, forward declarations are absolutely required for
running our upcoming multi-core Propeller C programs, so it is best to get into the habit of
using them to keep your coding options open.
Compilers for other devices and other C-related programming languages might not be so
forgiving if you forget forward declarations, so again, best to get in the habit now.
*Forgetting a forward declaration does generate a compiler warning. To view all warnings,
see SimpleIDE Help.

Your Turn – Multiple Hello Calls

A key advantage to functions is that they allow you to create reusable blocks of code.
Here is an example that calls hello a second time.

 Save a copy as Multi-HelloFunction-YourTurn1, and update the main function

to match the example below. What do you think the code will do now?
 Click Run with Terminal. Were you right? If so, great! If not, look at the code

carefully and make sure you’re clear on what’s happening before moving on.

int main()
{
 print("In main.\n\n");

 hello();
 hello(); // <- add

 print("Back in main.\n");
}

 You can even do things like add a loop to your main function that calls hello

repeatedly. Save a new copy as Multi-HelloFunction-YourTurn2 and try
replacing the two hello calls with this loop:

for(int i = 0; i < 4; i++)
{
 hello();
}

Page 142 ⋅ What’s a Multicore Microcontroller

ACTIVITY #2: PARAMETERS AND RETURN VALUES
Take a look at Figure 5-5. Here, a function named add has different features that the
hello function above didn’t have. You probably guessed that add adds two numbers
together. But, how does it get those numbers? And what does it do with the answer?

In Figure 5-5, arrows show how two arguments from the add function call in main are
passed to the actual add function’s parameters: 2 is passed to a, and 3 is passed to b.
Inside add, the first statement declares an int variable named c, and assigns it the result
of a + b. Next is return c, which means that the function will send the value stored in
c (5 in this example) back to the call in main. That result gets stored in a value named
sum. After the add call, a print statement lets us see the value of the sum variable.

Figure 5-5
Function with Parameters
and Return Value

Parameter options: Parameters can receive both values and expressions as arguments.
For example, int x = 2, y = 3; int sum = add(x, y) is a valid function call too.
Return value tricks: In this example, the add function’s return value was stored in the sum
variable. Then, sum was used in the next instruction. However, you can place a function
call right inside the instruction or expression where you’d like the return value to be used.
For example, if(add(a, b) > 5)…, and for(int i = 0; i < add(2, 3),
i++)… all contain valid function calls.

Write Multicore Code · Page 143

Let’s make sure this program works as expected.

Example Program: Multi-TestFunction

 Create a New Project, name it Multi-TestFunction, and save it to My Projects.
 Enter the Multi-TestFunction.c code into SimpleIDE.
 Click SimpleIDE’s Run with Terminal button.
 Verify that the output of the unmodified code matches Figure 5-6.
 Try passing different integer values, and see if the results are correct each time.

/* Multi-TestFunction.c */

#include "simpletools.h"

int add(int a, int b);

int main()
{
 int sum = add(2, 3);

 print("sum = %d\n", sum);
}

int add(int a, int b)
{
 int c = a + b;
 return c;
}

Figure 5-6
SimpleIDE
Terminal Output
from the Add
Function.

How It Works

Unlike the simple hello function in the last example, the add function requires two
parameters and returns a value. In its function prototype, int to the left of add means it

Page 144 ⋅ What’s a Multicore Microcontroller

returns an int value when it’s done. The two-item parameter list to the right of add
means it needs to receive two integer values as arguments from each function call.

#include "simpletools.h"

int add(int a, int b);

The main function starts with the function call int sum = add(2, 3). The add(2, 3)
part of this statement sends the values 2 and 3 to the add function. Then, the add function
does the math and sends back the answer with return c. Back in the function call, the
int sum = part stores the answer in a variable named sum. Then, the main function
prints "sum = ", followed by the value of sum, and a newline character (just in case you
want to add a statement that prints something on the next line).

int main()
{
 int sum = add(2, 3);

 print("sum = %d\n", sum);
}

When the main function executes add(2, 3), it passes the value 2 to the add function’s
a parameter and 3 to its b parameter. Now the add function has two variables loaded
with values, so it is ready to execute int c = a + b for a result of 5. The return c
statement sends the value of 5 that c stores back to the function call in main.

int add(int a, int b)
{
 int c = a + b;
 return c;
}

Another way to think about a return value:
Before the call, we have:
int val = add(2, 3);

When add returns its value, it’s helpful to imagine that the function call becomes that return
value.
int val = 5;

Write Multicore Code · Page 145

Try This – One Program, More Functions

Let’s try putting a subtract function in a copy of Multi-TestFunction.c.

 Save a copy of the Multi-TestFunction as Multi-TestFunction-TryThis.
 Make a second function below the add function, named subtract, with two int

parameters a and b, and an int return value
 Make the subtract function’s operation int c = a – b, that returns c.

int subtract(int a, int b)
{
 int c = a - b;
 return c;
}

 Update the forward declarations to include a subtract function prototype.

int subtract(int a, int b);

 In main, add a function call to subtract that stores the return value in an int
variable named difference.

int difference = subtract(2, 3);

 Make another print statement to display difference.

print("val difference = %d\n", difference);

 Run the code and verify that it works as you expect. Debug, rinse, repeat!

Your Turn – A Function That Repeats

Do you remember the simple hello function from Activity #1? To make “Hello!” print
again, you had to call the hello function again. A for loop inside main is one way to
call a function repeatedly. Another way is to put the for loop inside the function itself,
and add a parameter to specify how many times the loop should repeat. Let’s try it.

 Save a copy of the Multi-TestFunction as Multi-TestFunction-YourTurn.
 Enter the Multi-TestFunction-YourTurn code into SimpleIDE.

Page 146 ⋅ What’s a Multicore Microcontroller

 Click SimpleIDE’s Run with Terminal button and verify that SimpleIDE
Terminal displays six “Hello!” messages.

/* Multi-TestFunction-YourTurn.c */

#include "simpletools.h"

void hellos(int reps);

int main()
{
 hellos(6);
}

void hellos(int reps)
{
 for(int i = 0; i < reps; i++)
 {
 print("Hello!\n");
 }
}

ACTIVITY #3: VARIABLE SCOPE
C language has a feature called variable scope that allows you to control what sections of
code can access a variable to check its value (read it) or modify it (write to it). Scope is
determined by where the variable is declared. There are two things to think about: code
blocks, and position within the block.

Up to now, all the example programs contained only local variables. A local variable can
only be used inside the code block where it was declared, by code that comes after the
declaration. Variables must be declared before they can be used, so they are often placed
right after the opening curly brace of a code block. The code block could be for the main
function, a custom function, or even for a conditional loop such as while(1).

A global variable can be used by any code within the application. Global variables must
be declared outside of any code block, including the main function. They are often
placed right after any #include statements.

In this activity, you will experiment with variables of different scope. Upcoming
activities will then use global variables to exchange information between functions
running in different Propeller cores at the same time.

Write Multicore Code · Page 147

Local Scope Examples

In previous chapters, program variables were declared right after the opening curly brace
of the main() function, above the rest of the code in main(). In those programs, the
variables could be used in any code that came after them inside of main(), including
inside other code blocks that were nested within main(). That’s a pretty broad scope,
though still local to main().

You may have noticed an exception, in for loops, like this one:

 for(int x = 1; x <= 10; x++)
 {
 print("x = %d\n", x);
 }

Here, an int variable x is declared right inside the for statement, and is then used again
inside the for code block. This x variable is local to this for loop; as if it only exists
while this instruction is being executed.

If you were to also declare another int x; elsewhere within main, the for loop itself
would not use that value for x. The x local to this for loop does not read nor modify any
variables with the same name that are declared outside of the loop.

It sounds confusing, but it’s easier to see with an example.

Example Program: Multi-LocalScope

 Click SimpleIDE’s New Project button. Name the project Multi-LocalScope,
and save it to My Projects.

 Enter the Multi-LocalScope.c code into SimpleIDE.
 Click SimpleIDE’s Run with Terminal button.
 Check your terminal output against Figure 5-7.

/* Multi-LocalScope.c */

#include "simpletools.h" // Include simple tools

int main() // Main function
{
 int x = 19; // x local to main

 print("x within main = %d\n", x); // print val of x local to main

Page 148 ⋅ What’s a Multicore Microcontroller

 pause(300); // pause for serial terminal

 for(int x = 1; x <= 3; x++) // x local to for loop
 {
 print("x within for loop = %d\n", x); // print val of x local to for
 pause(300); // pause for serial terminal
 }

 print("x within main = %d!\n", x); // print val of x local to main

}

Figure 5-7
SimpleIDE
Terminal Output
for Local
Variables

How it Works

The variable declaration int x = 19; is right at the top of the main function’s code
block. So, it is local to the main function, and can be used anywhere within it. Next, a
print statement displays the value of x in the SimpleIDE Terminal.

int main()
{
 int x = 19;

 print("x within main = %d\n", x);
 pause(300);

After a short pause, a for loop declares a new variable named x right inside its
statement. Since this x was declared right here, it is local to the for loop. Each time
through the loop, the value of this x is printed to the SimpleIDE terminal and
incremented by 1.

 for(int x = 1; x <= 3; x++)
 {
 print("x within for loop = %d\n", x);
 pause(300);
 }

Write Multicore Code · Page 149

When the for loop is finished, the next line of code re-prints the value of the original x
that was declared in main. This x is still equal to 19, since the for loop declared and used
its own local variable x, ignoring the other. The x declared in main is unaffected by the
for loop.

 print("x within main = %d!\n", x);

}

Try This – Just One X

What do you think would happen if the for loop did not declare a new int x variable in
its statement so that it was local to just itself? By deleting a single term in the program,
you can find out.

 Save a copy of the program as Multi-LocalScope-TryThis.
 Delete just the int in for(int x = 1; x <= 3; x++)
 Run the modified program. Its SimpleIDE terminal output should look like

Figure 5-8.

Now, you can see that because the for loop is no longer declaring its own int x, it is re-
using the original x declared in main. The for statement does reset x to 1, and the loop
increments it three times. So, when x is printed for the last time from the main function,
its value is now 4.

Figure 5-8
SimpleIDE
Terminal Output
for Local
Variables

These last two examples proved that, technically, a variable name can be re-used in a
program as long as each instance has a different scope. However, these examples also
made it clear that it can be very confusing to read and edit code where the same name is

Page 150 ⋅ What’s a Multicore Microcontroller

re-used for different local variables, and very easy to make a mistake that can lead to
unexpected outcomes.

Many programmers prefer to give each variable in an application a unique name,
regardless of its scope, to make code more readable. Still, it is quite common to re-use i
(short for index) as a local variable in for loops.

Global Scope Examples

If you declare a variable outside of any functions, such as where the #include
statements are, it will be global in scope. When a variable is global, all functions in the
application can check its value and modify it.

Example Program: Multi-LocalVsGlobal

This next program underscores the difference between local and global variables by
performing operations on variables with differing levels of scope in two different
functions. All the functions are still running in the same cog.

Figure 5-9
Local vs. Global
Output

 Click SimpleIDE’s New Project button. Name the project Multi-LocalVsGlobal,

and save it to My Projects.
 Enter the Multi-LocalVsGlobal.c code into SimpleIDE.
 Click SimpleIDE’s Run with Terminal button.
 Check your terminal output against Figure 5-9.

Write Multicore Code · Page 151

/* Multi-LocalVsGlobal.c */

#include "simpletools.h" // Library include

void myFunction(); // Forward declaration

int globalVar; // Global variable declaration

int main() // Main function
{
 globalVar = 10; // Set global
 int localVar = 3; // Declare & set local to main

 print("In main.\n"); // Display where we are
 print("globalVar = %d, localVar = %d\n\n", // Display variable values
 globalVar, localVar);

 myFunction(); // Call myFunction

 print("Back in main.\n"); // Display where we are again
 print("globalVar = %d, localVar = %d\n\n", // Display values yet again
 globalVar, localVar);
}

void myFunction() // Function, arbitrarily named
{
 globalVar = 20; // Modify global variable
 int localVar = 6; // Declare & set new localVar
 print("In myFunction.\n"); // Display where we are
 print("globalVar = %d, localVar = %d\n\n", // Display variable values again
 globalVar, localVar);
}

How it Works

Right after including simpletools and the myFunction forward declaration, we have
int globalVar. Since this declaration is outside of any function, it is global.

#include "simpletools.h"

void myFunction();

int globalVar;

The main function starts by setting globalVar to 10. Then, it declares and sets
localVar to 3. Since localVar is declared inside a function, the main function in this
case, code inside main can check and modify its value, but code in other functions

Page 152 ⋅ What’s a Multicore Microcontroller

cannot. Next, two print statements display the “In Main…” message and the values of
both variables.

int main()
{
 globalVar = 10;
 int localVar = 3;

 print("In main.\n");
 print("globalVar = %d, localVar = %d\n\n",
 globalVar, localVar);

The next thing that happens in main is the myFunction() call, so let’s look at that code.

 myFunction();

In myFunction, globalVar gets set to 20. A second local variable named localVar is
declared—and so is only visible to this function—and set to 6. Two print statements
prove that the myFunction code is getting executed by displaying the updated value of
globalVar along with the value of this second localVar. Then, the function runs out of
code and returns.

void myFunction()
{
 globalVar = 20;
 int localVar = 6;
 print("In myFunction.\n");
 print("globalVar = %d, localVar = %d\n\n",
 globalVar, localVar);
}

Back in main the values get printed again. This time, globalVar is 20 because it’s a
global variable that myFunction changed from 10 to 20. However, localVar is back to
3. That’s because this localVar is part of the main function. The other instance of
localVar in myFunction was set to 6, but it didn’t change this instance because it was
local to myFunction, not main.

 print("Back in main.\n");
 print("globalVar = %d, localVar = %d\n\n",
 globalVar, localVar);

Write Multicore Code · Page 153

Your Turn – Add a Global Variable and Operation

Global variables can interact with local variables. Let’s add a second global variable to
the project, and use it to store the value of globalVar * localVar inside myFunction.

 Use SimpleIDE’s Save Project As button, rename the project to Multi-

LocalVsGlobal-YourTurn, and Save to the My Projects folder.
 Add a second global variable to the project, named globalxLocal.
 Inside myFunction, just above the print statements, add a statement that

multiplies globalVar and localVar, and stores the result in globalxLocal.
 Expand the second print statement to display the value of globalxLocal.
 Click SimpleIDE’s Run with Terminal button and verify the result;

globalxLocal should equal 120.

ACTIVITY #4: RUN FUNCTIONS IN OTHER PROCESSORS (COGS)
The Propeller chip has eight processors, called cogs or sometimes cores. Each cog has its
own number, 0 through 7. When a program starts, the main function automatically runs
in cog 0, leaving seven other cogs available to run other functions in your program. In
this activity, you will experiment with a program that uses another cog to run a function
that blinks an LED. You will also expand the program to make a second cog blink a
second LED at a different rate. The main function in cog 0 will also be put to work, so
that three different processes are running simultaneously.

Figure 5-10 shows how two functions in the simpletools library, cog_run and cog_end,
can be used to start a function in another cog, and stop it again. The first one uses
cog_run to start the blink function in the next available cog. The second statement
pauses for 3 seconds. While cog 0 is busy executing the pause function, cog 1 starts
running the blink function, switching P26 on/off repeatedly. The third statement in the
main function shuts down the cog running the blink function to make the LED stop
blinking.

Page 154 ⋅ What’s a Multicore Microcontroller

Figure 5-10: Function Example

Note that the cog_run function has two parameters:

1. The name of the function that will run in the new cog. (This gives the cog_run
function the address in program memory where the named function resides.)

2. A number of int variables to set aside for the new cog to perform its
computations

In Figure 5-10, the blink inside cog = cog_run(blink, 128) provides the blink
function’s address. Then, 128 is the number of int variables to set aside for the cog’s
computations. This block of memory cog_run creates is called stack space.

cog 0

cog 1

Write Multicore Code · Page 155

The cog_run function returns the memory address for where it set aside the stack space
and recorded the ID number of the cog it launched. The example program set up a global
pointer variable especially for storing this memory addresses with int *cog. The * in
front of the variable name tells the C compiler that that variable “points to” an address in
memory (instead of just storing a value).

The cog = part of cog = cog_run(blink, 128) copies the memory address cog_run
returns to the cog pointer variable. At the end of the main function, cog_end(cog) takes
the memory address stored by that cog pointer variable and uses it to stop the cog. This
also frees the 128 int stack space for other uses.

*cog is a global variable.
In this case, the main function used cog_run to run the blink function in another cog and
cog_end to end it. Since int *cog is a global declaration, any function could use
cog_end(cog) to end the blink function.

Test Cog-Launching Code

Let’s try the program from Figure 5-10.

Example Program: Multi-CogRun

 Click SimpleIDE’s New Project button. Set the File name to Multi-CogRun and
Save.

 Enter the Multi-CogRun.c code into SimpleIDE.
 Click SimpleIDE’s Load RAM & Run button.
 Verify that the P26 LED blinks for 3 seconds, and then stops.

/* Multi-CogRun.c */

#include "simpletools.h" // Library include

void blink(); // Forward declaration

int *cog; // Pointer for cog data

int main() // Main function
{
 cog = cog_run(blink, 128); // Run blink in other cog
 pause(3000); // ...for 3 seconds
 cog_end(cog); // then stop the cog
}

Page 156 ⋅ What’s a Multicore Microcontroller

void blink() // Blink function for other cog
{
 while(1) // Endless loop for other cog
 {
 high(26); // P26 LED on
 pause(100); // ...for 0.1 seconds
 low(26); // P26 LED off
 pause(100); // ...for 0.1 seconds
 }
}

How it Works

In addition to now-familiar functions like high, low, and pause, simpletools library also
has cog_run for starting functions in other cogs and cog_end for stopping them.

#include "simpletools.h"

A forward declaration for the blink function is necessary, since blink is defined below
the main function. This way the compiler knows to expect it before it sees the first
reference to it in the code.

void blink();

Next, int *cog declares an int pointer variable named cog. Unlike regular int
variables, int pointer variables store memory addresses instead of values. In this case,
the cog pointer variable will store a memory address that gets returned from the cog_run
function call. The cog_end function will use the address stored in cog to stop that cog.

int *cog;

Inside the main function, cog = cog_run(blink, 128) is what makes the blink
function run in the next available cog. The first argument cog_run needs is the function’s
name without any parentheses next to it; this actually provides the starting memory
address of the blink function. The second argument cog_run needs is a number of int
variables to set aside as stack space for the new cog to use; here, 128 int sized pieces of
memory are allocated. This is a recommended number for prototyping that you will see
in many of this book’s example programs.

int main()
{

Write Multicore Code · Page 157

 cog = cog_run(blink, 128);
 pause(3000);
 cog_end(cog);
}

Now, the cog = part of cog = cog_run(blink, 128) is put to use. The cog_run
function call returns the starting address of a memory block that holds the ID number of
the cog that was launched as well as the stack space. This address gets stored in the cog
pointer variable. So now the blink function is running in a new cog, while the first cog is
executing a 3 second delay from pause(3000). After that, the cog_end(cog) function
call uses the address stored in cog to shut down the cog running the blink function.

Functions launched by cog_run have three requirements: an empty parameter list, void
return type, and infinite loop structure. The infinite loop prevents it from running out of
code and shutting itself down without releasing its stack space for re-use. That’s a job for
cog_end.

void blink()
{
 while(1)
 {
 high(26);
 pause(100);
 low(26);
 pause(100);
 }
}

Recap and More Details for cog_run and cog_end

cog_run - For launching another processor (cog) and running a function that has a void
return type and an empty parameter list. If the function does not self-terminate with a
cog_end, the statements in its code block must be inside an infinite loop.

int *cogPointer;
...
cogPointer = cog_run(functionName, stackSize);

cogPointer is an optional pointer variable for storing the address where the cog’s number
and stack space are set aside. A program can use it to stop the cog and recover stack
space later with cog_end. Note: If all the cogs are already in use, cog_run will return -1.

Page 158 ⋅ What’s a Multicore Microcontroller

functionName is the name of the function that gets run in another cog. The function’s
name without parentheses returns the function’s address in memory, which is what
cog_run needs to make another cog start executing the function’s code.

stackSize is the number of int variables to set aside for the function’s local variables and
function calls. Use 128 for prototyping. It’s probably more than needed, but stack that is
too small can cause program bugs.

In general, the number of int variables needed for stackSize increases by 1 for each
local variable declared in functionName, 2 for each call to other functions, and 1 for
each function parameter and return value. When you have finished expanding and
refining a function running in another cog, try the program Cog Stack Usage Test.side
from …Learn\Examples\Multicore. After adding test code that exercises all of the
features of the function(s) running in the other cog, this program can tell you how much
stack space is actually used so you can reduce the size if desired.

cog_end – Uses cogPointer as a process identifier to stop a cog that was started by
cog_run. This frees the cog and the stack space for other uses.

cog_end(cogPointer);

Other functions for starting and stopping cogs
The propeller.h library has additional functions for advanced ways to start and stop
processes that run in other cogs. Libraries will often use these other functions to support
assembly code and higher-speed code execution. Advanced tutorials that demonstrate the
use of some of these functions are available on learn.parallax.com.

Try This – Add Another Function and Run it in Another Cog

Let’s expand the example program so that it blinks the P27 LED at a different rate, using
another cog. The process is fairly simple: just add a second function and pass it to
cog_run. Your code will also need a second forward declaration for that function and a
second cog pointer variable for shutting the cog back down.

 Save a copy as Multi-CogRun-TryThis in your My Projects folder.
 Add a second forward declaration for a blink2 function, and declare a second

pointer variable named cog2.

Write Multicore Code · Page 159

void blink();
void blink2(); //<-add

int *cog;
int *cog2; //<-add

 Inside the main function, add a second cog_run function call start blink2, and a
second cog_end function call to stop it.

int main()
{
 cog = cog_run(blink, 128);
 cog2 = cog_run(blink2, 128); //<-add
 pause(3000);
 cog_end(cog);
 cog_end(cog2); //<-add

 Add the blink2 function definition at the end of the program.

void blink2() //<-add from here...
{
 while(1)
 {
 high(27);
 pause(223);
 low(27);
 pause(223);
 }
} //...to here

 Click SimpleIDE’s Load EEPROM & Run button and verify that the P26 and
P27 LEDs blink at different rates for 3 seconds.

Your Turn – Keep the First Cog Busy

The main function executed by cog 0 doesn’t really need to sit around and do nothing
while the other cogs are blinking LEDs. The pause call was just for the sake of example,
so let’s at least make it count while the other cogs blink lights.

 Use SimpleIDE’s Save Project As button, and name it Multi-CogRun-YourTurn.

Replace the pause(3000) statement with the code below.

Page 160 ⋅ What’s a Multicore Microcontroller

 Click SimpleIDE’s Run with Terminal button and verify that both lights blink at
different rates while the main function displays a 3-second up-count in the
SimpleIDE Terminal.

 // pause(3000); // <- remove
 for(int i = 0; i < 12; i++) // <- add
 { // <- add
 print("i = %d\n", i); // <- add
 pause(250); // <- add
 } // <- add

Now you have a glimpse of the power of the Propeller multiprocessing. With it, your
programs can do many time-sensitive tasks at once, without conflict. Instead of just
blinking LEDs, these cogs could be driving a servo, or playing audio files. The Propeller
microcontroller’s multicore architecture simplifies or solves many problems common to
single-core microcontrollers. Next, we’ll make the cores work together.

ACTIVITY #5 SHARING GLOBAL VARIABLES BETWEEN COGS
Picture a robot with two servo-driven arms, each controlled by its own cog, and a sensor
to find the distance to an object. All three cogs might need to communicate with each
other in order to determine the servo position needed for each arm to reach the object.

The previous activity didn’t provide a way for one cog to influence or exchange
information with another cog once it is running. For that, we use global variables, which
were introduced in Activity #3. This activity shows how to use global variables
exchange information between functions running in different cogs.

Global Variables Shared by Cogs Need to be Volatile

A global variable for cogs to share must be preceded with the keyword volatile to
prevent code optimization.

volatile int globalVar;

The compiler can optimize code by removing unnecessary parts to make it execute faster
and/or take less memory. For example, if the compiler sees a function that uses a
variable but does not change it, it might remove code that re-check the variable's value
before printing it.

Write Multicore Code · Page 161

In our multicore system, what the compiler might not see yet is that another function
running in another cog could change that variable’s value. The volatile modifier
marks a variable as "subject to change" so the compiler won't try to optimize any code
that uses it.

Example Program: Multi-InfoExchange

This next program declares a global volatile int variable named t (an abbreviation for
time) that will allow the main function to control the blink function’s LED on/off rate.
The main function sets the value of t, which the blink function uses to set its pause
times between high/low statements.

 Click SimpleIDE’s New Project button. Name the project Multi-InfoExchange,

and save to My Projects.
 Enter the Multi-InfoExchange.c code into SimpleIDE.
 Click SimpleIDE’s Load RAM & Run button.
 Verify that the LED blinks at one rate for 2 seconds, and then at twice that rate

for another two seconds, and then stops.

/* Multi-InfoExchange.c */

#include "simpletools.h" // Library include

void blink(); // Forward declaration

int *cog; // Pointer for cog data
volatile int t; // Declare t for both cogs

int main() // Main function
{
 t = 100; // Set value of t to 100
 cog = cog_run(blink, 128); // Run blink in other cog
 pause(2000); // Let run for 2 s
 t = 50; // Update value of t
 pause(2000); // New rate for 2 s
 cog_end(cog); // Stop the cog
}

void blink() // Function for other cog
{
 while(1) // Endless loop
 {
 high(26); // LED on
 pause(t); // ...for t ms

Page 162 ⋅ What’s a Multicore Microcontroller

 low(26); // LED off
 pause(t); // ...for t ms
 }
}

How it Works

This program starts with declarations that are by now familiar: including the simpletools
library, a forward declaration for the blink function, and a pointer variable declaration
that cog_run and cog_end will use.

#include "simpletools.h"

void blink();

int *cog;

The t variable is also declared globally (outside any functions) so that one function can
change its value, and a different function will be affected by that change. This global
variable has to be volatile because different cogs are executing different functions that
use it. Again, the volatile modifier prevents the C compiler from making
optimizations that could cause one function running in one cog to miss a change to t
made by another function running in another cog.

volatile int t;

The main function starts by setting the value of t to 100, and then runs the blink
function in another cog. The blink function uses t as an argument in its pause calls, so
the light will stay on/off for 100 ms initially. Meanwhile, the main function in cog 0
executes pause(2000). After the 2-second delay, cog 0 changes t to 50. Since t is
global, it’s the same t value that the blink function uses in cog 1. So, this cuts the
blink function’s pause times in half, doubling the LED’s on/off rate. Back in main, after
another pause(2000), the main function stops that cog 1with cog_end(cog) so the
light stops blinking.

int main()
{
 t = 100;
 int *cog = cog_run(blink, 128);
 pause(2000);
 t = 50;

Write Multicore Code · Page 163

 pause(2000);
 cog_end(cog);
}

When the main function runs out of commands, cog 0 also shuts down. With no cogs
running, the Propeller enters a low power consumption mode and waits to be restarted. The
Propeller can be restarted by loading a program, pressing/releasing the RST button, or
turning the power off and back on.

This blink function uses the global, volatile variable t as the argument in its pause
function calls. This allows functions running in other cogs to control the pause times,
and therefore the LED blink rate, by changing the value of t.

void blink()
{
 while(1)
 {
 high(26);
 pause(t);
 low(26);
 pause(t);
 }
}

Try This – Make One Function Monitor Another’s Activity

We just used a volatile global variable to let a function in one cog control the behavior of
a different function in a different cog. Global volatile variables can also be used to let
one function monitor another function running in a different cog.

In this example, you’ll add a global variable named reps and make the blink function
add 1 to it with each while loop repetition. Then, main can check the and display the
value of reps to find out how many times the light has blinked, even though a different
cog running a different function is modifying it, as shown in Figure 5-11.

Page 164 ⋅ What’s a Multicore Microcontroller

Figure 5-11
SimpleIDE
Terminal Output
Multi-
InfoExchange-
TryThis.

 Save As a copy of the project and name it Multi-InfoExchange-TryThis.
 Add a second volatile global variable named reps.

volatile int reps = 0; // <-add

 Add two print statements to display the value of reps, one after each
pause(2000).

print("reps = %d\n", reps); // <-add

 Add a statement to post-increment the value of reps at the beginning of the
blink function’s while(1) loop.

void blink()
{
 while(1)
 {
 reps++; // <-add

 Examine the code, and consider how many times the light should blink with
100 ms pauses over 2 seconds, and then 50 ms pauses over 2 more seconds.

 Click SimpleIDE’s Run with Terminal button and check the number of reps.
Did it work as you expected?

ACTIVITY #6: SELF-TERMINATING COGS
Recall that functions started by cog_run must either consist of an infinite loop, or be
self-terminating. Up to this point, the functions we’ve started with cog_run had infinite
loops, and the same function that ran them also ended them. A function that runs in
another cog can also end itself. This can be useful if some process only needs to run until

Write Multicore Code · Page 165

it has completed a list of important tasks. If the function that gets run can then tell its
own cog to end, then the code in the function that launched it can just move on to other
tasks without worrying about ending the process it launched.

Along with a self-terminating code example, this activity also demonstrates how to print
messages from a function that another cog is running. If you ran Multi-InfoExchange-
TryThis from Page 163, you already know the easiest way to display activity from
another cog. Just share the info with a volatile variable and print it from the main
function. The other option is to print it straight from the function the other cog is
running. It’s trickier than you might think because unexpected things happen when more
than one cog controls the SimpleIDE Terminal’s communication lines. Because of this, a
function run by one cog has to close the connection with SimpleIDE terminal before the
function running in another cog can open it.

Making a Cog Self-Terminate

Making another cog self-terminate is pretty simple. Just add a cog_end call to the
function that is running in another cog, and it will shut itself down when it’s done. Yes,
the function would automatically stop executing if it ran out of code, but that does not
free up the cog or the stack space for re-use — cog_end does that.

Example Program: Cog Self-Terminates

The now familiar blink function in this example program has been modified to self-
terminate after 20 repetitions (counting from 0 to 19). Before blink starts repeating, it
sets a blinkStatus global variable to 1. It also sets blinkStatus to 0 just before it
self-terminates. The main function keeps on displaying the blinkStatus and
blinkReps variables. As you can see in Figure 5-12, blinkStatus changes to 0 after
the 19th repetition. Since the cog also ends, the P26 light stops blinking and blinkReps
stops increasing.

 Click SimpleIDE’s New Project button. Then set the File name to Multi-

CogEnd and Save.
 Enter the Multi-CogEnd.c code into SimpleIDE.
 Click SimpleIDE’s Run with Terminal button.
 Make sure the blink function terminates the cog running it by verifying that: the

light stops blinking, blinkStatus changes from 1 to 0, and blinkReps never
makes it past 20.

Page 166 ⋅ What’s a Multicore Microcontroller

Figure 5-12
Main function in
cog 0 indicates
when blink
function in cog 1
self-terminates.

/* Multi-CogEnd.c */

#include "simpletools.h" // Library include

void blink(); // Forward declaration

int *cog; // Pointer for cog data

volatile int blinkReps, blinkStatus; // Shared variables

int main() // Main function
{
 cog = cog_run(blink, 128); // Run blink in other cog

 while(1) // Endless loop
 {
 print("blinkStatus = %d, ", blinkStatus); // Display blinkStatus
 print("blinkReps = %d\n", blinkReps); // Display blinkReps
 pause(200); // Wait 1/5 s before repeat
 }
}

void blink() // Blink function for other cog
{
 blinkStatus = 1; // Set blinkStatus to 1
 blinkReps = 0; // Set blinkReps to 0
 while(blinkReps < 20) // Blink 20 repetitions
 {
 high(26); // P26 LED on
 pause(100); // ...for 0.1 seconds
 low(26); // P26 LED off
 pause(100); // ...for 0.1 seconds
 blinkReps++; // Add 1 to blinkReps
 }
 blinkStatus = 0; // Tell other cogs blink ending
 cog_end(cog); // Cog self terminates
}

Write Multicore Code · Page 167

How It Works

In addition to the now familiar simpletools library include, blink forward declaration
and *cog pointer variable, we have two volatile variables named blinkReps and
blinkStatus. The blink function will modify these values and the main function will
print them in SimpleIDE Terminal.

#include "simpletools.h"

void blink();

int *cog;

volatile int blinkReps, blinkStatus;

As usual, the first thing the main function does is use cog_run to run the blink function
in another cog. Then, it goes into an endless while loop that repeatedly displays values
the blink function modifies.

int main()
{
 cog = cog_run(blink, 128);

 while(1)
 {
 print("blinkStatus = %d, ", blinkStatus);
 print("blinkReps = %d\n", blinkReps);
 pause(200);
 }
}

This blink function repeats 20-times, then self-terminates. The first thing the blink
function does is set blinkStatus to 1 to let other functions in other cogs know that it’s
running. Then, it sets blinkReps to 0, and enters a loop that repeats until blinkReps
reaches 20. Since the last statement in the loop adds 1 to blinkReps, it’ll reach 20 after
20 repetitions. After finishing the loop, it sets blinkStatus back to 0 to let other
functions in other cogs know it’s done. Then, it self-terminates with cog_end(cog).

void blink()
{
 blinkStatus = 1;
 blinkReps = 0;
 while(blinkReps < 20)

Page 168 ⋅ What’s a Multicore Microcontroller

 {
 high(26);
 pause(100);
 low(26);
 pause(100);
 blinkReps++;
 }
 blinkStatus = 0;
 cog_end(cog);
}

Wait a minute, *cog is used in functions run by two different cogs.
Why isn’t it volatile? It’s an exception to the rule. When this int pointer variable was
tested as a return value for cog_run and parameter for cog_end, it is not optimized out.
The only tricky situation might happen if a while loop monitors its value. For example,
while(cog > 0) might wait endlessly in one cog even though another changed it to 0. If
you suspect that has happened in your code, you can use volatile int *cog to fix that
problem. The code would run, but the C compiler will display a warning that the volatile
qualifier was discarded. To see such warnings, click the Show Build Status button near the
bottom-center of the SimpleIDE window.

ACTIVITY #7: PRINTING AND TERMINATING FROM A LAUNCHED COG
If you ran Multi-InfoExchange-TryThis, you saw that is easy to display activity from
another cog: just share the info with a volatile variable and print it from the main
function. The other option is to print it straight from the function running the other cog.
It’s trickier than you might think, because unexpected things happen when more than one
cog controls the SimpleIDE Terminal’s communication lines. Because of this, the main
function must close the connection with SimpleIDE terminal before a function running in
another cog can open it.

The simpletools library includes another library, called simpletext. The simpletext
library has print, scan, and a variety of other functions for communicating with the
SimpleIDE Terminal and other devices. It has a simpleterm_close() function for
stopping terminal communication in one cog, and a simpleterm_open() function for
starting it in another.

Write Multicore Code · Page 169

The Propeller can easily hold multiple serial communication sessions with multiple
devices. The tricky part is having multiple cogs take turns talking with a single device, in
this case the SimpleIDE Terminal. First, cog 0 has to release the P30 pin that transmits
messages to the computer’s RX line before cog 1 can take over and control it.

Example Program: Multi-CogPrint

Figure 5-13 shows how the Multi-CogPrint example program starts by printing a message
from main (run by cog 0). Then, it prints a number of messages from blink (run by cog
1). After blink is done counting from 0 to 4 (and 5 light blinks), it starts printing from
main (cog 0) again.

Figure 5-13
Example of
printing from
different cogs.

 Enter the Multi-CogPrint.c code into SimpleIDE.
 Click SimpleIDE’s Run with Terminal button.
 Verify that the terminal behaves as shown in Figure 5-13, counting while the

light blinks.

/* Multi-CogPrint.c */

#include "simpletools.h" // Library include

void blink(); // Forward declaration

int *cog; // Pointer for cog data

volatile int blinkReps, blinkStatus; // Shared global variables

int main() // Main function
{
 print("Printing from main.\n"); // Message from main
 simpleterm_close(); // Close terminal COM in cog 0
 cog = cog_run(blink, 128); // Run blink in other cog

Page 170 ⋅ What’s a Multicore Microcontroller

 while(blinkStatus == 0); // Wait for cog 1 to start
 while(blinkStatus == 1); // Wait for cog 1 to finish
 simpleterm_open(); // Safe to reopen terminal COM
 print("Printing from main again.\n"); // Message from main
}

void blink() // Blink function for other cog
{
 blinkStatus = 1; // Set blinkStatus to 1
 simpleterm_open(); // Open terminal COM in cog 1
 print("Printing from blink.\n"); // Messages from blink
 blinkReps = 0; // Set blinkReps to 0
 while(blinkReps < 5) // Blink 5 repetitions
 {
 print("blinkReps = %d\n", blinkReps); // Display blinkReps
 high(26); // P26 LED on
 pause(100); // ...for 0.1 seconds
 low(26); // P26 LED off
 pause(100); // ...for 0.1 seconds
 blinkReps++; // Add 1 to blinkReps
 }
 simpleterm_close(); // Close termianl COM in cog 1
 blinkStatus = 0; // Tell other cogs blink ending
 cog_end(cog); // Cog self terminates
}

How it Works

The program starts with the familiar forward declaration for the blink function, and a
pointer variable named cog for launching it. Next come two volatile global variables for
sharing data between cogs: blinkReps and blinkStatus.

void blink();

int *cog;

volatile int blinkReps, blinkStatus;

The main function begins with a print statement, from the main function running in cog
0. Next comes simpleterm_close, which releases the serial terminal connection so it
can be opened from a function running in a different cog, such as blink. Next the
cog_run call starts the blink function in cog 1.

 print("Printing from main.\n");
 simpleterm_close();
 cog = cog_run(blink, 128);

Write Multicore Code · Page 171

The next two instructions in main are conditional loops that are controlled by the value of
blinkStatus, which is being changed by the blink function running in another cog.
The first loop, while(blinkStatus == 0); translates to “stay here and keep checking
the value of blinkStatus as long as it is equal to zero.” Once blinkStatus changes
from 0 to 1, code execution moves on to the next line: while(blinkStatus == 1)and
code execution loops here until blinkStatus changes back to zero. Only then does
simpleTerm_open re-establish the terminal connection to cog 0, just in time for a final
print statement.

 while(blinkStatus == 0);
 while(blinkStatus == 1);
 simpleterm_open();
 print("Printing from main again.\n");
}

Since the rule is to only allow one cog to send messages to SimpleIDE terminal at any
given time, the code needs to make sure that cog 0 does not try to re-open the serial
terminal while the blink function is still using it in cog 1. That’s where the
blinkStatus variable comes in.

The first think the blink function does is set blinkStatus to 1, which makes the main
function stay in that first conditional loop. Then, blink uses simpleterm_open to open
the connection with the SimpleIDE terminal in this cog. This allows the text to be seen in
the print command that follows.

void blink()
{
 blinkStatus = 1;
 simpleterm_open();
 print("Printing from blink.\n");
 blinkReps = 0;
 while(blinkReps < 5)
 {
 print("blinkReps = %d\n", blinkReps);
 high(26);
 pause(100);
 low(26);
 pause(100);
 blinkReps++;
 }

Page 172 ⋅ What’s a Multicore Microcontroller

After blinkReps gets to 5 and the loop is finished, the blink function uses
simpleterm_close to release control over the serial connection. Only then does it set
blinkStatus back to 0, which allows the program execution back in main to exit its
second while(1) loop. The last thing the blink function does is shut itself down with
cog_end(cog). By using simpleterm_close() and cog_end(cog), this cog has
properly released all of its resources for re-use.

 simpleterm_close();
 blinkStatus = 0;
 cog_end(cog);
}

A Semaphore Variable
The blinkStatus variable is an example of a semaphore. A semaphore variable is used
to prevent more than one processor from using a given resource at the same time.

Try This – Test Volatile

With one small change to Multi-CogPrint.c, you can examine a bug that happens by
forgetting to use volatile when declaring global variables that cogs will share.

 Click SimpleIDE’s Save Project As button, and rename the project Multi-

CogPrint-TryThis.
 Remove the volatile modifier from the volatile int blinkReps,

blinkStatus; statement.
 Click the Run with Terminal button.
 Find the item missing from the display. Can you guess what happened?

Figure 5-14 shows what’s missing. Compare it to Figure 5-13 and you’ll see that it
doesn’t say, “Printing from main again.”

Write Multicore Code · Page 173

Figure 5-14
Forgetting
volatile causes
the program to
get stuck

The reason it doesn’t say “Printing from main again.” is because the main function gets
stuck in the while loops that wait for blinkStatus to change from 0 to 1 and back to 0
again.

 while(blinkStatus == 0);
 while(blinkStatus == 1);

The first while loop waits for the blink function to change blinkStatus from 0 to 1.
The C compiler doesn’t know that blink is running in another processor. Because the
variable is no longer volatile, the compiler thinks that main would have to call the
blink function for that variable to change. So, it removed code to repeatedly recheck the
value of blinkStatus from while(blinkStatus == 0);. As a result, the main
function will think blinkStatus is still 0 even after the blink function running in
another cog changes it to 1.

That’s why it’s important to declare variables that are used by more than one function in
more than one cog as volatile.

SUMMARY
This chapter introduced some common C language programming techniques, including
function writing and setting variable scope. It then applied those concepts in programs
that utilized the Propeller microcontroller’s multiprocessing design to make different
processors (cogs) execute code in different functions at the same time.

Key concepts:

• A function and its components: definition, return type, name, parameter list, and
code block with statements.

Page 174 ⋅ What’s a Multicore Microcontroller

• Function forward declaration, call and return.
• Function parameter passing and return value.
• Using a function named cog_run to run a function in another cog by passing

function pointer and stack size as parameters. Using a function named cog_end
to end the cog’s execution of code in that function.

• Running more than one additional function in more than one available cog.
• Variable scope: local vs. global variables.
• Using global variables with the volatile keyword to make functions in

different cogs monitor and control each other.
• Stopping a cog from the main routine, and also from the launched cog.
• Printing from multiple cogs by opening and closing their access to the terminal.

Questions

1. In this function prototype, what is its name, parameters, and return type?
float addfloat(float a, float b);

2. What is a forward declaration? Where does it go in programs?
3. What’s the difference between a function call and return?
4. What’s the difference between a parameter and a return value?
5. What function can your code use to launch a cog, and what information does it

need? What information does it return and how can your code use it?
6. What kind of variable do you need for cogs to exchange information?
7. If a variable is declared inside a function, what is its scope?

Exercises

1. Write a function named blinker for launching into another cog, that allows
another function to determine which LED blinks along with both high and low
times and monitors the number of times the light has blinked. Assume your
global variables are pin, tHigh, tLow, and reps.

2. Write the variable declarations and function prototype for blinker.
3. Write a call to launch blinker. Stay safe, set the stack to 128. Use a pointer

int variable named myCog, and write a call to end blinker using myCog.

Project

1. Write an application that allows you to configure the blinker function from the
main function. Have your application initialize tHigh to 50 and tLow to 200. It
should ask for the LED pin once, and then repeatedly ask for tHigh and tLow.

Write Multicore Code · Page 175

Solutions

Q1. Name is addfloat, return type is float, and parameters are float a and
float b.

Q2. A forward declaration tells the C compiler to expect a function with that
prototype later in the program. It is normally added before any executable
functions.

Q3. A function call tells the program to find the function, execute its code, and come
back when done. The return is simply the part where the code “returns” to the
function call and continues executing code from there.

Q4. A parameter gets passed to a function by a function call. A return value gets
passed back by the function.

Q5. cog_run can launch a cog given the address of the function to launch
functionName, and a number of int size slots to set aside for the cog’s stack
space. cog_run returns a pointer to the place in memory where it stores the cog
number and stack space. This value can be used later by cog_end stop the
process to recover the cog and stack space for other uses.

Q6. A global variable that has been declared volatile.
Q7. Local.

E1.

void blinker()
{
 while(1)
 {
 reps++;
 high(pin);
 pause(tHigh);
 low(pin);
 pause(tLow);
 }
}

E2. volatile int pin, tHigh, tLow, reps;
E3.

int *myCog;
...
myCog = cog_run(blinker, 64);

Page 176 ⋅ What’s a Multicore Microcontroller

...
cog_end(myCog);

P1.
/* Multi-P1-Solution.c */

#include "simpletools.h" // Library include

void blinker(); // Forward declaration

int myCog;

volatile int pin, tHigh, tLow, reps; // Cog share variables

int main() // Main function
{
 print("Enter pin: "); // Get pin
 scan("%d", &pin);

 tHigh = 50; // Initialize t values
 tLow =200;

 myCog = cog_run(blinker, 64); // Run blink in other cog

 int tHighTemp, tLowTemp; // Temporary variables

 while(1) // Main loop
 {
 print("Enter tHigh: "); // Get high time
 scan("%d", &tHighTemp);
 print("Enter tLow: "); // Get low time
 scan("%d", &tLowTemp);

 tHigh = tHighTemp; // Update blinker cog.
 tLow = tLowTemp;
 }
}

void blinker() // Function for other cog
{
 while(1) // Endless loop
 {
 reps++;
 high(pin); // LED on
 pause(tHigh); // ...for tHigh ms
 low(pin); // LED off
 pause(tLow); // ...for t ms
 }
}

Measure Voltage and Position · Page 177

Chapter 6: Measure Voltage and Position

Control knobs are used in all kinds of equipment. Think of adjustable lighting: twist a
knob in one direction and the lights get brighter, twist it in the other direction, and the
lights get dimmer. Think of machines that have control knobs for fine-tuning the position
of cutting blades and guiding surfaces. Think of audio equipment, where turning a knob
adjusts how music and voices sound. Can you see any more examples from where you
are right now?

Figure 6-1 shows a control knob on a speaker that adjusts volume. Turning the knob
adjusts a circuit inside the speaker, which in turn changes the audio volume.

Figure 6-1
Volume Adjustment on a
Speaker

THE VARIABLE RESISTOR – A POTENTIOMETER
The device under many control knobs is a variable resistor called a potentiometer, often
abbreviated as a “pot.” They are also used inside equipment where you may not see
them, such as joysticks and even inside the servo you used in Chapter 4. Figure 6-2
shows a picture of some common potentiometers. Notice that they all have three pins.

Figure 6-2
A Few Potentiometer
Examples

Page 178 ⋅ What’s a Multicore Microcontroller

Figure 6-3 shows the schematic symbol and part drawing of the potentiometer you will
use in this chapter. Terminals A and B are connected to a 10 kΩ resistive element.
Terminal W is called the wiper terminal, and it is connected to a wire that touches the
resistive element somewhere between its ends.

Figure 6-3
Potentiometer Schematic Symbol
and Part Drawing

Figure 6-4 shows how the wiper on a potentiometer works. As you adjust the control
knob on top of the potentiometer, the wiper terminal contacts the resistive element at
different places. Turning the knob clockwise moves the wiper closer to terminal A. This
decreases the resistance between the wiper and terminal A, and increases the resistance
between the wiper and terminal B. Turning the knob counterclockwise decreases the
resistance between the wiper and terminal B, and increases the resistance between the
wiper and terminal A.

Figure 6-4
Adjusting the Potentiometer’s Wiper
Terminal

ACTIVITY #1: SET VOLTAGES WITH TWO RESISTORS
A potentiometer works like two resistors in a row with a wire ‘tap’ between them.
Turning the control knob essentially changes the value each of the resistors. So, let’s use
actual resistors and a wire to get a better idea of how the circuit inside a potentiometer
works.

Measure Voltage and Position · Page 179

Voltage Divider Circuit

When voltage is applied to two resistors in series (connected end-to-end), the values of
the resistors determine the voltage that appears between them. The circuit for setting
voltage like this is called a voltage divider. The equation for finding the voltage at point
VO between the two resistors is shown in Figure 2-10, along with the circuit.

Figure 6-5
Voltage Divider Circuit
and Equation, using
3.3 V supply on the
Propeller Activity Board

This equation is really easy to use. Let’s say you’ve got two 1 kΩ resistors; that would
mean RA = 1000 and RB = 1000. So, let’s substitute the 1000 for RA and RB and see
what happens.

V 1.65
0.5V3.3

10001000
1000V3.3VO

=
×=

+
×=

In this case, voltage VO between the resistors is 1.65 V, which is half the voltage applied
across both.

So, what would happen if you made RB 2 kΩ and left RA at 1 kΩ?

V 2.2
0.66...V3.3

20001000
2000V3.3VO

=
×=

+
×=

BA

B
O RR

RV3.3V
+

×=

Page 180 ⋅ What’s a Multicore Microcontroller

What would happen if you swap resistors so RA = 2 kΩ and RA = 1 kΩ?

V 1.1
0.33...V3.3

10002000
1000V3.3VO

=
×=

+
×=

Now imagine substituting the potentiometer for the 2-resistor circuit, with terminal A
connected to 3.3 volts and terminal B connected to GND. The wiper divides the
potentiometer’s resistive material into two sections, which you can think of as RA and RB.
Moving the wiper would change the resistors’ values, making one resistor larger and one
smaller, and thus changing the value at VO (though RA + RB would always equal 10 kΩ).

Voltage Divider Parts

(2) Resistors – 1 kΩ (brown-black-red)
(1) Resistor – 2 kΩ (red-black-red)

First Voltage Divider Circuit

The Propeller Activity board has four sockets for measuring voltage, labeled A/D0,
A/D1, A/D2, and A/D3.

Where are the A/D and D/A
sockets? They are the six
sockets right below the
breadboard by the Activity
Board’s lower-right plated
mounting hole.

A/D stands for analog to digital. Like most natural phenomena, actual voltage values
vary continuously. However, in the electronics world, digital values tend to take discrete
steps. The A/D converter chip on the Activity Board converts the analog voltage value
received into a digital measurement that the Propeller chip can work with: a number of
4096ths of 5 V. The A/D converter rounds down to the nearest 4096th. For example, if it
receives a voltage somewhere between 1351/4096 and 1352/4096 of 5 V, it will round

Measure Voltage and Position · Page 181

down to an even 1351 before passing the value to the Propeller microcontroller. These
digital measurements are called quantized values, meaning rounded to discrete steps.

 Connect the voltage divider shown in Figure 6-6.

Figure 6-6
Voltage Divider
Schematic and
Wiring Diagram

Example Program: Volts-DividerVoltage

We will be using a Simple Library named abvolts that was written specifically for the
A/D and D/A hardware on the Propeller Activity Board. The functions in abvolts can
take the quantized value from the A/D chip and convert it to an easy-to-read voltage
value; for example, 1351 becomes 1.649 V. Let’s try it, verifying our previous 1.65 V
calculation for the voltage divider between two 1 kΩ resistors in series.

Don’t expect the output to be exactly 1.65 V! Yours may be a bit off, as is the example in
Figure 6-7 shows. Back in Chapter 2, we introduced the tolerance color band on the
resistor, with a gold band indicating that it’s good to 5%. Since 5% of 1000 is 50, a 1 kΩ
resistor with a 5% tolerance could actually measure between 950 and 1050 Ω. Putting
these numbers back into our voltage divider equation shows that our measurement could
be as low as 1.57 V or as high as 1.73 V.

Other contributors to inexact values include the tolerance of the 5 V voltage regulator on
your Propeller Activity Board, and and the rounding operation that the A/D converter
performs.

Page 182 ⋅ What’s a Multicore Microcontroller

Figure 6-7
Measured
Voltage

 Click SimpleIDE’s New Project button, save the project as Volts-DividerVoltage

and save it to My Projects.
 Enter the Volts-DividerVoltage.c code into SimpleIDE.
 Reconnect power to your Activity Board.
 Click SimpleIDE’s Run with Terminal button.
 Verify that your measurement is close to 1.65 V, plus or minus 0.15 V.

/* Volts-DividerVoltage.c */

#include "simpletools.h" // Library includes
#include "abvolts.h" // Must include to use abvolts

int main() // Main function
{
 float volts = ad_volts(3); // Get A/D3 volts

 print("A/D3 = %1.3f V\n", volts); // Display result

 print("\nDone!"); // Announce program done
}

How Volts-DividerVoltage Works

In addition to simpletools.h, a second #include statement adds the library abvolts.h. It
gives the program access to the ad_volts function.

#include "simpletools.h"
#include "abvolts.h"

Inside main, the first function call is to ad_volts. This function returns a float variable
value, and its parameter requires an A/D socket number, 0–3.

int main()

Measure Voltage and Position · Page 183

{
 float volts = ad_volts(3);

This call makes the Propeller fetch the quantized voltage value from the AD3 socket,
which is in terms of 4096ths of 5 V (even though our circuit is connected to 3.3V). The
function returns a floating-point decimal value in volts, which is why the function call
began with float volts.

The value of volts is then sent for display on SimpleIDE Terminal with print("A/D3 =
%1.3f V\n", volts). You may not have seen the %1.3f formatting flag before. It’s a
variation of %f (display floating point flag) that allows you to specify the number of
digits to the left and right of the decimal point. In this case, it displays the floating point
volts variable with 1 digit to the left and 3 to the right.

 print("A/D3 = %1.3f V\n", volts);

Since this is the first program we’ve run in a while that hasn’t used a loop, the “Done!”
message provides a cue not to expect any more output.

 print("\nDone!");
}

Your Turn – Different Voltage Dividers

Okay, so we’ve verified that two resistors of the same size will give you half the voltage
at VO. Next, let’s verify the 1.1 V and 2.2 V dividers.

 Modify the circuits using the schematics in Figure 6-8, with the aid of the wiring
diagrams if needed. Remember to turn off power when changing circuits.

 Use the Run with Terminal button to re-run Volts-DividerVoltage and verify
each circuit’s voltage.

Leading with zeroes or spaces, your choice. The example above only needed to print
one digit to the left of the decimal, and so it used %1.3f. For larger number ranges, you
can specify more digits, and whether to pad smaller values with spaces or zeroes. For
example, %3.2f in a print statement accommodates three digits to the left of the decimal
point, and it will pad a value like 1.23 with two leading spaces before the 1. If you instead
want it to pad with leading zeroes, use %03.2f. This will print the value 1.23 like this:
001.23.

Page 184 ⋅ What’s a Multicore Microcontroller

Figure 6-8
Two More Voltage
Divider Circuits

ACTIVITY #2: READ THE POSITION WITH THE PROPELLER
Figure 6-9 shows a conceptual drawing inside of the potentiometer, as if the control knob
were transparent. A semicircular resistive element connects to the A and B terminals.
The wiper is a contact that swivels with the knob while maintaining electrical contact
with a second lead connected to the W terminal. Each time you turn the knob to a new
position, you make the wiper touch a new point on the resistive element. The wiper
contact creates two resistors in series: one from B to W and the other from W to A. So, if
you connect 3.3 V to B, and GND to A, you can connect W to A/D3, and cause the
voltage divider to vary as you twist the knob. Let’s try it.

Measure Voltage and Position · Page 185

Figure 6-9
Concept
Drawing —
Inside the
Potentiometer

Potentiometer Parts

(1) Potentiometer – 10 kΩ
(3) Jumper wires – red, black, and blue

Potentiometer Circuit

Figure 6-10 shows a schematic and wiring diagram for a potentiometer voltage output
circuit. This circuit should allow you to turn the knob from its clockwise limit to its
counterclockwise limit, for voltage measurements ranging from about 0 V to just less
than 3.3 V.

 Build the circuit shown in Figure 6-10.

Wiper contact
with resistive

element

Wiper moves with knob

Wiper
contact
with W

terminal

Page 186 ⋅ What’s a Multicore Microcontroller

Figure 6-10
Potentiometer
Schematic and Wiring
Diagram

Potentiometer Test Code

The voltage measurement will display on the same line and refresh 5 times per second,
similar to Figure 6-11. As you twist the potentiometer’s knob, make sure to apply some
downward pressure to make it maintain contact with the breadboard sockets.

Figure 6-11
Potentiometer
Voltage Display

Example Program: Volts-Monitor

 Click SimpleIDE’s New Project button, name the project Volts-Monitor, and
save it to My Projects.

 Enter the Volts-Monitor.c code into SimpleIDE.
 Click SimpleIDE’s Run with Terminal button.

Measure Voltage and Position · Page 187

 Turn the control knob all the way clockwise and verify that the voltage is close
to 0 V, since the current is going through the full length of the potentiometer’s
resistive element.

 Gradually turn the knob counterclockwise, and monitor the voltage. Does it
gradually increase to almost 3.3 V at about the time it reaches its
counterclockwise limit? There is very little resistive element between the wiper
and the A lead which goes to 3.3 volts

Make sure to apply a little downward pressure to keep the potentiometer seated on the
breadboard as you twist its knob. (Using pliers to make a very, very gentle 1/4 turn twist in
the thin part of each lead will help the potentiometer stay in the breadboard sockets, but do
this at your own risk to your potentiometer!)

/* Volts-Monitor.c */

#include "simpletools.h" // Library includes
#include "abvolts.h"

int main() // Main function
{
 float volts;

 while(1)
 {
 volts = ad_volts(3); // Get A/D3 volts
 print("%c A/D3 = %1.3f V ", // Display result
 HOME, volts);
 pause(200); // 200 ms pause
 }
}

How it Works

The main routine starts by declaring a floating-point variable named volts.

int main()
{
 float volts;

Each time through the while(1) loop, volts = ad_volts(3) measures and stores the
voltage applied to the A/D3 socket, this time by the potentiometer, in volts. Next, the
statement print("%c A/D3 = %1.3f V ", HOME, volts) sends the cursor to the
SimpleIDE Terminal’s top-left home position with the first %c and HOME. Then, %1.3f

Page 188 ⋅ What’s a Multicore Microcontroller

and volts displays the volts variable with 1 character to the left of the decimal point,
and three to the right.

 while(1)
 {
 volts = ad_volts(3);
 print("%c A/D3 = %1.3f V",
 HOME, volts);
 pause(200);
 }
}

Why isn’t there a CLREOL at the end? We used to need CLREOL when overprinting the
same line while displaying a number with a variable number of digits. That was because a 2
digit number displayed after a 3 digit number would not overprint the last digit. CLREOL
used to clear all the text to the right, but it just isn’t needed when the number of digits
displayed never changes.
%1.3f displays 1 digit, a decimal point, and 3 more digits, every time.

Try This – Display Actual A/D Values

As mentioned earlier, the Activity Board’s A/D converter chip outputs measured voltage
as a number of 4096ths of 5 V. This next example uses a function named ad_in to get
those raw measurements. Since your potentiometer is only wired to display up to 3.3 V,
we can expect values from 0 to about 2703. That’s because 3.3 x 4096 / 5 = 2703.

 int volts; // <-change here

 while(1)
 {
 volts = ad_in(3); // <-change here
 print("%c A/D3 = %4d 4096ths of 5 V ", // <-change here
 HOME, volts);
 pause(200);
 }

 Use SimpleIDE’s Save Project As button to save a copy of the project in Your
My Projects folder. Name it Volts-Monitor-TryThis.

 Modify it as shown above to get the raw A/D converter value and display it.
 Verify that your measurement range is now 0…2703 (instead of 0.0…3.29).

Measure Voltage and Position · Page 189

Your Turn - Casting a Variable

The ad_volts function receives an integer value (int) from the ADC, but returns the
voltage as a floating-point decimal value (float). How does it do that?

In C language, you can cast a value as it is copied from one type of variable (such as int)
to another type of variable (such as float) as needed for operations. The statement
float fvolts = (float) volts casts the value stored by the int variable volts to
the float type while copying it to fvolts. Then, the value can be printed with the
floating-point formatter %1.3f.

float fvolts = (float) volts;
fvolts = fvolts * 5.0 / 4096.0;
print("\n fvolts = %1.3f V", fvolts);

 Save another copy of your program as Volts-Monitor-YourTurn.
 Declare a float variable named fvolts.
 Add the above code to the while loop so that it displays both the integer and

floating point measurements.

ACTIVITY #3: CALIBRATE D/A OUTPUTS
The D/A sockets are the counterparts to the A/D sockets — they are for setting voltages
instead of measuring them. Each D/A socket has an LED indicator that gets brighter with
higher voltages and dimmer with lower voltages. In this activity, you will calibrate your
board’s D/A voltage outputs, write programs to set their voltages, and measure and
compare calibrated and un-calibrated voltage output levels.

Additional Parts

(2) Jumper Wires

D/A Calibration Setup

Figure 6-12 shows where to add the jumper wires. Make sure to use one jumper wire to
connect D/A0 to A/D0 and the other to connect D/A1 to A/D1.

Page 190 ⋅ What’s a Multicore Microcontroller

Figure 6-12
Pot Circuit with Jumper
wires added: D/A0 to
A/D0 and DA/1 to AD/1

D/A Calibration

The abvolts library includes functions such as da_out and da_volts to make D/A0 and
D/A1 maintain a given voltage level between 0 V to just less than 3.3 V. This is in
contrast to A/D inputs that can measure from 0 to just less than 5 V. Second, output
voltages are set in terms of 256ths of 3.3 V. The A/D converter reports measurements as
4096ths of 5 V. Third, a one-time calibration is needed for best results with the
da_volts function. In contrast, the A/D has built-in voltage references, so it does not
need calibration.

The one-time calibration uses a function named da_setupScale to measure D/A voltage
outputs with the A/D inputs. The function uses differences between the expected and
measured output levels to set up a scale factor for improving the accuracy of the D/A
voltage outputs. The da_setupScale function saves these scale factors in a portion of
the Activity Board’s EEPROM that is reserved for the abvolts library. After the
calibration, programs can call a function named ab_useScale to fetch the scale factors
from EEPROM and apply them to improve da_volts outputs.

Measure Voltage and Position · Page 191

What is EEPROM Memory?
EEPROM stands for Electrically Erasable Programmable Read-Only Memory. It keeps its
values even when you turn power off; turn it back on and all the information is still there. In
contrast, RAM (Random Access Memory) loses all its values when you shut down power, or
even when you press and release the Activity Board’s RST button.
How does the Propeller use EEPROM?
The Propeller Activity Board has a 64 KB EEPROM. It’s the little black chip just to the left of
the Propeller. The upper-case K means it can store the nearest power of 2, which is
216 = 65,536 bytes.

Half of this EEPROM (the first or “lower” 32 KB = 32,768 bytes) is dedicated to storing
program images when you use SimpleIDE’s Load EEPROM & Run button. After a reset, the
Propeller will wake up and detect that a computer is not trying to load a program, so it goes
and gets the program from EEPROM memory.
How do libraries use EEPROM?
Our example Propeller programs get stored in lower EEPROM, leaving the “upper” 32,768th
through 65,535th bytes for data storage. The Propeller C Tutorials’ Simple Libraries store
Activity Board related calibration data using the highest addresses, starting at the 65,535th
byte and working downward as libraries are added. Examples include compass, abdrive (for
the Propeller ActivityBot), and abvolts calibration values. The abvolts library was added to
the Simple Libraries most recently, so it occupies the lowest addresses, from the 63,400th
byte to the 63,416th bytes.
How can you use EEPROM?
You will also use EEPROM to store data later in this tutorial. To make sure your values
don’t roll over any calibration data, we’ll use the 32,768th byte—the lowest byte in upper
EEPROM—and work our way upward. We’ll restrict the amount of data so that it doesn’t roll
over the 63,400th byte. For storing more data than that, we could switch to SD cards for
data storage. In the future, it is good practice to check each library’s documentation for
upper EEPROM usage to prevent conflicts.

Example Program: Volts-CalibrateDA

Running the next program should give you a message with scale factors resembling those
shown in Figure 6-13, with values very close to 1.0. This message indicates that your
scale factors have been determined and saved to the Activity Board’s upper EEPROM
memory, for use in later programs.

Page 192 ⋅ What’s a Multicore Microcontroller

Figure 6-13
Scale Factors
from
da_setupScale
Function

If you see the “Error!” message in Figure 6-14 instead, it might mean that there’s a
wiring mistake. It could also mean that the USB port isn’t supplying enough power,
which can happen with an un-powered USB hub. It can also happen with pre-USB 2.0
ports. Plugging in an external power supply can help rule out USB port supply problems.

Figure 6-14
Error Message
from
da_setupScale
Function

 Click SimpleIDE’s New Project button, name the project Volts-CalibrateDA,

and save to My Projects.
 Enter the Volts-CalibrateDA.c code into SimpleIDE.
 Reconnect power to your Activity Board (PWR switch to 1 and USB cable

connected).
 Click SimpleIDE’s Run with Terminal button.
 If you get the message displaying the scale factors, you’re ready to move on.
 If you get the error message, double-check your wiring. If your wiring is

correct, try plugging in an external power supply to the Activity Board’s 6-9 V
power jack. Power supply options are in Figure 4-4 on page 106.

Measure Voltage and Position · Page 193

/* Volts-CalibrateDA.c */

#include "simpletools.h" // Library includes
#include "abvolts.h"

int main() // Main function
{
 da_setupScale(); // Calibration function

 print("Done!"); // Done message
}

How it Works

Instead of a dedicated D/A chip, the Activity Board relies on some simple circuits and the
Propeller microcontroller’s signaling ability to set voltages. The da_volts function
causes the Propeller to send rapid sequences of high/low signals to D/A conversion
circuits on the Activity Board.

Like the resistors, the various parts in the D/A circuits have tolerances that affect its
ability to supply exactly 3.3 V when a Propeller I/O pin sends it a high signal, hence the
need for calibration. For example, if the high output of these conversion circuits is only
3.2 V instead of 3.3 V, all the D/A conversions will be 3.2/3.3 of what they should be.
The da_volts function could correct this by multiplying whatever voltage it’s supposed
to supply by 3.3 / 3.2, which could be called a scale factor or scalar.

When your code calls the da_setupScale function, it figures out the scale factor that is
needed to correct the da_volts output on your particular board. It does this by sending
high signals to P26 and P27, which are the I/O pins that send signals to the D/A0 and
D/A1 sockets. Since you connected D/A0 to A/D0 and D/A1 to A/D1 with wires,
da_setupScale measures the voltages and divides them into 3.3 V to calculate the scale
factors, which get stored in the Activity Board’s EEPROM memory.

int main()
{
 da_setupScale();

 print("Done!");
}

After doing this, you can call da_useScale at the beginning of any program that
includes the abvolts library. Then, da_useScale will fetch those scale factors from

Page 194 ⋅ What’s a Multicore Microcontroller

upper EEPROM and copy them to variables that da_volts automatically uses to correct
its output.

Test the D/A with the A/D

This next program tests the scale correction by prompting you to type in voltage values,
like those shown in Figure 6-15. The measured values should be very close to the
requested values.

Figure 6-15
Voltage
Measurements
with useScale

Example Program: Volts-DAConversion

 Click SimpleIDE’s New Project button, name the project Volts-DAConversion,
and save it in My Projects.

 Enter the Volts-DAConversion.c code into SimpleIDE.
 Click SimpleIDE’s Run with Terminal button.
 Try entering 1.0, 2.0, and 3.0 as test values.
 Verify that the SimpleIDE Terminal displays voltsIn values that are very close

to what you typed.
 Also, monitor the P26 LED. It should get brighter after you enter a larger

voltages and dimmer as you enter smaller voltages.

Measure Voltage and Position · Page 195

/* Volts-DAConversion.c */

#include "simpletools.h" // Library includes
#include "abvolts.h"

int main() // Main function
{
 da_useScale(); // Get scale factors

 print("For 0.0 to 3.2 V D/A,\n"); // User instructions
 print("type your numbers as #.##\n");
 print("Then, press Enter.\n\n");

 float voltsOut, voltsIn; // Voltage variables

 while(1)
 {
 print("Enter D/A0 volts: "); // Get voltage
 scan("%f\n", &voltsOut);

 da_volts(0, voltsOut); // Set volts

 voltsIn = ad_volts(0); // Measure volts

 print("voltsIn = %1.3f\n", voltsIn); // Display measurement
 }
}

How it Works

The da_useScale function tells the abvolts library to use the scale factors saved earlier
by da_setupScale.

 da_useScale();

These are just instructions for how to enter the D/A values and what range to use.

 print("For 0.0 to 3.2 V D/A,\n");
 print("type your numbers as #.##\n");
 print("Then, press Enter.\n\n");

Next, floating point variables for D/A (voltsOut) and A/D (voltsIn) are declared.

 float voltsOut, voltsIn;

Page 196 ⋅ What’s a Multicore Microcontroller

At the beginning of the while loop, a print statement prompts you to enter a voltage
Then, a scan statement fetches the value you entered into the SimpleIDE Terminal and
stores it in voltsOut. Note that the scan statement uses the %f modifier to make sure
what you entered is captured as floating point value.

 while(1)
 {
 print("Enter D/A0 volts: ");
 scan("%f\n", &voltsOut);

The da_volts(0, voltsOut) statement sets the D/A0 pin to the floating point value of
voltsOut. If it were instead da_volts(1, voltsOut), it would set the D/A1 channel.

 da_volts(0, voltsOut);

The voltsIn = ad_volts(0) statement measures the volts that D/A0 applies to A/D0
with the wire you connected at the start of this activity. The last print statement displays
the measured value, for you to compare with the value you entered.

 voltsIn = ad_volts(0);

 print("voltsIn = %1.3f\n", voltsIn);
 }
}

Your Turn – Try it Without da_useScale

Without da_useScale, you may notice slightly larger differences between your
requested and measured voltages. The largest difference in error will typically be
noticeable at 3.0 V.

 Click SimpleIDE’s Save Project As button, rename the project Volts-
DAConversion-YourTurn, and save it in My Projects.

 Comment out the da_useScale function call (add // to its left), then re-run
your code.

 Repeat your test with 1.00, 2.00, and 3.00 V.
 You are now done with the calibration, so you can remove the jumper wires that

connect D/A0 to A/D0 and D/A1 to A/D1.

Measure Voltage and Position · Page 197

ACTIVITY #4: POTENTIOMETER CONTROLLED LED
At this point, we have two new ingredients: measuring knob position (input) and
controlling light brightness (output). Let’s put them together with a program that
measures knob position and uses it to control light brightness.

Example Program: Volts-ControlLED

 Click SimpleIDE’s New Project button, set the File name to Volts-ControlLED
and Save.

 Enter the Volts-ControlLED.c code into SimpleIDE.
 Remove all jumpers between the D/A and A/D sockets, but keep the

potentiometer circuit of Figure 6-10. The output circuit is the built-in P26 LED.
 Reconnect power to your Activity Board (PWR switch to 1 and USB cable

connected).
 Click SimpleIDE’s Run with Terminal button.
 Turn the pot all the way clockwise to turn off the LED.
 Gradually turn the pot counterclockwise. The light should get brighter as you

turn it further toward its counterclockwise limit.

/* Volts-ControlLED.c */

#include "simpletools.h" // Library includes
#include "abvolts.h"

int main() // Main function
{
 float volts;

 print("Use knob to control P26 light."); // User prompt

 while(1)
 {
 volts = ad_volts(3); // Measure potentiometer
 da_volts(0, volts); // Set volts & light
 }
}

How it Works

As was done before, the main function begins by declaring the floating-point variable
volts.

int main()
{

Page 198 ⋅ What’s a Multicore Microcontroller

 float volts;

All the while loop has to do is repeatedly check the potentiometer’s wiper voltage with
ad_volts(3), and then feed that result to da_volts(0, volts). That sets the voltage
at D/A0 as well as the P26 LED brightness.

 while(1)
 {
 volts = ad_volts(3);
 da_volts(0, volts);
 }

Note that da_useScale was not used here. There isn’t really any point in this
application because human detection of led brightness is relative. Nobody’s going to
look at the LED and say, “Hey, that’s a hundredth of a volt too dim!”

Your Turn – Control Both LEDs

Just for fun, you can add a single line of code to make the potentiometer control the P27
LED as well. Can you see what you would need to do to make the P27 LED do the
opposite of the P26 LED as you turn the potentometer’s control knob?

 Save the project as Volts-ControlLED-YourTurn.
 Add a second da_volts function call below the first:

 da_volts(1, (3.3-volts));

 Run the program and twist the potentiometer’s control knob again. The P27 LED
should get brighter as the P26 LED gets dimmer, and vice versa.

ACTIVITY #5: MEASURE INPUT, SCALE VALUE, SET OUTPUT
The last activity was an example of using an input device to control an output device,
with the Propeller microcontroller in the middle making it happen. It was a relatively
straightforward example, since we were measuring a varying-voltage input to control a
voltage output. Furthermore, the abvolts library and on-board circuits did a lot of the
work for us.

Measure Voltage and Position · Page 199

But, what if you want to use the potentiometer—or some other analog input device—with
something that requires a different kind of control signal? To do that, you often need to
use a little math to write a program that takes your input device’s measurements and
translates them into meaningful values for your output device. Here we’ll provide you
with those math tools, so you can put them to use in Activity 6.

Remember how the ad_in function reports measurements as a number of 4096ths of 5
V? There’s an equivalent da_out function for setting voltage output, and its daVal
parameter requires a number of 256ths of 3.3 V. We are going to use ad_in and da_out
to repeat the last activity, sharpening those coding and math tools along the way.

From the ad_in function you’re going to have an input range of 0…2703 for 0 to 3.3 V.
The code will need to scale the input value to the da_out function’s output range of
0…256 for 0 to 3.3 V.

 Before continuing, grab a pencil and paper and see if you can write some code

that you think will convert a measurement in the A/D’s range to an output in the
D/A’s range.

This is an example of a y = mx problem. The value x is the raw A/D measurement from
ad_in The value m is what we need to multiply it by to get y values that fall in the right
range for the parameter da_out uses to set the D/A output. We need to solve for the
value of m, using two corresponding x and y values. Since we know that 2703
corresponds to a 3.3 V input and 256 corresponds to a 3.3 V output, we can use them to
solve for m.

2703
256m

x
y m

x
xm

x
y

mx y

=

=

=

=

Let’s try a piece of code that uses the value of m to make the conversion. It lets you twist
the knob to control LED brightness and displays the x input and y output values. Note
that if you verify this display with a calculator, you’ll get about 9.47 instead of the 9

Page 200 ⋅ What’s a Multicore Microcontroller

shown in Figure 6-16. Keep in mind that int calculations always round division results
downward.

Figure 6-16
Scale
Verification
Display

 Use SimpleIDE’s Save Project As button to save a copy of Volts-ControlLED.

Name it Volts-ControlScaled, and save it in My Projects.
 Delete the float volts variable declaration, and replace it with two int

variables, x and y.
 Remove the print statement above the while(1) loop.
 Update the while(1) loop to match the one below.

 while(1)
 {
 x = ad_in (3); // Measure potentiometer
 print("%c x = %4d\n ", // Print input value (x)
 HOME, x);

 y = x * 256 / 2703; // Scale value
 print(" y = %4d\n ", y); // Print output value (y)

 da_out(0, y); // Set volts & light

 pause(200); // Slow data for terminal
 }

 Double-check your updates to the % flags in the print functions. We are now
working with 4-digit int values, so instead of using %1.3f, we are using %4d.

Leading spaces or zeroes, again it is your choice. %4d displays leading spaces in
decimal integers with less than 4 digits so that it occupies a total of four characters. If you
want to display leading zeroes instead, use %04d.

Measure Voltage and Position · Page 201

 Use Run with Terminal and verify that you have light control.
 Monitor the SimpleIDE terminal to view the x input and scaled y output values.

Operations Rules for INT Variables

Be aware that with int variables, operations do not always give the same results as with
algebra. The four rules to keep in mind are:

1) Integer division always rounds down. So 4 / 10 = 0, and 12 / 10 = 1.
2) Operators have precedence. *, /, and % have higher precedence than + and -,

meaning that a statement will execute all the *, /, and % operators first, and then
go back and finish the + and – operators.

3) Parentheses can override precedence. z = (a + b) * x; will add a to b
before multiplying the result by x.

4) Operators at the same level of precedence get executed from left to right.

Integer Remainders and the % Operator — In integer calculations, 4 / 10 is really 0 with a
remainder of 4, and 12 / 10 is really 1 with a remainder of 2. For the remainder, you can use
the modulus % operator: 4 % 10 = 4, and 12 % 10 = 2.

Try This – Int Order of Operations

Given int x, y; the statement y = x * 256 / 2703 applies the above rules for int
variable operations correctly. Because of Rule 1, the statement has to start with a value
that can be larger than 2703 before dividing. Rule 2 means that the * operator gets
executed first because it’s leftmost. So x gets multiplied by 256 so it can be larger than
2703. Then the / operator gets executed second, for a meaningful result.

 Enter Volts-ControlScaled-TryThis1 into SimpleIDE.

/* Volts-ControlScaled-TryThis1.c */

#include "simpletools.h" // Include simple tools

int main() // Main function
{
 int x = 10;
 int y;

 y = x * 256 / 2703;

Page 202 ⋅ What’s a Multicore Microcontroller

 print("x = %d\n", x);
 print("y = %d\n", y);
}

 Try a few different values for x, between and including 10 and 2703, and then

Run with Terminal. You will see the corresponding scaled value of y in the
SimpleIDE terminal.

Figure 6-17
Modified “x”
Value Scale
Display

 Use SimpleIDE’s Save Project As button to save another copy as Volts-

ControlScaled-TryThis2.
 Change the formula to y = 256 / 2703 * x.
 Retry different values for x, including 10 and 2073. Now, what do you see in the

SimpleIDE Terminal?

Figure 6-18
Scale Display
After Modifying
Operator Order

Since operators are evaluated from left to right, 256 / 2703 gets executed first, and that
result is always 0. So y ends up always being 0 * x, for a result of 0 no matter what.

ACTIVITY #6: POTENTIOMETER CONTROLLED SERVO
As mentioned in Chapter 4, a hobby servo is a device that controls position, and you can
find them in just about any radio controlled (RC) car, boat or plane. In RC cars, the servo
holds the steering to control how sharply the car turns. In an RC boat, it holds the rudder

Measure Voltage and Position · Page 203

in position for turns. RC planes typically have several servos that position the different
flaps to control the plane’s motion. In RC vehicles with gas powered engines, another
servo moves the engine’s throttle lever to control how fast the engine runs. An example
of an RC airplane and its radio controller are shown in Figure 6-19. The hobbyist “flies”
the airplane by manipulating thumb joysticks on the radio controller which, via the radio
link, causes the servos on the plane to control the positions of the RC plane’s elevator
flaps and rudder. When there is external force like air pressure against the servo it will
actively work to hold the position it was sent.

Figure 6-19
Model Airplane and
Radio Controller

Thumb joysticks like the one in Figure 6-20 are commonly found in both RC and video
game controllers. Each joystick typically has two potentiometers that allow the
electronics inside the controller to report the joystick’s position. One potentiometer
rotates with the joystick’s horizontal motion (left/right), and the other rotates with the
joystick’s vertical motion (forward/backward). In the case of the RC controller, a
microcontroller inside monitors each potentiometer’s output voltage and uses as radio to
relay that information to the plane, where an onboard controller receives those radio
signals and converts them to signals that control the various servos.

Page 204 ⋅ What’s a Multicore Microcontroller

Figure 6-20
Potentiometers Inside
the Parallax Thumb
Joystick Module

In this activity, you will use your potentiometer, which is similar to the ones found in
thumb joysticks, to control a servo’s position. As you turn the potentiometer’s knob, the
servo’s horn will mirror this motion.

With four A/D inputs, your Propeller Activity Board application could easily monitor two
joysticks (horizontal and vertical for each).

Potentiometer Controlled Servo Parts

(1) Potentiometer – 10 kΩ
(1) Parallax Standard Servo
(1) 2.1 mm, center positive plug supply option from Chapter 4, Activity #1.
(1) Jumper wire (black)
(1) Potentiometer – 10 kΩ
(3) Jumper wires – 1 red, 1 black, 1 blue

Potentiometer and Servo Circuits

This activity will use two circuits that you have already built individually: the
potentiometer circuit from the activity you just finished and the servo circuit from
Chapter 4.

Vertical
potentiometer

Horizontal
potentiometer

Measure Voltage and Position · Page 205

Circuit Safety First! Before connecting the servo, set the Activity Board’s PWR switch to 0.
Make sure to plug in the servo the right direction, with the white wire nearest the top edge of
the board. The USB cable will not power a servo – you must use supply external power
supply (See Figure 4-4 on page 92 for power supply options.) When you turn power back
on, make sure to set the PWR switch to 2.

 Leave your potentiometer A/D circuit from Activity #2 on your prototyping area.
 Add your servo circuit from Chapter 4, Activity #1 as shown in Figure 6-21.

Remember to connect your external power supply to the Activity Board’s 6-9 V
jack! (See Figure 4-4 on page 106 for power supply options.)

Figure 6-21
Pot & Servo Circuits

Page 206 ⋅ What’s a Multicore Microcontroller

Potentiometer Servo Control

Here, we can take the potentiometer’s output (approximately 0 to 2703) and scale it to the
servo_angle function’s input range of (0 to 1800). We’ll need a new value of m for
this:

2703
1800m

x
y m

mx y

=

=

=

Since we’ll be using int variables, we have to make sure to use y = x * m(numerator) /
m(denominator). The result is:

x = ad_in(3);
y = x * 1800 / 2703;

Example Program: Volts-ServoControl

 Enter and run this program, then twist the potentiometer’s knob and verify that
the servo’s movements echo the potentiometer’s movements. (Make sure to
push the pot onto the breadboard to maintain electrical contact. If you don’t, the
servo might seem twitchy or jittery.)

/* Volts-ServoControl.c */

#include "simpletools.h" // Library includes
#include "abvolts.h"
#include "servo.h"

int main() // Main function
{
 print("Twist knob to control servo."); // User prompt

 while(1)
 {
 int x = ad_in(3); // Measure potentiometer

 int y = x * 1800 / 2703; // Scale value

 servo_angle(14, y); // Set degreeTenths to y
 }
}

Measure Voltage and Position · Page 207

How it Works

Since this code controls a servo, it needs access to be able to access the servo functions.
So remember to add the servo library with #include "servo.h".

#include "simpletools.h"
#include "abvolts.h"
#include "servo.h"

Inside the while(1) loop, the code assigns the raw A/D pot voltage measurement to a
new variable named x with int x = ad_in(3). Then it takes the x value, which is in
the 0…2703 range, and calculates a scaled y value that fits in the 0…1800 range with
int y = x * 1800 / 2703. Then servo_angle(14, y) uses this value to control the
servo’s position.

 int x = ad_in(3);

 int y = x * 1800 / 2703;

 servo_angle(14, y);

Try This – Scale and Offset

Let’s say we want the full range of potentiometer motion to only move the servo from 45º
to 135º. Now, we have a y = mx + b problem. In this case, solving for b is pretty easy
because we know that y should be 450 when x is 0. (Keep in mind that m × 0 = 0.)

450b
b0m450

b mx y

=
+×=

+=

Next, solve for m with known values of y and x, like x = 2703 (for max 3.3 V input
voltage) and y = 1350 (for 135 degrees on the servo).

Page 208 ⋅ What’s a Multicore Microcontroller

2703
900m

2703
4501350m

4502703m1350
450 mx y

=

−
=

+×=
+=

This means the equation the code needs to implement is:

 450x

2703
900y +=

Remember that integer values need to be multiplied by the numerator first, before
dividing by the denominator. So the code we think will make the scale is:

int y = x * 900 / 2703 + 450;

Let’s test that with the Terminal before adding potentiometer code:

 Click New Project, name the project Volts-ServoControl-TryThis, and save it to

My Projects.
 Type this code into SimpleIDE.

/* Volts-ServoControl-TryThis.c */

#include "simpletools.h" // Library includes

int main() // Main function
{
 print("Enter values in 0...2703 range\n");
 print("Verify results in 450...1350 range\n\n");

 while(1)
 {
 print("Enter value: ");
 int x;
 scan("%d", &x);

 int y = x * 900 / 2703 + 450;
 print("y = %d\n\n", y);
 }
}

Measure Voltage and Position · Page 209

 Click Run with Terminal, and use some test values (like in Figure 6-22) to verify

that the code correctly scales and offsets the expected A/D3 input values.

Figure 6-22
Scale and Offset
in SimpleIDE
Terminal

Test Calculations
before Running

Your Turn – Servo Motion Scale and Offset

Now that we know int y = x * 900 / 2703 + 450 works, let’s test it with our pot-
controlled servo.

 Use Open Project to open Volts-ServoControl.
 Use Save Project As to save a copy named Volts-ServoControl-YourTurn in My

Projects.
 Change int y = x * 1800 / 2703; to int y = x * 900 / 2703 + 450;

Click the Load RAM & Run button.
 Test to make sure the servo’s output range only turns from 45º to 135º when you

turn the knob over its full range.

ACTIVITY #7: POTENTIOMETER CONTROLLING OTHER COG
Let’s use the potentiometer input values to control the LED blink rate from another cog.
When the pot is turned to its clockwise limit, the fastest blink rate will have 25 ms
pauses. When it’s turned to its counterclockwise limit, the slowest rate will have 275 ms

Page 210 ⋅ What’s a Multicore Microcontroller

pauses. Let’s first apply your scale and offset calculation and coding skills to fit this
output range to the potentiometers 0…2703 input range.

 Apply the math from the Your Turn you just completed to determine a statement

that calculates a y output in the 25…275 range that corresponds to an x input in
the 0…2703 range. Correct answer options include int y = x * (275 - 25)
/ 2703 + 25 as well as int y = x * 250 / 2703 + 25.

Pot Input Controls Output in Other Process

We have already written code that controls LED blink rate in another cog using the
Activity Board’s built-in P26 LED. It was in the Multi-InfoExchange project from
Chapter 5, Activity #5. The program’s main function would set the value of a volatile
global variable named t. It also had a function named blink, which used t to set blink
rate running in another cog.

This program can serve as a starting point for potentiometer-controlled blink rate.
Instead of using statements like t = 100 and t = 50 to set the blink rate, the main
function can instead measure the potentiometer, apply scale and offset, and then use the
result to set the value of t for the blink function.

 Go back to Chapter 5, Activity #5 and examine Multi-InfoExchange.c.
 Think about how you would modify the main function to enable potentiometer

control of the blink rate.
 Would you need to make other modifications to the file? Maybe an extra

#include and some changes to the comments?

Example Program: Volts-Multicore

The Volts-Multicore program is a modified version of Multi-InfoExchange from Chapter
5, Activity #5 that controls blink rate in another cog based on potentiometer
measurements.

 Click SimpleIDE’s New Project button, set the File name to Volts-Multicore and

then Save.
 Enter the following Volts-Multicore.c code into SimpleIDE.
 Click SimpleIDE’s Load RAM & Run button.

Measure Voltage and Position · Page 211

 Turn the potentiometer’s knob, and verify that it now controls the rate at which
the LED light blinks.

/* Volts-Multicore.c */

#include "simpletools.h" // Library include
#include "abvolts.h"

void blink(); // Forward declaration

volatile int t; // Declare t for both cogs

int main() // Main function
{
 print("Adjust pot knob, and verify \n"); // User prompts
 print("blink rate control.\n");

 // Initialize t before running
 // blink in other cog.
 int x = ad_in(3); // Check pot
 int y = x * 250 / 2703 + 25; // Scale + offset
 t = y; // Change blink’s pause time

 cog_run(blink, 128); // Run blink in other cog

 while(1) // Main loop
 {
 x = ad_in(3); // Check pot
 y = x * 250 / 2703 + 25; // Scale + offset
 t = y; // Update blink’s pause time
 }
}

void blink() // Function for other cog
{
 while(1) // Endless loop
 {
 high(26); // LED on
 pause(t); // ...for t ms
 low(26); // LED off
 pause(t); // ...for t ms
 }
}

How it Works

This application needs the simpletools library for access to its high, low, pause, and
cog_run functions. It also needs the abvolts library for access to its ad_in function.

Page 212 ⋅ What’s a Multicore Microcontroller

#include "simpletools.h"
#include "abvolts.h"

Since the blink function is below main, but there’s a reference to it in main, the forward
declaration void blink() is required. A global variable named t is declared as volatile
so that functions running in different cogs use it to exchange information.

void blink();

volatile int t;

The main function starts with a couple of print statements prompting to test the pot’s
control of the blink rate.

int main()
{
 print("Adjust pot knob,and verify \n");
 print("blink rate control.\n");

The blink function needs to start with a value of t, so these three lines check the pot,
apply scale and offset, and copy the result to t. After that, it’s safe to run the blink
function in another cog with cog_run(blink, 20).

 int x = ad_in(3);
 int y = x * 250 / 2703 + 25;
 t = y;

 cog_run(blink, 20);

The while(1) loop repeatedly checks the pot, scales its output, and copies it to the
shared t variable for control of the blink function’s LED on/off rate.

 while(1)
 {
 x = ad_in(3);
 y = x * 250 / 2703 + 25;
 t = y;
 }
}

Measure Voltage and Position · Page 213

This is the same LED blink function from Multi-InfoExchange. It expects to have its
global pin and t variables set before it gets launched in another cog. As it repeats itself,
code in another cog can change the value of the global t variable, and this cog’s blink
rate will change.

void blink()
{
 while(1)
 {
 high(26);
 pause(t);
 low(26);
 pause(t);
 }
}

Your Turn – Reduce Duplicate Code, Add a Function

This code is repeated twice, once in the initialization and again in the while loop.

 int x = ad_in(3);
 int y = x * 250 / 2703 + 25;
 t = y;

Instead of having all that code repeating itself twice, why not just have a function that
your code calls twice? Here is an example of a function that can do the job. This one is
not for launching into another cog; it’s just for reading and scaling the pot.

 int potScaled(int channel)
 {
 int x = ad_in(channel);
 int y = x * 250 / 2703 + 25;
 return y;
 }

A call to that function might look like this:

t = potScaled(3);

After adding the function, that call can replace the three lines that read the pot, scale, and
set the t variable.

Page 214 ⋅ What’s a Multicore Microcontroller

Don’t forget the forward declaration above main:

int potScaled(int channel);

 Continuing with Volts-Multicore.c, click SimpleIDE’s Save Project As button,

set the File name to Volts-Multicore-YourTurn. Make sure to save in My
Projects.

 Add the potScaled function below the main function.
 Add the forward declaration above the main function.
 Find the two groups of 3 commands that look like this:

 int x = ad_in(3);
 int y = x * 250 / 2703 + 25;
 t = y;

…and replace them with the t = potScaled(3) function call.

 Click SimpleIDE’s Load RAM & Run button.
 Verify that it still works correctly.

 SUMMARY

Why isn’t x declared at the start of main? Just as a variable can be local to a function, it
can also be local to a code block. The x variable is only needed within the while loop, so it
is declared at the start of the while loop. As a general rule, it’s best to minimize the scope
of local variables your program uses. There are some cases where you’ll need to increase
the scope by declaring the variable earlier. For example, if the while loop was not endless,
and your code needed to retain the value of x after the loop finishes, you would have to
declare x above the while loop. In that case it would be:

int x; // Variable for A/D input
while(1)
{
 x = ad_in(3);

This chapter used the potentiometer as a knob in activities that both measured and set
voltages. Along the way, it introduced the following:

• Potentiometer schematic and part drawing, and explanation of its terminals.
• Potentiometer theory of operation, and some of its uses.
• Voltage divider circuits and equation.

Measure Voltage and Position · Page 215

• Analog to digital (A/D) conversion for measuring voltages.
• Digital to analog (D/A) conversion for setting voltages.
• Part tolerance contributions to measurement errors.
• Solving y = mx and y = mx + b for m and b.
• Scaling values from an input range to their corresponding values in a different

output range.
• Using casts to copy values between variables of different types.
• Operator precedence and order.
• Moving scalar operations into a function that can be re-used.

Questions

1. How many terminals does a potentiometer have and what are they named?
2. What parts does a voltage divider circuit have, and how are they connected?
3. What does A/D stand for? What does D/A stand for?
4. What does the %1.2f flag do in a print statement?
5. How many voltage measurement sockets does the Propeller Activity Board

have?
6. What library contains the functions ad_volts and da_volts?
7. Which has higher precedence, + or *? How does that affect which gets executed

first in a statement?
8. What’s the difference between an analog and digital value?
9. What is the rounding rule for the / operator when applied to int variables?
10. Will this work? int i; float f; i = 6.0 * f; Explain.
11. What does a thumb joystick use to detect its position?
12. What’s a good way to clean up repeated blocks of identical code in your

program?
13. How would you position a potentiometer’s knob in a 3.3 volt circuit to make its

output close to 1.65 V?

Exercises

1. Calculate the voltage divider for RA = 1.000 and RB = 10,000 with a 3.3 V
supply.

2. Calculate the voltage divider for RA = 10,000 and RB = 10,000 with a 3.3 V
supply.

3. Calculate the voltage divider for RA = 10,000 and RB = 1,000 with a 3.3 V
supply.

4. Copy the value of a float variable named f to an int variable named i.

Page 216 ⋅ What’s a Multicore Microcontroller

5. Copy the value of an int variable named i to a float variable named f.
6. Write a statement to measure the volts applied to A/D2.
7. Write a statement to apply 2.9 V with D/A1.
8. Write a statement to get the raw A/D value from A/D1.
9. Write a line of code that scales an input in the 0 to100 range to an output in the 0

to 50 range. Assume your input and output variables are int x and int y.
10. Write a line of code that takes an input in the 0 to 120 range and scales it to the

30 to 90 range. Assume your input and output variables are int x and int y.

Projects

1. Modify Volts-Multicore from Activity #5 so that its knob-position monitoring all
happens in another cog. Then, add code to the main function that prints the pot
voltage and the number of seconds elapsed since the application started every
second. Hints: You will want to make x global and volatile. Also, look for and
remove any instances of int x in functions. (Yes, you can have a global
variable and a local variable with the same name, and it can cause problems.)
Use while(t == 0); to wait for the potentiometer reading function in the other
cog to store a value in t before allowing cog_run(blink, 20) to execute.

2. Add a button to the potentiometer servo controller. When you press and hold the

button, it reverses the direction of servo control. So, instead of turning the same
direction with the knob, it turns the opposite direction. When you release the
button, rotation direction should return to normal. Hints: For opposite direction,
subtract the servo setting from 1800. Use the technique introduced in the
Activity #4’s Try This –Scale and Offset to test your solution first. That way,
you can be sure it works before trying it with your servo hardware.

Solutions

Q1. 3 terminals: A, B, and W (or wiper).
Q2. A voltage divider circuit has two resistors connected in series. Generally there is

a connection to measure the voltage at the point between the two resistors.
Q3. A/D stands for analog to digital, D/A stands for digital to analog.
Q4. It displays the corresponding floating point value in the print statements

parameter list with 1 digit to the left of the decimal point and two to the right.
Q5. Four A/D sockets numbered 0 to 3.
Q6. The abvolts library.
Q7. * has higher precedence, so it gets executed before +.

Measure Voltage and Position · Page 217

Q8. An analog value varies continuously. A digital value has some form of discrete
step.

Q9. There can be no fractional part in the result, so it always rounds down to the next
integer.

Q10. No, the int variable on the left cannot be assigned the right-side value which is
a float. Correct answers would be:

a. int i; float f; i = (int)(6.0 * f)
b. float f1; float f2; f1 = 6.0 * f2

Q11. The two outputs of the whole unit are the wiper terminal voltages of its two
potentiometers.

Q12. Move the code block to a function and call it from the various places that used
to have the redundant block.

Q13. Position it roughly in the middle of its range of motion.

E1. The equation for this voltage divider is R1 divided by (R1 plus R2) where R1 is
the resistor towards 3.3 V. 3.3 V × 10,000 / (1,000 + 10,000) = 3.0 V.

E2. 3.3 V × 10,000 / (10,000 + 10,000) = 1.65 V. (Noticing a pattern with equal
resistors yet?)

E3. 3.3 V × 1,000 / (1,000 + 10,000) = 0.3 V. (How about a pattern for swapping
unequal resistors?)

E4. Solution: i = (int) f;
E5. Solution: f = (float) i;
E6. Solution: float volts = ad_volts(2);
E7. Solution: da_volts(1, 2.9);
E8. Solution: int myVar = ad_in(1);
E9. y = x / 2
E10. y = x * (90 – 30) / 120 + 30

P1. Example solution:

/* Volts-P1-Solution.c */

#include "simpletools.h" // Library include
#include "abvolts.h"

void blink(); // Forward declaration
void potentiometer(); // <- add
volatile int pin, t, x; // Variables for cogs go share

int main() // Main function
{

Page 218 ⋅ What’s a Multicore Microcontroller

 cog_run(potentiometer, 20); // potentiometer() to other cog

 pin = 26; // Set up blink cog vars

 // Wait for other cog to store value in t. Blink will need it.
 while(t == 0);

 cog_run(blink, 40); // blink() to other cog

 // Seconds & pot display
 int seconds = 0; // Seconds variable

 while(1) // New main loop
 {
 pause(1000); // Wait 1 second
 seconds++; // Add 1 to seconds
 print("Seconds = %d\n", seconds); // Display seconds
 print("Pot = %d\n", x); // Display pot measurement
 }
}

void potentiometer()
{
 x = ad_in(3); // Initialize shared variables
 int y = x * 250 / 2703 + 25;
 t = y;

 while(1) // Main loop
 {
 x = ad_in(3); // Check pot
 int y = x * 250 / 2703 + 25; // Scale + offset
 t = y; // Change blink’s pause time
 }
}

void blink() // Blink function for other cog
{
 while(1) // Blink loop
 {
 high(pin); // LED on
 pause(t); // ...for t ms
 low(pin); // LED off
 pause(t); // ...for t ms
 }
}

P2. Build circuits shown.

Measure Voltage and Position · Page 219

Page 220 ⋅ What’s a Multicore Microcontroller

Test the potentiometer and pushbutton with SimpleIDE Terminal first.

/* Volts-P2-Solution1.c */

#include "simpletools.h" // Library includes
#include "abvolts.h"
#include "servo.h"

int main() // Main function
{
 print("Twist knob to control value.\n"); // User prompt
 print("Monitor terminal for servo value.\n\n");

 while(1)
 {
 int x = ad_in(3); // Measure potentiometer

 int y = x * 1800 / 2703; // Scale value same direction

 if(input(3) == 1)
 {
 y = 1800 - y; // Scale opposite direction
 }

 // servo_angle(14, y); // Set degreeTenths to y
 print("y = %d\n", y);
 pause(500);
 }
}

Then try it again with the servo.

/* Volts-P2-Solution2.c */

#include "simpletools.h" // Library includes
#include "abvolts.h"
#include "servo.h"

int main() // Main function
{
 print("Twist knob to control servo."); // User prompt

 while(1)
 {
 int x = ad_in(3); // Measure potentiometer

 int y = x * 1800 / 2703; // Scale value same direction

 if(input(3) == 1)

Measure Voltage and Position · Page 221

 {
 y = 1800 - y; // Scale opposite direction
 }

 servo_angle(14, y); // Set degreeTenths to y
 }
}

	What’s a Multicore Microcontroller?
	Warranty
	14-Day Money Back Guarantee
	Copyrights and Trademarks
	Disclaimer of Liability
	Errata

	Table of Contents
	Preface
	Audience
	A Bit About Propeller C and Simple Libraries
	About the Author
	Contributors

	Chapter 1 : Getting Started
	How Many Microcontrollers Did You Use Today?
	The Propeller Activity Board – Your New Embedded System
	Amazing Inventions with Microcontrollers
	Activity #1 : What’s a “Multicore” Microcontroller?
	Propeller Brains for Your Inventions

	Activity #2 : Set up Software and Hardware
	Activity #3 : Learn Just a Little Programming
	Simple Hello Message Tutorial
	How Hello Message.c Works
	Try This – Print Another Message
	Did You Know?
	Your Turn – Using Comments

	Activity #4 : Variables and Math
	How Variables and Calculations.c Works
	Try This – Test Binary Operators
	Your Turn – More Binary Operators

	Activity #5 : When You are Done For Now
	Summary
	Questions
	Exercises
	Projects
	Solutions

	Chapter 2 : Lights On – Lights Off
	Indicator Lights
	Making a Light-Emitting Diode (LED) Emit Light
	Activity #1 : Building and Testing the LED Circuit
	Introducing the Resistor
	Introducing the LED
	LED Test Circuit Parts
	Building the LED Test Circuit
	How the LED Test Circuit Works
	Your Turn – Modifying the LED Test Circuit

	Activity #2 : On/Off Control with the Microcontroller
	LED Test Circuit Parts
	Connecting the LED Circuit to the Propeller Microcontroller
	Turning the LED On/Off with a Program
	Example Program: LED-OnOff
	How LED-OnOff Works
	Your Turn – Timing and Repetitions

	Activity #3 : Counting and Repeating
	Counting Parts and Test Circuit
	Counting with a While Loop
	Example Program: LED-OnOffTenTimes

	Easier Counting with a For Loop
	Example Program: LED-OnOffTenAgain

	How LED-OnOffTenAgain Works
	Your Turn – Other Ways to Count

	Activity #4 : Building and Testing a Second LED Circuit
	Extra Parts Required
	Building and Testing the Second LED Circuit
	Using a Program to Test the Second LED Circuit
	Example Program: LED-TestSecond

	Controlling Both LEDs
	Example Program: LED-FlashBoth
	Your Turn – Alternate LEDs

	Activity #5 : Control a Bicolor LED with Current Direction
	Introducing the Bicolor LED
	Bicolor LED Circuit Parts

	Building and Testing the Bicolor LED Circuit
	Propeller Bicolor LED Control
	Example Program: LED-TestBicolor
	Your Turn – Lights Display

	Summary
	Questions
	Exercises
	Project
	Solutions

	Chapter 3 : Digital Input – Pushbuttons
	Found on Calculators, Handheld Games, and Applicances
	Receiving vs. Sending High and Low Signals
	Activity #1 : Testing a Pushbutton with an LED Circuit
	Introducing the Pushbutton
	Test Parts for the Pushbutton

	Building the Pushbutton Test Circuit
	Testing the Pushbutton
	How the Pushbutton Circuit Works
	Your Turn – Turn the LED off with a Pushbutton

	Activity #2 : Reading a Pushbutton with the Propeller
	Parts for a Pushbutton Circuit
	Building a Pushbutton Circuit for the Propeller Microcontroller
	Example Program: Button-ReadState
	How Button-ReadState Works
	Your Turn – A Pushbutton with a Pull-up Resistor

	Activity #3 : Pushbutton Control of an LED Circuit
	Pushbutton and LED Circuit Parts
	Building the Pushbutton and LED Circuits
	Programming Pushbutton Control
	Example Program: Button-ControlOneLED
	How Button-ControlOneLED Works
	Your Turn – Alternate Coding Approach

	Activity #4 : Two Pushbuttons Controlling Two LED Circuits
	Pushbutton and LED Circuit Parts
	Adding a Pushbutton and LED Circuit
	Programming Pushbutton Control
	Example Program: Button-ControlTwoLEDs
	How Button-ControlTwoLEDs Works
	Your Turn – What about Pressing Both Pushbuttons?
	A Simplified Approach

	Activity #5 : Reaction Timer Test
	Reaction Timer Game Parts
	Building the Reaction Timer Circuit
	Programming the Reaction Timer
	Example Program: Button-ReactionTimer
	How Button-ReactionTimer Works
	Your Turn
	Optional Tricky Topic – Pseudo-random Number, Scale, and Offset
	How it Works

	Summary
	Questions
	Exercises
	Project
	Solutions

	Chapter 4 : Control Position and Motion
	Microcontrolled Motion
	Introducing the Servo
	Activity #1 : Safely Connecting the Servo
	Servo and LED Circuit Parts
	Building the Servo and LED Circuits

	Activity #2 : Test and Adjust Range of Motion
	Test and Adjust the Servo’s 90 “Center” Position
	Example Program: Servo-Center

	How it Works – Servo-Center.c
	Your Turn – Adjust Servo Horn to 90 Center

	Activity #3 : Program to Hold Positions
	Example Program: Servo-Positions.c
	How it Works – Servo-Positions.c
	Your Turn – Programs to Point the Servo in Different Directions

	Activity #4 : Controlling Position with your Computer
	Parts and Circuit
	Programming the Propeller to Receive Messages from SimpleIDE Terminal
	Example Program: Servo-TerminalControl
	How it Works - Servo-TerminalControl
	Your Turn – Setting Limits in Software

	Activity #5 : Converting Position to Motion
	Programming a Rate of Change for Position
	Example Program: Servo-Velocities.c
	How Servo-Velocities.c Works
	Your Turn – Adjusting the Velocities

	Activity #6 : Pushbutton-Controlled Servo
	Extra Parts for Pushbutton Servo Control
	Adding the Pushbutton Control Circuit
	Programming Pushbutton Servo Control
	Example Program: Servo-ButtonControl.c
	How it Works – Servo-ButtonControl
	Your Turn – Speed and Limit Adjustments

	Summary
	Questions
	Exercises
	Project
	Solutions

	Chapter 5 : Write Multicore Code
	Introducing the Function
	Activity #1 : Test the Multi-HelloFunction
	Example Program: Multi-HelloFunction
	How it Works
	Your Turn – Multiple Hello Calls

	Activity #2 : Parameters and Return Values
	Example Program: Multi-TestFunction
	How It Works
	Try This – One Program, More Functions
	Your Turn – A Function That Repeats

	Activity #3 : Variable Scope
	Local Scope Examples
	Example Program: Multi-LocalScope
	How it Works
	Try This – Just One X

	Global Scope Examples
	Example Program: Multi-LocalVsGlobal
	How it Works
	Your Turn – Add a Global Variable and Operation

	Activity #4 : Run Functions in Other Processors (cogs)
	Test Cog-Launching Code
	Example Program: Multi-CogRun
	How it Works
	Recap and More Details for cog_run and cog_end
	Try This – Add Another Function and Run it in Another Cog
	Your Turn – Keep the First Cog Busy

	Activity #5 Sharing Global Variables Between Cogs
	Global Variables Shared by Cogs Need to be Volatile
	Example Program: Multi-InfoExchange
	How it Works
	Try This – Make One Function Monitor Another’s Activity

	Activity #6 : Self-terminating Cogs
	Making a Cog Self-Terminate
	Example Program: Cog Self-Terminates
	How It Works

	Activity #7 : Printing and Terminating from a launched Cog
	Example Program: Multi-CogPrint
	How it Works
	Try This – Test Volatile

	Summary
	Questions
	Exercises
	Project
	Solutions

	Chapter 6 : Measure Voltage and Position
	The Variable Resistor – a Potentiometer
	Activity #1 : Set Voltages with Two Resistors
	Voltage Divider Circuit
	Voltage Divider Parts
	First Voltage Divider Circuit
	Example Program: Volts-DividerVoltage
	How Volts-DividerVoltage Works
	Your Turn – Different Voltage Dividers

	Activity #2 : Read the Position with the Propeller
	Potentiometer Parts
	Potentiometer Circuit
	Potentiometer Test Code
	Example Program: Volts-Monitor
	How it Works
	Try This – Display Actual A/D Values
	Your Turn - Casting a Variable

	Activity #3 : Calibrate D/A Outputs
	Additional Parts
	D/A Calibration Setup
	D/A Calibration
	Example Program: Volts-CalibrateDA
	How it Works

	Test the D/A with the A/D
	Example Program: Volts-DAConversion
	How it Works
	Your Turn – Try it Without da_useScale

	Activity #4 : Potentiometer Controlled LED
	Example Program: Volts-ControlLED
	How it Works
	Your Turn – Control Both LEDs

	Activity #5 : Measure Input, Scale Value, Set Output
	Operations Rules for INT Variables
	Try This – Int Order of Operations

	Activity #6 : Potentiometer Controlled Servo
	Potentiometer Controlled Servo Parts
	Potentiometer and Servo Circuits
	Potentiometer Servo Control
	Example Program: Volts-ServoControl
	How it Works
	Try This – Scale and Offset
	Your Turn – Servo Motion Scale and Offset

	Activity #7 : Potentiometer Controlling Other Cog
	Pot Input Controls Output in Other Process
	Example Program: Volts-Multicore
	How it Works
	Your Turn – Reduce Duplicate Code, Add a Function

	Summary
	Questions
	Exercises
	Projects
	Solutions

